Skip to main content
Erschienen in: Inflammation 1/2012

01.02.2012

Effects of TGF-β and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model

verfasst von: Masoomeh Bakhshayesh, Mansooreh Soleimani, Mehdi Mehdizadeh, Majid Katebi

Erschienen in: Inflammation | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

ABSTRACT

Peripheral blood fibrocytes make up a newly identified leukocyte subpopulation that displays fibroblast-like properties. These blood-borne cells can rapidly enter the site of injury at the same time as circulating inflammatory cells. Marrow stroma includes a subpopulation of undifferentiated cells that are capable of becoming one of a number of phenotypes, including chondrocytes, osteoblasts, adipocytes, and fibroblasts. Adult human bone marrow contains a minority population of bone marrow mesenchymal stem cells (BMSCs) that contribute to the regeneration of tissues such as bone, cartilage, muscle, ligaments, tendons, fat, and stroma. Evidence that these BMSCs are pluripotent, rather than being a mixture of committed progenitor cells each with a restricted potential, includes their rapid proliferation in culture. We hypothesized that peripheral blood mesenchymal stem cells (PBMSCs) and BMSCs have an effective role in wound healing. In this study, we identified and quantified the marrow stem cells (MSCs) derived from blood and bone marrow recruited and migrated to the wound site. Our results show that the synergistic effects of transforming growth factor-beta (TGF-β) and basic fibroblast growth factor (b-FGF) lead to a significant increase in migration and recruitment of both PBMSCs and BMSCs to the wound site, with more potent effects on PBMSCs as compared with BMSCs. Reverse transcription polymerase chain reaction of collagen type I (COL1A1) transcripts (348 bp) confirmed that TGF-β and b-FGF activate collagen I (production in marrow stem cells at higher transcription levels), with more vigorous effects of TGF-β on PBMSCs as compared with the same condition on BMSCs.
Literatur
1.
Zurück zum Zitat Le Nihouannen, D., E. Goyenvalle, E. Aguado, P. Pilet, M. Bilban, G. Daculsi, and P. Lavrolle. 2007. Hybrid composites of calcium phosphate granules fibrin glue, and bone marrow for skeletal repair. Journal of Biomedical Materials Research. Part A 81: 399–408.PubMedCrossRef Le Nihouannen, D., E. Goyenvalle, E. Aguado, P. Pilet, M. Bilban, G. Daculsi, and P. Lavrolle. 2007. Hybrid composites of calcium phosphate granules fibrin glue, and bone marrow for skeletal repair. Journal of Biomedical Materials Research. Part A 81: 399–408.PubMedCrossRef
2.
Zurück zum Zitat Lee, M.Y., T.J. Chiou, L.Y. Bai, L.T. Hsiao, G.Y. Hung, C.Y. Chang, and P.M. Chen. 2004. Intravenous busulfan as preparative regimen in pediatric patients receiving hematopoietic stem cell transplantation: the preliminary experience in Taiwan. Journal of the Chinese Medical Association 67: 117–22.PubMed Lee, M.Y., T.J. Chiou, L.Y. Bai, L.T. Hsiao, G.Y. Hung, C.Y. Chang, and P.M. Chen. 2004. Intravenous busulfan as preparative regimen in pediatric patients receiving hematopoietic stem cell transplantation: the preliminary experience in Taiwan. Journal of the Chinese Medical Association 67: 117–22.PubMed
3.
Zurück zum Zitat Hung, G.Y., T.J. Chiou, C.Y. Lin, L.T. Hsiao, P.M. Chen, and B. Hwang. 2003. Transplantation of related histocompatible marrow and peripheral blood stem cells in a patient with severe combined immunodeficiency and disseminated BCG infection. Journal of the Chinese Medical Association 66: 72–5.PubMed Hung, G.Y., T.J. Chiou, C.Y. Lin, L.T. Hsiao, P.M. Chen, and B. Hwang. 2003. Transplantation of related histocompatible marrow and peripheral blood stem cells in a patient with severe combined immunodeficiency and disseminated BCG infection. Journal of the Chinese Medical Association 66: 72–5.PubMed
4.
Zurück zum Zitat Chung, K.M., S.S. Chuang, W.S. Hwang, P.S. Lee, and C.Y. Li. 2002. High dose chemotherapy and allogenic peripheral blood stem cell transplantation for multiple myeloma evolving from intraabdominal plasmacytoma. Journal of the Chinese Medical Association 65: 557–60. Chung, K.M., S.S. Chuang, W.S. Hwang, P.S. Lee, and C.Y. Li. 2002. High dose chemotherapy and allogenic peripheral blood stem cell transplantation for multiple myeloma evolving from intraabdominal plasmacytoma. Journal of the Chinese Medical Association 65: 557–60.
5.
Zurück zum Zitat Chen, L., E. Tredget, C. Liu, and Y. Wu. 2009. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS ONE 4: e7119.PubMedCrossRef Chen, L., E. Tredget, C. Liu, and Y. Wu. 2009. Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PLoS ONE 4: e7119.PubMedCrossRef
6.
Zurück zum Zitat Bucala, R., L.A. Spiegel, J. Chesney, M. Hogan, and A. Cerami. 1994. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular Medicine 1: 71–81.PubMed Bucala, R., L.A. Spiegel, J. Chesney, M. Hogan, and A. Cerami. 1994. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular Medicine 1: 71–81.PubMed
7.
Zurück zum Zitat Chesney, J., and R. Bucala. 1997. Peripheral blood fibrocytes: novel fibroblast-like cells that present antigen and mediate tissue repair. Biochemical Society Transactions 25: 520–24.PubMed Chesney, J., and R. Bucala. 1997. Peripheral blood fibrocytes: novel fibroblast-like cells that present antigen and mediate tissue repair. Biochemical Society Transactions 25: 520–24.PubMed
8.
Zurück zum Zitat Grab, D.J., H. Lanners, L.N. Martin, J. Chesney, C. Cai, H.D. Adkisson, and R. Bucala. 1999. Interaction of Borrelia burgdorferi with peripheral blood fibrocytes antigen-presenting cells with the potential for connective tissue targeting. Molecular Medicine 5: 46–54.PubMedCrossRef Grab, D.J., H. Lanners, L.N. Martin, J. Chesney, C. Cai, H.D. Adkisson, and R. Bucala. 1999. Interaction of Borrelia burgdorferi with peripheral blood fibrocytes antigen-presenting cells with the potential for connective tissue targeting. Molecular Medicine 5: 46–54.PubMedCrossRef
9.
Zurück zum Zitat Chesney, J., C. Metz, A.B. Stavitsky, M. Bacher, and R. Bucala. 1998. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. Journal of Immunology 160: 419–25. Chesney, J., C. Metz, A.B. Stavitsky, M. Bacher, and R. Bucala. 1998. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. Journal of Immunology 160: 419–25.
10.
Zurück zum Zitat Abe, R., S.C. Donnelly, and T. Peng. 2001. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. Journal of Immunology 166: 7556–62. Abe, R., S.C. Donnelly, and T. Peng. 2001. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. Journal of Immunology 166: 7556–62.
11.
Zurück zum Zitat Quan, T.E., S. Cowper, and S.P. Wu. 2004. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. The International Journal of Biochemistry & Cell Biology 36: 598–606.CrossRef Quan, T.E., S. Cowper, and S.P. Wu. 2004. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. The International Journal of Biochemistry & Cell Biology 36: 598–606.CrossRef
12.
Zurück zum Zitat Zhao, Y., D. Glesne, and E. Huberman. 2003. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proceedings of the National Academy of Science 100: 2426–31.CrossRef Zhao, Y., D. Glesne, and E. Huberman. 2003. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proceedings of the National Academy of Science 100: 2426–31.CrossRef
13.
Zurück zum Zitat Molloy, T., Y. Wang, and G. Murrell. 2003. The roles of growth factors in tendon and ligament healing. Sports Medicine 33: 381–394.PubMedCrossRef Molloy, T., Y. Wang, and G. Murrell. 2003. The roles of growth factors in tendon and ligament healing. Sports Medicine 33: 381–394.PubMedCrossRef
14.
Zurück zum Zitat Tarnawski, A., I.L. Szabo, S.S. Husain, and B. Soreghan. 2001. Regeneration of gastric mucosa during ulcer healing is triggered by growth factors and signal transduction pathways. Journal de Physiologie 95: 337–344. Tarnawski, A., I.L. Szabo, S.S. Husain, and B. Soreghan. 2001. Regeneration of gastric mucosa during ulcer healing is triggered by growth factors and signal transduction pathways. Journal de Physiologie 95: 337–344.
15.
Zurück zum Zitat Ono, I. 2002. The effects of basic fibroblast growth factor (bFGF) on the breaking strength of acute incisional wounds. Journal of Dermatological Science 29: 104–113.PubMedCrossRef Ono, I. 2002. The effects of basic fibroblast growth factor (bFGF) on the breaking strength of acute incisional wounds. Journal of Dermatological Science 29: 104–113.PubMedCrossRef
16.
Zurück zum Zitat Faris, M., B. Ensoli, N. Kokot, and A.E. Nel. 1998. Inflammatory cytokines induce the expression of basic fibroblast growth factor (bFGF) isoforms required for the growth of Kaposi’s sarcoma and endothelial cells through the activation of AP-1 response elements in the bFGF promoter. AIDS 12: 19–27.PubMedCrossRef Faris, M., B. Ensoli, N. Kokot, and A.E. Nel. 1998. Inflammatory cytokines induce the expression of basic fibroblast growth factor (bFGF) isoforms required for the growth of Kaposi’s sarcoma and endothelial cells through the activation of AP-1 response elements in the bFGF promoter. AIDS 12: 19–27.PubMedCrossRef
17.
Zurück zum Zitat Carroll, L.A., and R.J. Koch. 2003. Heparin stimulates production of bFGF and TGF-beta 1 by human normal keloid, and fetal dermal fibroblasts. Medical Science Monitor 9: 97–108. Carroll, L.A., and R.J. Koch. 2003. Heparin stimulates production of bFGF and TGF-beta 1 by human normal keloid, and fetal dermal fibroblasts. Medical Science Monitor 9: 97–108.
18.
Zurück zum Zitat Yoshida, S., A. Yoshida, and T. Ishibashi. 2004. Induction of IL-8 MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefe’s Archive for Clinical and Experimental Ophthalmology 242: 409–413.PubMedCrossRef Yoshida, S., A. Yoshida, and T. Ishibashi. 2004. Induction of IL-8 MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefe’s Archive for Clinical and Experimental Ophthalmology 242: 409–413.PubMedCrossRef
19.
Zurück zum Zitat Zittermann, S.I., and A.C. Issekutz. 2006. Basic Fibroblast Growth Factor (bFGF FGF-2) Potentiates Leukocyte Recruitment to Inflammation by Enhancing Endothelial Adhesion Molecule Expression. The American Journal of Pathology 168: 835–846.PubMedCrossRef Zittermann, S.I., and A.C. Issekutz. 2006. Basic Fibroblast Growth Factor (bFGF FGF-2) Potentiates Leukocyte Recruitment to Inflammation by Enhancing Endothelial Adhesion Molecule Expression. The American Journal of Pathology 168: 835–846.PubMedCrossRef
20.
Zurück zum Zitat Yamashita, A., Y. Yonemitsu, S. Okano, K. Nakagawa, Y. Nakashima, T. Irisa, Y. Iwamoto, Y. Nagai, M. Hasegawa, and K. Sueishi. 2002. Fibroblast growth factor-2 determines severity of joint disease in adjuvant-induced arthritis in rats. Journal of Immunology 168: 450–457. Yamashita, A., Y. Yonemitsu, S. Okano, K. Nakagawa, Y. Nakashima, T. Irisa, Y. Iwamoto, Y. Nagai, M. Hasegawa, and K. Sueishi. 2002. Fibroblast growth factor-2 determines severity of joint disease in adjuvant-induced arthritis in rats. Journal of Immunology 168: 450–457.
21.
Zurück zum Zitat Meij, J.T., F. Sheikh, S.K. Jimenez, P.W. Nickerson, E. Kardami, and P.A. Cattini. 2002. Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T cell dependent. The American Journal of Physiology 282: H547–H555. Meij, J.T., F. Sheikh, S.K. Jimenez, P.W. Nickerson, E. Kardami, and P.A. Cattini. 2002. Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T cell dependent. The American Journal of Physiology 282: H547–H555.
22.
Zurück zum Zitat Colvin, G.A., J.F. Lambert, B.E. Moore, J.E. Carlson, M.S. Dooner, M. Abedi, J. Cerny, and P.J. Quesenberry. 2004. Intrinsic hematopoietic stem cell/progenitor plasticity: Inversions. Journal of Cellular Physiology 199: 20–31.PubMedCrossRef Colvin, G.A., J.F. Lambert, B.E. Moore, J.E. Carlson, M.S. Dooner, M. Abedi, J. Cerny, and P.J. Quesenberry. 2004. Intrinsic hematopoietic stem cell/progenitor plasticity: Inversions. Journal of Cellular Physiology 199: 20–31.PubMedCrossRef
23.
Zurück zum Zitat Katebi, M., M. Soleimani, and B.N. Cronstein. 2009. Adenosine A2 receptor signaling play an active role in mouse bone marrow-derived mesenchymal stem cell development. Journal of Leukocyte Biology 85: 438–444.PubMedCrossRef Katebi, M., M. Soleimani, and B.N. Cronstein. 2009. Adenosine A2 receptor signaling play an active role in mouse bone marrow-derived mesenchymal stem cell development. Journal of Leukocyte Biology 85: 438–444.PubMedCrossRef
24.
Zurück zum Zitat Rothe, M., and V. Flanga. 1989. Growth factors: their biological and promise in dermatologic diseases and tissue repair. Archives of Dermatology 125: 1390–1398.PubMedCrossRef Rothe, M., and V. Flanga. 1989. Growth factors: their biological and promise in dermatologic diseases and tissue repair. Archives of Dermatology 125: 1390–1398.PubMedCrossRef
25.
Zurück zum Zitat Luger, T.A., and T. Schwarz. 1991. Therapeutic use of cytokines in dermatology. Journal of the American Academy of Dermatology 24: 915–926.PubMedCrossRef Luger, T.A., and T. Schwarz. 1991. Therapeutic use of cytokines in dermatology. Journal of the American Academy of Dermatology 24: 915–926.PubMedCrossRef
26.
Zurück zum Zitat Sporn, M.B., and A.B. Roberts. 1993. A major advance in the use of growth factors to enhance wound healing. The Journal of Clinical Investigation 92: 2565–2566.PubMedCrossRef Sporn, M.B., and A.B. Roberts. 1993. A major advance in the use of growth factors to enhance wound healing. The Journal of Clinical Investigation 92: 2565–2566.PubMedCrossRef
27.
Zurück zum Zitat Ignotz, R.A., and J. Massague. 1986. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. The Journal of Biological Chemistry 261: 4337–45.PubMed Ignotz, R.A., and J. Massague. 1986. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. The Journal of Biological Chemistry 261: 4337–45.PubMed
28.
Zurück zum Zitat Varga, J., J. Rosenbloom, and S.A. Jimenez. 1987. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. The Biochemical Journal 247: 597–604.PubMed Varga, J., J. Rosenbloom, and S.A. Jimenez. 1987. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. The Biochemical Journal 247: 597–604.PubMed
29.
Zurück zum Zitat Nugent, M.A., and R.V. Iozzo. 2000. Fibroblast growth factor-2. The International Journal of Biochemistry & Cell Biology 32: 115–20.CrossRef Nugent, M.A., and R.V. Iozzo. 2000. Fibroblast growth factor-2. The International Journal of Biochemistry & Cell Biology 32: 115–20.CrossRef
30.
Zurück zum Zitat Powers, C.J., S.W. McLeskey, and A. Wellstein. 2000. Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer 7: 165–97.PubMedCrossRef Powers, C.J., S.W. McLeskey, and A. Wellstein. 2000. Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer 7: 165–97.PubMedCrossRef
31.
Zurück zum Zitat Clark, R.A.F. 1996. In The molecular and cellular biology of wound repair, 2nd ed, ed. R.A.F. Clark. New York: Plenum Press. Clark, R.A.F. 1996. In The molecular and cellular biology of wound repair, 2nd ed, ed. R.A.F. Clark. New York: Plenum Press.
32.
Zurück zum Zitat Sogabe, Y., M. Abe, Y. Yokoyama, and O. Ishikawa. 2006. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair and Regeneration 14: 457–62.PubMedCrossRef Sogabe, Y., M. Abe, Y. Yokoyama, and O. Ishikawa. 2006. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair and Regeneration 14: 457–62.PubMedCrossRef
33.
Zurück zum Zitat Grellner, W., T. Georg, and J. Wilske. 2000. Quantitative analysis of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Science International 113: 251–64.PubMedCrossRef Grellner, W., T. Georg, and J. Wilske. 2000. Quantitative analysis of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Science International 113: 251–64.PubMedCrossRef
34.
Zurück zum Zitat Di Vita, G., R. Patti, P. D’Agostino, G. Caruso, M. Arcara, S. Buscemi, S. Bonventre, V. Ferlazzo, F. Arcoleo, and E. Cillari. 2006. Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Repair and Regeneration 14: 259–64.PubMedCrossRef Di Vita, G., R. Patti, P. D’Agostino, G. Caruso, M. Arcara, S. Buscemi, S. Bonventre, V. Ferlazzo, F. Arcoleo, and E. Cillari. 2006. Cytokines and growth factors in wound drainage fluid from patients undergoing incisional hernia repair. Wound Repair and Regeneration 14: 259–64.PubMedCrossRef
35.
Zurück zum Zitat Mishra, R., L. Zhu, R.L. Eckert, and M.S. Simonson. 2007. TGF–regulated collagen type I accumulation: role of Src-based signals. American Journal of Physiology. Cell Physiology 292: C1361–C1369.PubMedCrossRef Mishra, R., L. Zhu, R.L. Eckert, and M.S. Simonson. 2007. TGF–regulated collagen type I accumulation: role of Src-based signals. American Journal of Physiology. Cell Physiology 292: C1361–C1369.PubMedCrossRef
36.
Zurück zum Zitat Rosenkranz, S. 2004. TGFβ1 and angiotensin networking in cardiac remodeling. Cardiovascular Research 63(3): 423–432.PubMedCrossRef Rosenkranz, S. 2004. TGFβ1 and angiotensin networking in cardiac remodeling. Cardiovascular Research 63(3): 423–432.PubMedCrossRef
37.
Zurück zum Zitat Bataller, R., R.F. Schwabe, Y.H. Choi, L. Yang, Y.H. Paik, and J. Lindquist. 2003. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. The Journal of Clinical Investigation 112(9): 1383–1394.PubMed Bataller, R., R.F. Schwabe, Y.H. Choi, L. Yang, Y.H. Paik, and J. Lindquist. 2003. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. The Journal of Clinical Investigation 112(9): 1383–1394.PubMed
38.
Zurück zum Zitat Abraham, J.A., and M. Klagsbrun. 1996. Modulation of wound repair by members of the fibroblast growth factor family. In The molecular and cellular biology of wound repair, 2nd ed, ed. R.A.F. Clark, 195–248. New York: Plenum. Abraham, J.A., and M. Klagsbrun. 1996. Modulation of wound repair by members of the fibroblast growth factor family. In The molecular and cellular biology of wound repair, 2nd ed, ed. R.A.F. Clark, 195–248. New York: Plenum.
39.
Zurück zum Zitat Sasaki, T. 1992. The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts: relevance to wound healing. The Journal of Dermatology 19: 664–6.PubMed Sasaki, T. 1992. The effects of basic fibroblast growth factor and doxorubicin on cultured human skin fibroblasts: relevance to wound healing. The Journal of Dermatology 19: 664–6.PubMed
40.
Zurück zum Zitat Kazuhiko, Takehara. 2000. Growth regulation of skin fibroblasts. Journal of Dermatological Science 24(Supplement 1): S70–S77. Kazuhiko, Takehara. 2000. Growth regulation of skin fibroblasts. Journal of Dermatological Science 24(Supplement 1): S70–S77.
41.
Zurück zum Zitat Adams, D.H., M. Hathaway, J. Shaw, D. Burnett, E. Elias, and A.J. Strain. 1991. Transforming growth factor-beta induces human T lymphocyte migration in vitro. The Journal of Immunology 147(2): 609–612.PubMed Adams, D.H., M. Hathaway, J. Shaw, D. Burnett, E. Elias, and A.J. Strain. 1991. Transforming growth factor-beta induces human T lymphocyte migration in vitro. The Journal of Immunology 147(2): 609–612.PubMed
Metadaten
Titel
Effects of TGF-β and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
verfasst von
Masoomeh Bakhshayesh
Mansooreh Soleimani
Mehdi Mehdizadeh
Majid Katebi
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2012
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9298-4

Weitere Artikel der Ausgabe 1/2012

Inflammation 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.