Skip to main content
main-content

01.12.2012 | Research | Ausgabe 1/2012 Open Access

Malaria Journal 1/2012

Efficacy of ICON® Maxx in the laboratory and against insecticide-resistant Anopheles gambiae in central Côte d'Ivoire

Zeitschrift:
Malaria Journal > Ausgabe 1/2012
Autoren:
Mirko S Winkler, Emile Tchicaya, Benjamin G Koudou, Jennifer Donzé, Christian Nsanzabana, Pie Müller, Akré M Adja, Jürg Utzinger
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2875-11-167) contains supplementary material, which is available to authorized users.
Mirko S Winkler, Emile Tchicaya, Benjamin G Koudou, Jennifer Donzé contributed equally to this work.

Competing interests

This study received financial support from Syngenta Crop Protection. The study design, data collection and analysis, decision to publish and preparation of the manuscript was under the responsibility of the scientists from the different research institutions. All authors declare that they have no conflict of interest. MSW, ET and JU are the guarantors of the paper.

Authors' contributions

MSW carried out the laboratory investigation and drafted the manuscript. ET and JD carried out the experimental hut trial, performed the pyrethroid resistance testing, conducted the statistical analysis and assisted in drafting the manuscript. BGK conceived the study design, coordinated the laboratory investigation and assisted with the statistical analysis. CN coordinated the experimental hut trial and assisted with the data analysis. PM analysed the field data and assisted with the manuscript revision. AMA coordinated the laboratory investigation and logistics for the experimental hut trial. JU was the overall study coordinator and contributed to the interpretation of the data and manuscript writing and revision. All authors read and approved the final manuscript.

Abstract

Background

Long-lasting treatment kits, designed to transform untreated nets into long-lasting insecticidal nets (LLINs), may facilitate high coverage with LLINs where non-treated nets are in place. In this study, the efficacy of ICON® Maxx (Syngenta) was evaluated under laboratory conditions and in an experimental hut trial in central Côte d'Ivoire, where Anopheles gambiae s.s. are resistant to pyrethroid insecticides.

Methods

In the laboratory, polyester and polyethylene net samples were treated with ICON® Maxx, washed up to 20 times and their efficacy determined in World Health Organization (WHO) cone assays against a susceptible laboratory An. gambiae s.s. colony. Over a 12-month period, the polyester nets were evaluated in a hut trial to determine mosquito deterrence, induced exophily, blood-feeding inhibition and mortality.

Results

In the laboratory, ICON® Maxx-treated polyethylene nets showed higher efficacy against pyrethroid-susceptible mosquitoes than polyester nets. After 20 washings, insecticidal efficacy in bioassays was 59.4% knockdown (KD) and 22.3% mortality for polyethylene, and 55.3% KD and 17.9% mortality for polyester nets. In experimental huts, treated nets showed strong deterrence, induced exophily and an over three-fold reduction in blood-fed mosquitoes. More than half (61.8%) of the mosquitoes entering the huts with treated nets were found dead the next morning despite high levels of KD resistance. After washing the treated nets, KD and mortality rates were close to or exceeded predefined WHO thresholds in cone bioassays.

Conclusion

In contrast to previous laboratory investigation, ICON® Maxx-treated nets showed only moderate KD and mortality rates. However, under semi-field conditions, in an area where mosquitoes are resistant to pyrethroids, ICON® Maxx showed high deterrence, induced exophily and provided a significant reduction in blood-feeding rates; features that are likely to have a positive impact in reducing malaria transmission. The WHO cone test may not always be a good proxy for predicting product performance under field conditions.
Zusatzmaterial
Authors’ original file for figure 1
12936_2011_2095_MOESM1_ESM.tiff
Authors’ original file for figure 2
12936_2011_2095_MOESM2_ESM.tiff
Authors’ original file for figure 3
12936_2011_2095_MOESM3_ESM.tiff
Authors’ original file for figure 4
12936_2011_2095_MOESM4_ESM.tiff
Authors’ original file for figure 5
12936_2011_2095_MOESM5_ESM.tiff
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2012

Malaria Journal 1/2012 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Meistgelesene Bücher aus der Inneren Medizin

2017 | Buch

Rheumatologie aus der Praxis

Entzündliche Gelenkerkrankungen – mit Fallbeispielen

Dieses Fachbuch macht mit den wichtigsten chronisch entzündlichen Gelenk- und Wirbelsäulenerkrankungen vertraut. Anhand von über 40 instruktiven Fallbeispielen werden anschaulich diagnostisches Vorgehen, therapeutisches Ansprechen und der Verlauf …

Herausgeber:
Rudolf Puchner

2016 | Buch

Ambulant erworbene Pneumonie

Was, wann, warum – Dieses Buch bietet differenzierte Diagnostik und Therapie der ambulant erworbenen Pneumonie zur sofortigen sicheren Anwendung. Entsprechend der neuesten Studien und Leitlinien aller wichtigen Fachgesellschaften.

Herausgeber:
Santiago Ewig

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise