Skip to main content
Erschienen in: Inflammation 3/2017

11.03.2017 | ORIGINAL ARTICLE

Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass

verfasst von: Hai Shi, Rujian Lu, Shuo Wang, Honglin Chen, Fei Wang, Kun Liu

Erschienen in: Inflammation | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury (ALI) is one of the most important complications after cardiopulmonary bypass (CPB) and the complex pathophysiology remains to be resolved incomplete. SDF-1/CXCR4 chemokine axis can chemotactically accumulate inflammatory cell to local tissue and regulate the release of inflammatory factors, and SDF-1 has a strong chemotaxis effect on neutrophils with CXCR4. Since CPB animal model was difficult to establish, there was still no report about the effect of SDF-1/CXCR4 on neutrophil chemotaxis in ALI after CPB. Here, a stable CPB rat model was constructed to clarify the role of SDF-1/CXCR4 axis in the CPB-induced ALI. Real-time quantitative PCR (RT-qPCR), Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to detect the changes of SDF-1 and CXCR4 in lung tissues, blood, bronchoalveolar lavage (BALF), and/or isolated neutrophils. SDF-1/CXCR4 was increased after CPB, both of that were increased in blood; CXCR4 was increased in neutrophils; SDF-1/CXCR4 was also increased in BALF of CPB model. Results indicated that SDF-1/CXCR4 axis played a key role in the process of early ALI after CPB, also showed that lung injury was significantly reduce after blocking SDF-1/CXCR4 axis, suggest that CXCR4 might be a new target for ALI treatment.
Literatur
1.
Zurück zum Zitat Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5: 115–126.CrossRefPubMedPubMedCentral Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5: 115–126.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Koch, C., L. Li, P. Figueroa, T. Mihaljevic, L. Svensson, and E.H. Blackstone. 2009. Transfusion and pulmonary morbidity after cardiac surgery. Annals of Thoracic Surgery 88: 1410–1418.CrossRefPubMed Koch, C., L. Li, P. Figueroa, T. Mihaljevic, L. Svensson, and E.H. Blackstone. 2009. Transfusion and pulmonary morbidity after cardiac surgery. Annals of Thoracic Surgery 88: 1410–1418.CrossRefPubMed
3.
Zurück zum Zitat Vlaar, A.P., J.J. Hofstra, R.M. Determann, D.P. Veelo, F. Paulus, W. Kulik, J. Korevaar, B.A. de Mol, M.M. Koopman, L. Porcelijn, J.M. Binnekade, M.B. Vroom, M.J. Schultz, and N.P. Juffermans. 2011. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood 117: 4218–4225.CrossRefPubMed Vlaar, A.P., J.J. Hofstra, R.M. Determann, D.P. Veelo, F. Paulus, W. Kulik, J. Korevaar, B.A. de Mol, M.M. Koopman, L. Porcelijn, J.M. Binnekade, M.B. Vroom, M.J. Schultz, and N.P. Juffermans. 2011. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood 117: 4218–4225.CrossRefPubMed
4.
Zurück zum Zitat Luehr, M., J. Bachet, F.W. Mohr, and C.D. Etz. 2014. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 45: 27–39.CrossRefPubMed Luehr, M., J. Bachet, F.W. Mohr, and C.D. Etz. 2014. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 45: 27–39.CrossRefPubMed
5.
Zurück zum Zitat Ng, C.S., S. Wan, A.P. Yim, and A.A. Arifi. 2002. Pulmonary dysfunction after cardiac surgery. Chest 121: 1269–1277.CrossRefPubMed Ng, C.S., S. Wan, A.P. Yim, and A.A. Arifi. 2002. Pulmonary dysfunction after cardiac surgery. Chest 121: 1269–1277.CrossRefPubMed
6.
Zurück zum Zitat Bhatia, M., R.L. Zemans, and S. Jeyaseelan. 2012. Role of chemokines in the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology 46: 566–572.CrossRefPubMedPubMedCentral Bhatia, M., R.L. Zemans, and S. Jeyaseelan. 2012. Role of chemokines in the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology 46: 566–572.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Xiang, M., and J. Fan. 2010. Pattern recognition receptor-dependent mechanisms of acute lung injury. Molecular Medicine 16: 69–82.CrossRefPubMed Xiang, M., and J. Fan. 2010. Pattern recognition receptor-dependent mechanisms of acute lung injury. Molecular Medicine 16: 69–82.CrossRefPubMed
9.
Zurück zum Zitat Raghavendran, K., G.S. Pryhuber, P.R. Chess, B.A. Davidson, P.R. Knight, and R.H. Notter. 2008. Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Current Medicinal Chemistry 15: 1911–1924.CrossRefPubMedPubMedCentral Raghavendran, K., G.S. Pryhuber, P.R. Chess, B.A. Davidson, P.R. Knight, and R.H. Notter. 2008. Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Current Medicinal Chemistry 15: 1911–1924.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Martin, C., P.C. Burdon, G. Bridger, J.C. Gutierrez-Ramos, T.J. Williams, and S.M. Rankin. 2003. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19: 583–593.CrossRefPubMed Martin, C., P.C. Burdon, G. Bridger, J.C. Gutierrez-Ramos, T.J. Williams, and S.M. Rankin. 2003. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19: 583–593.CrossRefPubMed
12.
Zurück zum Zitat Petty, J.M., V. Sueblinvong, C.C. Lenox, C.C. Jones, G.P. Cosgrove, C.D. Cool, P.R. Rai, K.K. Brown, D.J. Weiss, M.E. Poynter, and B.T. Suratt. 2007. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury. Journal of Immunology 178: 8148–8157.CrossRef Petty, J.M., V. Sueblinvong, C.C. Lenox, C.C. Jones, G.P. Cosgrove, C.D. Cool, P.R. Rai, K.K. Brown, D.J. Weiss, M.E. Poynter, and B.T. Suratt. 2007. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury. Journal of Immunology 178: 8148–8157.CrossRef
13.
Zurück zum Zitat Delano, M.J., K.M. Kelly-Scumpia, T.C. Thayer, R.D. Winfield, P.O. Scumpia, A.G. Cuenca, P.B. Harrington, K.A. O’Malley, E. Warner, S. Gabrilovich, C.E. Mathews, D. Laface, P.G. Heyworth, R. Ramphal, R.M. Strieter, L.L. Moldawer, and P.A. Efron. 2011. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. Journal of Immunology 187: 911–918.CrossRef Delano, M.J., K.M. Kelly-Scumpia, T.C. Thayer, R.D. Winfield, P.O. Scumpia, A.G. Cuenca, P.B. Harrington, K.A. O’Malley, E. Warner, S. Gabrilovich, C.E. Mathews, D. Laface, P.G. Heyworth, R. Ramphal, R.M. Strieter, L.L. Moldawer, and P.A. Efron. 2011. Neutrophil mobilization from the bone marrow during polymicrobial sepsis is dependent on CXCL12 signaling. Journal of Immunology 187: 911–918.CrossRef
14.
Zurück zum Zitat Zernecke, A., I. Bot, Y. Djalali-Talab, E. Shagdarsuren, K. Bidzhekov, S. Meiler, R. Krohn, A. Schober, M. Sperandio, O. Soehnlein, J. Bornemann, F. Tacke, E.A. Biessen, and C. Weber. 2008. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circulation Research 102: 209–217.CrossRefPubMed Zernecke, A., I. Bot, Y. Djalali-Talab, E. Shagdarsuren, K. Bidzhekov, S. Meiler, R. Krohn, A. Schober, M. Sperandio, O. Soehnlein, J. Bornemann, F. Tacke, E.A. Biessen, and C. Weber. 2008. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circulation Research 102: 209–217.CrossRefPubMed
15.
Zurück zum Zitat Hartl, D., S. Krauss-Etschmann, B. Koller, P.L. Hordijk, T.W. Kuijpers, F. Hoffmann, A. Hector, E. Eber, V. Marcos, I. Bittmann, O. Eickelberg, M. Griese, and D. Roos. 2008. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. Journal of Immunology 181: 8053–8067.CrossRef Hartl, D., S. Krauss-Etschmann, B. Koller, P.L. Hordijk, T.W. Kuijpers, F. Hoffmann, A. Hector, E. Eber, V. Marcos, I. Bittmann, O. Eickelberg, M. Griese, and D. Roos. 2008. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. Journal of Immunology 181: 8053–8067.CrossRef
16.
Zurück zum Zitat Liu, K., L. Shen, J. Wang, G. Dong, H. Wu, H. Shao, and H. Jing. 2012. The preventative role of curcumin on the lung inflammatory response induced by cardiopulmonary bypass in rats. Journal of Surgical Research 174: 73–82.CrossRefPubMed Liu, K., L. Shen, J. Wang, G. Dong, H. Wu, H. Shao, and H. Jing. 2012. The preventative role of curcumin on the lung inflammatory response induced by cardiopulmonary bypass in rats. Journal of Surgical Research 174: 73–82.CrossRefPubMed
17.
Zurück zum Zitat Liu, K., H.L. Chen, H. Huang, H. Jing, G.H. Dong, H.W. Wu, and Q.S. You. 2012. Curcumin attenuates cardiopulmonary bypass-induced lung oxidative damage in rats. Journal of Cardiovascular Pharmacology and Therapeutics 17: 395–402.CrossRefPubMed Liu, K., H.L. Chen, H. Huang, H. Jing, G.H. Dong, H.W. Wu, and Q.S. You. 2012. Curcumin attenuates cardiopulmonary bypass-induced lung oxidative damage in rats. Journal of Cardiovascular Pharmacology and Therapeutics 17: 395–402.CrossRefPubMed
18.
Zurück zum Zitat Lukacs, N.W., A. Berlin, D. Schols, R.T. Skerlj, and G.J. Bridger. 2002. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. American Journal of Pathology 160: 1353–1360.CrossRefPubMedPubMedCentral Lukacs, N.W., A. Berlin, D. Schols, R.T. Skerlj, and G.J. Bridger. 2002. AMD3100, a CxCR4 antagonist, attenuates allergic lung inflammation and airway hyperreactivity. American Journal of Pathology 160: 1353–1360.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.CrossRefPubMed Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.CrossRefPubMed
20.
Zurück zum Zitat Heikkinen, L.O., and K.V. Alakulju. 2009. Abdominal complications following cardiopulmonary bypass in open-heart surgery. Scandinavian Journal of Thoracic and Cardiovascular Surgery 95: 1–7. Heikkinen, L.O., and K.V. Alakulju. 2009. Abdominal complications following cardiopulmonary bypass in open-heart surgery. Scandinavian Journal of Thoracic and Cardiovascular Surgery 95: 1–7.
21.
Zurück zum Zitat Dhein, S., M. Grassl, M. Gerdom, M. Vollroth, F. Bakhtiary, S. von Salisch, K. Krämer, A. Sobiraj, M. Kostelka, F.W. Mohr, and A. Salameh. 2015. Organ-protective effects on the liver and kidney by minocycline in small piglets undergoing cardiopulonary bypass. Naunyn-Schmiedeberg’s Archives of Pharmacology 388: 663–676.CrossRefPubMed Dhein, S., M. Grassl, M. Gerdom, M. Vollroth, F. Bakhtiary, S. von Salisch, K. Krämer, A. Sobiraj, M. Kostelka, F.W. Mohr, and A. Salameh. 2015. Organ-protective effects on the liver and kidney by minocycline in small piglets undergoing cardiopulonary bypass. Naunyn-Schmiedeberg’s Archives of Pharmacology 388: 663–676.CrossRefPubMed
22.
Zurück zum Zitat Du, S., J. Ai, X. Zeng, J. Wan, X. Wu, and J. He. 2016. Plasma level of advanced oxidation protein products as a novel biomarker of acute lung injury following cardiac surgery. Springerplus 5: 231.CrossRefPubMedPubMedCentral Du, S., J. Ai, X. Zeng, J. Wan, X. Wu, and J. He. 2016. Plasma level of advanced oxidation protein products as a novel biomarker of acute lung injury following cardiac surgery. Springerplus 5: 231.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Senay, S., F. Toraman, S. Gunaydin, M. Kilercik, H. Karabulut, and C. Alhan. 2009. The impact of allogenic red cell transfusion and coated bypass circuit on the inflammatory response during cardiopulmonary bypass: a randomized study. Interactive Cardiovascular and Thoracic Surgery 8: 93–99.CrossRefPubMed Senay, S., F. Toraman, S. Gunaydin, M. Kilercik, H. Karabulut, and C. Alhan. 2009. The impact of allogenic red cell transfusion and coated bypass circuit on the inflammatory response during cardiopulmonary bypass: a randomized study. Interactive Cardiovascular and Thoracic Surgery 8: 93–99.CrossRefPubMed
24.
Zurück zum Zitat Melley, D.D., T.W. Evans, and G.J. Quinlan. 2005. Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clinical Science (London) 108: 413–424.CrossRef Melley, D.D., T.W. Evans, and G.J. Quinlan. 2005. Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clinical Science (London) 108: 413–424.CrossRef
25.
Zurück zum Zitat Fujishima, S., H. Morisaki, A. Ishizaka, Y. Kotake, M. Miyaki, K. Yoh, K. Sekine, J. Sasaki, S. Tasaka, N. Hasegawa, Y. Kawai, J. Takeda, and N. Aikawa. 2008. Neutrophil elastase and systemic inflammatory response syndrome in the initiation and development of acute lung injury among critically ill patients. Biomedicine and Pharmacotherapy 62: 333–338.CrossRefPubMed Fujishima, S., H. Morisaki, A. Ishizaka, Y. Kotake, M. Miyaki, K. Yoh, K. Sekine, J. Sasaki, S. Tasaka, N. Hasegawa, Y. Kawai, J. Takeda, and N. Aikawa. 2008. Neutrophil elastase and systemic inflammatory response syndrome in the initiation and development of acute lung injury among critically ill patients. Biomedicine and Pharmacotherapy 62: 333–338.CrossRefPubMed
26.
Zurück zum Zitat Yamada, M., H. Kubo, S. Kobayashi, K. Ishizawa, M. He, T. Suzuki, N. Fujino, H. Kunishima, M. Hatta, K. Nishimaki, T. Aoyagi, K. Tokuda, M. Kitagawa, H. Yano, H. Tamamura, N. Fujii, and M. Kaku. 2011. The increase in surface CXCR4 expression on lung extravascular neutrophils and its effects on neutrophils during endotoxin-induced lung injury. Cellular and Molecular Immunology 8: 305–314.CrossRefPubMedPubMedCentral Yamada, M., H. Kubo, S. Kobayashi, K. Ishizawa, M. He, T. Suzuki, N. Fujino, H. Kunishima, M. Hatta, K. Nishimaki, T. Aoyagi, K. Tokuda, M. Kitagawa, H. Yano, H. Tamamura, N. Fujii, and M. Kaku. 2011. The increase in surface CXCR4 expression on lung extravascular neutrophils and its effects on neutrophils during endotoxin-induced lung injury. Cellular and Molecular Immunology 8: 305–314.CrossRefPubMedPubMedCentral
Metadaten
Titel
Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass
verfasst von
Hai Shi
Rujian Lu
Shuo Wang
Honglin Chen
Fei Wang
Kun Liu
Publikationsdatum
11.03.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0538-0

Weitere Artikel der Ausgabe 3/2017

Inflammation 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.