Skip to main content
Erschienen in: BMC Oral Health 1/2019

Open Access 01.12.2019 | Research article

Efficacy of locally-delivered statins adjunct to non-surgical periodontal therapy for chronic periodontitis: a Bayesian network analysis

verfasst von: Ruoyan Cao, Qiulan Li, Yu Chen, Mianfeng Yao, Qiqi Wu, Hongbo Zhou

Erschienen in: BMC Oral Health | Ausgabe 1/2019

Abstract

Background

Studies indicate locally-delivered statins offer additional benefits to scaling and root planning (SRP), however, it is still hard to say which type of statins is better. This network meta-analysis aimed to assess the effect of locally-delivered statins and rank the most efficacious statin for treating chronic periodontitis (CP) in combination with SRP.

Methods

We screened four literature databases (Pubmed, Embase, Cochrane Library, and Web of Science) for randomized controlled clinical trials (RCTs) published up to June 2018 that compared different statins in the treatment of chronic periodontitis. The outcomes analyzed were changes in intrabony defect depth (IBD), pocket depth (PD), and clinical attachment level (CAL). We carried out Bayesian network meta-analysis of CP without systemic diseases. Traditional and Bayesian network meta-analyses were conducted using random-effects models.

Results

Greater filling of IBD, reduction in PD, and gain in CAL were observed for SRP treated in combination with statins when compared to SRP alone for treating CP without systemic diseases. Specifically, SRP+ Atorvastatin (ATV) (mean difference [MD]: 1.5 mm, 1.4 mm, 1.8 mm, respectively), SRP + Rosuvastatin (RSV) (MD: 1.8 mm, 2.0 mm, 2.1 mm, respectively), and SRP + Simvastatin (SMV) (MD: 1.1 mm, 2.2 mm, 2.1 mm, respectively) were identified. However, no difference was found among the statins tested. In CP patients with type 2 diabetic (T2DM) or in smokers, additional benefits were observed from locally delivered statins.

Conclusion

Local statin use adjunctive to SRP confers additional benefits in treating CP by SRP, even in T2DM and smokers. RSV may be the best one to fill in IBD. However, considering the limitations of this study, clinicians must use cautious when applying the results and further studies are required to explore the efficacy of statins in CP with or without the risk factors (T2DM comorbidity or smoking history).
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12903-019-0789-2) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
Aa
Aggregatibacter actinomycetemcomitans
AD
Absolute difference
AGE
Advanced glycation end-products
ATV
Atorvastatin
CAL
Clinical attachment level
CIs
Confidence intervals
CP
Chronic periodontitis
Dbar
Posterior mean residual deviance
IBD
Intrabony defect depth
MD
Mean difference
PD
Pocket depth
Pg
Porphyromonas gingivalis
RAGE
Receptor of AGE
RCT
Randomized controlled clinical trial
RSV
Rosuvastatin
SD
Standard deviations
SMV
Simvastatin
SRP
Scaling and root planning
T2DM
Type 2 diabetes mellitus
WMD
Weighted mean difference

Background

Chronic periodontitis (CP) is a multifactorial inflammatory disease caused by pathogenic microorganisms and disordered host immune inflammation that leads to bone resorption, bony defects, and ultimately tooth loss [1]. Nonsurgical periodontal treatment reduces pocket depth (PD) and increases clinical attachment level (CAL) to some extent [2, 3], but fails to fill the bony defect [4]. Thus, various adjuvant therapies have been applied in nonsurgical treatment to reduce tissue destruction and to enhance periodontal reparative processes including statins.
Statins are inhibitors of 3-hydroxy-3-glutaryl-coenzyme A reductase and are primarily used to prevent hyperlipidemia and coronary artery disease [5, 6]. However, with in-depth study of statins, additional benefits have been found in the treatment of periodontal diseases. This phenomenon may be due to the unique properties of statins that limit the pathogenesis of periodontitis, such as anti-inflammatory [7, 8], anti-microbial [9], bone formation promoting, bone loss inhibiting [10, 11] and antioxidant properties [12]. Different statins exhibit different such properties, which could lead to different treatment outcomes. For example, rosuvastatin (RSV) is thought to possess stronger anti-inflammatory potential than atorvastatin (ATV) [13], while ATV is stronger than simvastatin (SMV) in terms of anti-inflammatory and antioxidant potential [14, 15]. SMV is considered to be the optimal statin for controlling periodontal pathogens, such as Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) [16]. However, clinical trials investigating the effects of different statins on adjuvant treatment of CP are limited. To our knowledge, there are six meta-analyses comparing statins adjunctive to scaling and root planing (SRP) with SRP alone, however, they fail to measure the relative effects of various statins on CP without other systemic diseases [4, 1721]. Therefore, a network meta-analysis which compares and ranks different statins should be beneficial to clinical practice.
This network meta-analysis aimed to study whether local statins applied adjunctively to nonsurgical periodontal treatment contribute to better clinical and histological periodontal outcomes based on randomized controlled clinical trials (RCTs) when compared to periodontal treatment alone in patients with CP. This study further ranked statins based on their adjunct efficacy with SRP.

Methods

Protocol registration

This meta-analysis was prospectively registered at the National Institute for Health Research PROSPERO, International Prospective Register of Systematic Reviews (http://​www.​crd.​york.​ac.​uk/​PROSPERO, registration no.: CRD42018100753).

Inclusion criteria

Only RCTs followed up for at least 6 months were included in this network meta-analysis. PICO criteria was defined as [22]:
  • (P) Participants: Patients with chronic periodontitis without periodontal therapy and use of antibiotics in the past 6 months.
  • (I) Interventions: The following locally delivered statins employed adjunctively to periodontal treatment were considered: SRP + ATV, SRP + SMV, and SRP + RSV
  • (C) Comparison: SRP alone
  • (O) Outcome measures: primary outcome: changes in IBD; secondary outcomes: changes in PD and CAL

Exclusion criteria

Studies that had any of the following characteristics were excluded: (a) split-mouth RCT design; (b) inclusion patients with statin allergy; (c) application of systemic statin therapy; (d) inclusion of immunocompromised individuals; (e) inclusion of former smokers; (f) systemic diseases except for type 2 diabetes.

Search methods for study identification

To identify RCTs for this network meta-analysis, we searched the Pubmed, Embase, Cochrane Library, and Web of Science databases for relevant publications published up to June 2018. The following MeSH terms/free terms and their combinations searched are described in Additional file 1. The resulting reference lists of relevant articles and relevant systematic reviews [4, 1720] was manually screened to find other potentially eligible studies.

Data collection, extraction and management

Two researchers (R.Y.Cao & Q.L.Li) independently screened the databases search for relevant titles and abstracts. Then data was extracted and recorded relevant information from eligible studies with pre-designed data-extraction forms using the following criteria: surname of the first author, publication year, country, characteristics of participants (age, gender, smoking status, systemic diseases), sample size, type of interventions, number of application sites/patients, application mode/site, application period, periodontal probe, outcome (IBD, PD, CAL, baseline and mean change in parameters from baseline to follow-up visits). Disagreements on study inclusion or data extraction were resolved through discussion among the researchers. When necessary, a third investigator (M.F.Yao) helped to reach a consensus with all reviewers.

Risk of bias assessment

The risk of bias of the included studies was performed independently by two researchers (R.Y.Cao & Q.L.Li) using the Cochrane Collaboration tool [23]. Any disagreements were solved by the third investigator (M.F.Yao).

Statistical analysis

The treatment outcomes were measured as the absolute difference (AD) in IBD, PD, and CAL in at least 6 months after periodontal treatment. When standard deviations (SD) for the outcomes parameters were not available, they were calculated by assuming the correlation coefficient to be 0.5 as previously described [24]. Based on patient characteristics, the studies were divided into three subgroups (systemic healthy, T2DM, and smokers). Network meta-analysis was only applied to the systemic healthy subgroup as there were two studies in other subgroups. The same follow-up duration was used in this meta-analysis in the subgroups.
First, we developed a random-effects pairwise meta-analysis in Stata 14.2 (Stata Corporation, College Station, TX, USA). Weighted mean difference (WMD) and 95% confidence intervals (CIs) were used to compare continuous variables. Second, Bayesian network meta-analyses were performed by using a random-effect model to pool the effect sizes of both direct and indirect comparisons. Non-informative uniform and normal prior distributions were used throughout the network meta-analysis. Markov chain Monte Carlo methods with four chains of 300,000 iterations after a burn-in phase of 100,000 iterations was performed to achieve credible mean difference (MD) and 95% credible intervals (CrIs). We used CrIs beyond the null value to assess significance and ranked different treatments.
Inconsistency was assessed by comparing direct evidence with indirect evidence from the entire network at each node (node-splitting analysis) with p < 0.05 [25]. Moreover, we examined the pooled effects from traditional pairwise meta-analysis and network meta-analysis to further verify the consistency of the network. The goodness of fit of the model was tested by calculating the posterior mean residual deviance (Dbar). When the Dbar was similar to the number of data points in the study, the model was considered to fit the data well [26, 27]. Heterogeneity was assessed with I2 calculation. Sensitivity analysis was performed to verify the robustness of our analyses by excluding studies with a high risk of bias then the effect was recalculated. R 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria) GeMTC 0.8 package was used to analyse all data.

Results

Study selection and the exclusion criteria are summarized in Fig. 1. A total of 126 citations were obtained for title and abstract review. Finally, 14 studies were selected for inclusion that met all the inclusion criteria and were analyzed in a pair-wise meta-analysis. Ten of studies were included in network meta-analysis.

Studies characteristics

Table 1 and Additional file 2 present the main characteristics of the included studies, all of which were parallel RCTs with a follow-up of 6–9 months. Ten trials included patients without systemic diseases and excluded smokers [2831, 34, 36, 37, 3941], two trials concerned patients with T2DM [32, 35] or smokers [33, 38]. All included studies reported clear inclusion criteria and patients with periodontitis had similar intrabony defects, PD, and CAL in each subgroup. All studies employed a 1.2% statin gel with a dose of 0.1 ml or 10 μl. In two studies [36, 37], the statin gel was applied after SRP and re-applied again 6 months after while others applied statin gel only once after SRP. There were no adverse events observed in all trials. Figure 2 shows the weighted network.
Table 1
Characteristics of studies included in the network meta-analysis
Study (year)
Country
Study design
Inclusion criteria
Age
Female/male
Smoking status
Systemic diseases
Intervention (T vs. C)
No. of application sites (S)/patients (P)
Application mode/site
Application period (days)
Pradeep (2010) [28]
India
RCT
Intrabony defects, moderate (PD: 5–6 mm or CAL:4–6 mm; n = 24) to deep pockets (PD ≥ 7 mm or CAL:6–9 mm; n = 36) and vertical BL ≥ 3 mm
30.5 ± 4.1
31/33
No
SRP + SMV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
Pradeep (2012) [29]
India
RCT
Furcation defects (buccal Class II, mandibular first and second molars), PD ≥ 5 mm and horizontal PD ≥ 3 mm
30–50
34/38
No
SRP + SMV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 33) vs. SRP + placebo gel (n = 33)
1S/P
Furcation defect
1
Rath (2012) [30]
India
RCT
Intrabony defects, PD > 5 mm and vertical BL ≥ 3 mm
25–45
27/33
No
SRP + SMV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
Pradeep (2013a) [31]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥3 mm
30–50
32/35
No
SRP + ATV gel (1.2 mg/0.1 ml, 10ul) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
Pradeep (2013b) [32]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥ 3 mm
30–50
18/20
Type 2 diabetes
SRP + SMV gel (1.2 mg/0.1 ml, 10ul) (n = 29) vs. SRP + placebo gel (n = 29)
29S/17P vs. 29S/18P
Subgingival
1
Rao (2013) [33]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥ 3 mm
30–50
Not report
Smokers (> 10 cigarettes/day for at least 5 years)
SRP + SMV gel (1.2 mg/0.1 ml, 10ul) (n = 33) vs. SRP + placebo gel (n = 34)
33S/17P vs. 34S/18P
Subgingival
1
Pradeep (2015) [34]
India
RCT
Intrabony defects, moderate (PD: 5–6 mm or CAL:4–6 mm; n = 24) to deep pockets (PD ≥ 7 mm or CAL:6–9 mm; n = 36) and vertical BL ≥ 3 mm
25–50
37/33
No
SRP + RSV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 32) vs. SRP + placebo gel (n = 33)
1S/P
Subgingival
1
Kumari (2016) [35]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥ 3 mm
40–50
37/38
Type 2 diabetes
SRP + ATV gel (1.2 mg/0.1 ml, 10ul) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
Pradeep (2016) [36]
India
RCT
Intrabony defects, PD ≥ 5 mm, CAL ≥ 4 mm and vertical BL ≥ 3 mm
25–45
45/45
No
I: SRP + RSV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 27)
II: SRP + ATV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 27)
III: SRP + placebo gel (n = 27)
1S/P
Subgingival
1 and 180 (after 6 m re-deliver)
Garg (2017) [37]
India
RCT
Mandibular Class II furcation defects, PD ≥5 mm and horizontal PD ≥ 3 mm
30–50
Not report
No
I: SRP + RSV gel (1.2 mg/0.1 ml,0.1 ml) (n = 30)
II: I: SRP + ATV gel (1.2 mg/0.1 ml,0.1 ml) (n = 30)
III: SRP + placebo gel (n = 30)
1S/P
Subgingival
1 and 180 (after 6 m re-deliver)
Kumari (2017) [38]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥ 3 mm
30–50
Not report
Smokers (> 10 cigarettes/day for at least 5 years)
SRP + ATV gel (1.2 mg/0.1 ml, 10ul) (n = 33) vs. SRP + placebo gel (n = 33)
1S/P
Subgingival
1
Pradeep (2017) [39]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 to 6 mm and vertical BL ≥ 3 mm
30–50
Not report
No
SRP + ATV gel (1.2 mg/0.1 ml, 10ul) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
Martande (2017) [40]
India
RCT
Intrabony defects, PD ≥ 5 mm or CAL ≥ 4 mm and vertical BL ≥ 3 mm
30–50
46/50
No
SRP + ATV gel (1.2 mg/0.1 ml, 10ul) (n = 30) vs. SRP + SMV gel (1.2 mg/0.1 ml, 10ul) (n = 30) vs. SRP + placebo gel (n = 28)
1S/P
Subgingival
1
Dileep P (2018) [41]
India
RCT
Intrabony defects, PD ≥ 5 mm and CAL > 3 mm
24–41
29/31
No
SRP + RSV gel (1.2 mg/0.1 ml, 0.1 ml) (n = 30) vs. SRP + placebo gel (n = 30)
1S/P
Subgingival
1
SRP Scaling and root planing, SMV Simvastatin, ATV Atorvastatin, RSV Rosuvastatin, T Treatment, C Control, PD Probing depth, CAL Clinical attachment loss, BL Bone loss

Risk of bias in included studies

Additional file 3 details the quality of each of the 14 RCTs. All the trials described the methods of sequence generation, two trials used coin toss [28, 30], and the rest used a computer-generated random table. Seven trials employed allocation concealment [3135, 37, 38]. All studies reported whether participants or study personnel were blinded, and three studies [30, 40, 42] did not report whether these groups were blinded to outcome assessment. After considering such little incomplete outcome data, reporting bias and other bias domains, all studies had a low risk of bias.

Synthesis of results

Effects of statins in subjects without systemic diseases

Ten trials were included for CP without systemic diseases, and the results of standard pairwise meta-analysis and network meta-analysis are presented (Additional file 4, Fig. 3). Changes in periodontal parameters (IBD, PD, and CAL) were significant higher in SRP + SMV/ATV/RSV group than in SRP group alone in both pairwise and network meta-analysis. No significant difference was found in the changes in IBD, PD, and CAL in network meta-analysis. RSV was ranked as the best statin in terms of IBD outcomes while SMV ranked the best for PD and CAL outcomes (Fig. 4). Network meta-analysis showed considerable heterogeneity with global I2 > 90 (Table 2).
Table 2
Analysis of heterogeneity
t1
t2
i2.pair
i2.cons
incons.p
PD
 Per-comparison I-squared
  ATV
SRP
86.12230
86.70305
NA
  RSV
SRP
97.77175
97.30109
NA
  SMV
SRP
73.65906
76.46786
NA
  ATV
RSV
0.00000
25.43579
0.45083148
  ATV
SMV
NA
88.02565
0.08914125
  Global I-squared
 
93.72891
92.04248
 
CAL
 Per-comparison I-squared
  ATV
SRP
90.50355
91.37052
NA
  RSV
SRP
99.36135
99.10428
NA
  SMV
SRP
12.06329
13.87502
NA
  ATV
RSV
0.00000
53.34930
0.3627355
  ATV
SMV
NA
68.13125
0.2851176
  Global I-squared
 
97.86568
96.677
 
IBD
 Per-comparison I-squared
  ATV
SRP
95.00764
94.65418
NA
  RSV
SRP
97.78225
97.79998
NA
  SMV
SRP
83.90910
82.98919
NA
  ATV
RSV
0.00000
0.00
0.8532051
  ATV
SMV
NA
0.00000
0.6941173
  Global I-squared
 
95.30703
94.33677
 
PD Probing depth, CAL Clinical attachment loss, IBD Intrabony defect, SMV Simvastatin, ATV Atorvastatin, RSV Rosuvastatin, t1 Treatment 1, t2 Treatment 2, i2.pair i-square of pair-wise meta-analysis, i2.cons i-square of network meta-analysis, incons.p inconsistency p-values for pairwise and network meta-analysis, NA Not applicable

Effects of statins in other subgroups

Additional file 4 shows the results of traditional meta-analysis. For patients with T2DM, SRP + statins showed additional benefits in IBD fill (WMD: 1.39 mm; 95% CI: 1.25–1.53; I2 = 0.0%), PD reduction (WMD: 2.37 mm; 95% CI: 1.97–2.78; I2 = 0.0%%), and CAL gain (WMD: 2.69 mm; 95% CI: 2.26, 3.12; I2 = 0.0%). For smokers, significantly greater benefits were observed with SRP + statins treatment for IBD (WMD: 1.35 mm; 95% CI: 1.24–1.46; I2 = 0.0%), PD (WMD: 2.62 mm; 95% CI: 1.97–3.28; I2 = 67.2%), and CAL (WMD: 2.18 mm; 95% CI: 1.72–2.64; I2 = 0.0%).

Evaluation of consistency and fit of the models

The results of pairwise and network meta-analysis are presented in Additional file 5 and Fig. 3. The effect size and relevant CI or CrI were found to be similar between pairwise and network meta-analyses. The result of node-splitting analysis showed no inconsistency (Additional file 6) and the data was well-fitted to the model with Dbar approximation of the data points in PD reduction, CAL gain and IBD fill (Additional file 5).

Sensitivity analysis

After excluding three studies with high risk of bias [28, 29, 41], the results were not significantly altered (Additional file 6).

Discussion

Statins, possess anti-inflammatory, anti-microbial, osteo-simulative, and antioxidant properties which may partly account for their beneficial effects in treating CP. Statins were shown to suppress inflammatory factors associated with periodontitis such as IL-6, TNF-α [43], IL-1β [44], as well as periodontal pathogens Pg and Aa [45]. Statins could also inhibit the secretion of matrix metalloproteinases (MMPs) [46], which are involved in the destruction of periodontal tissue. Moreover, statins increase bone regeneration by inducing the expression of BMP-2, VEGF, and OPG [47, 48]. Thus, it is unsurprising that local use of statins provides additional benefits for periodontal parameters of CP with or without systemic disease.
Traditional meta-analyses fail to measure the relative effect as they only synthesize studies with the same pair of comparators; network meta-analyses have been proposed to overcome this drawback. In our study, we performed a Bayesian network meta-analysis to compare the relative effect of different statins and found their efficacy to be similar, consistent with a study by Muniz et al. [20] who used meta-regression. Contrastingly, a study by Bertl et al. [4] found that RSV was more efficacious than SMV for all parameters tested and ATV in all parameters except for residual IBD. However, Bertl et al. [4] included patients with different characteristics and different periodontal therapy which may partially account for this inconsistency with our results. More direct evidence is needed in further test and compare the efficacy of different statins.
In addition, another advantage of network meta-analysis is that Bayesian chain assists in ranking the treatment efficacy by measuring the corresponding probability [49], so that it could provide more evidence to guide clinicians. Though we found no difference between diverse statins, ranking can pave the way for understanding the differences in opinions on the use of either statin in periodontal disease. Our results indicate that SMV is ranked the best in PD reduction and CAL gain. SMV is considered to be the best statin against periodontal pathogens such as Pg and Aa. Moreover, SMV was observed to decrease the expression of MMP-1, MMP-3, MMP-8, MMP-9 and MMP-13 [5052]. RSV may be the best optimal performer in terms of IBD fill. Additionally, RSV has a greater anti-inflammatory action due to more effective suppression of C-reactive protein levels. Moreover, RSV is more effective in reducing low-density lipoprotein cholesterol which had benefits in induced periodontitis in hypertensive rats via inflammatory gene profile modulation [53].
We also assessed the efficacy of adjunctive statins in CP with T2DM comorbidity or smoking history as these are both risk factors for CP. High levels of blood-glucose increase advanced glycation end-products (AGE) and receptor of AGE (RAGE) leading to an exaggerated inflammatory response and periodontal tissue destruction by oxidative mechanisms [54, 55]. Smoking can similarly up-regulate the expression of RAGE [56, 57]. Statins possess strong antioxidant properties which may improve treatment outcomes for CP patients with T2DM or those who smoke. Existing RCTs indicate that locally applied ATV or SMV adjunctive to SRP was more effective than SRP alone in CP patients with T2DM or in smokers [32, 33, 35, 38]. The results of our traditional meta-analyses also support these findings and is consistent with another meta-analysis conducted by Ambrósio et al. [19]. However, the sample size in these trials was too small to draw a strong conclusion and more high-quality RCTs are needed to further to validate our results.
We observed a high degree of heterogeneity in CP patients without other systemic diseases. This may be attributable to variables such as different gel doses of statins used for treatment (0.1 ml or 10 ul) in the included trials. In addition, the measurement of IBD from the conventional radiographs was not calibrated which may have caused geometric errors in assessing IBD fill.

Limitations

This network meta-analysis has several limitations that should be noted. Firstly, the length of follow-up of the included trials were relatively short. Secondly, the sample sizes (28–34) for each group were relatively small. Finally, the heterogeneity was high despite decreasing the discrepancy among the characteristics of patients. Multi-centered RCTs with larger sample size and with an extended follow-up duration up to 12 or 24 months are needed to confirm the beneficial effects of statins in combination with nonsurgical periodontal treatment for CP.

Conclusions

Taken together, this meta-analysis shows that SRP + ATV/RSV/SMV confers additional benefits in treating CP by SRP. However, clinicians must be cautious in applying these conclusions as further studies are required for validation of these results.

Acknowledgements

We want to acknowledge Dr. Fei Yan (Central South University) for his help during this manuscript development.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.CrossRef Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.CrossRef
2.
Zurück zum Zitat Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot study. J Clin Periodontol. 2013;40(7):681–7.CrossRef Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal treatment reduces cardiovascular risk in refractory hypertensive patients: a pilot study. J Clin Periodontol. 2013;40(7):681–7.CrossRef
3.
Zurück zum Zitat Vergnes JN, Canceill T, Vinel A, Laurencin-Dalicieux S, Maupas-Schwalm F, Blasco-Baque V, Hanaire H, Arrive E, Rigalleau V, Nabet C, et al. The effects of periodontal treatment on diabetic patients: the DIAPERIO randomized controlled trial. J Clin Periodontol. 2018;45(10):1150–63.CrossRef Vergnes JN, Canceill T, Vinel A, Laurencin-Dalicieux S, Maupas-Schwalm F, Blasco-Baque V, Hanaire H, Arrive E, Rigalleau V, Nabet C, et al. The effects of periodontal treatment on diabetic patients: the DIAPERIO randomized controlled trial. J Clin Periodontol. 2018;45(10):1150–63.CrossRef
4.
Zurück zum Zitat Bertl K, Parllaku A, Pandis N, Buhlin K, Klinge B, Stavropoulos A. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy-a systematic review and meta-analysis. J Dent. 2017;67:18–28.CrossRef Bertl K, Parllaku A, Pandis N, Buhlin K, Klinge B, Stavropoulos A. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy-a systematic review and meta-analysis. J Dent. 2017;67:18–28.CrossRef
5.
Zurück zum Zitat Thongtang N, Diffenderfer MR, Ooi EMM, Barrett PHR, Turner SM, Le NA, Brown WV, Schaefer EJ. Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin. J Lipid Res. 2017;58(7):1315–24.CrossRef Thongtang N, Diffenderfer MR, Ooi EMM, Barrett PHR, Turner SM, Le NA, Brown WV, Schaefer EJ. Metabolism and proteomics of large and small dense LDL in combined hyperlipidemia: effects of rosuvastatin. J Lipid Res. 2017;58(7):1315–24.CrossRef
6.
Zurück zum Zitat Bytyci I, Bajraktari G, Bhatt DL, Morgan CJ, Ahmed A, Aronow WS, Banach M, Lipid, Blood Pressure Meta-analysis Collaboration G. Hydrophilic vs lipophilic statins in coronary artery disease: a meta-analysis of randomized controlled trials. J Clin Lipidol. 2017;11(3):624–37.CrossRef Bytyci I, Bajraktari G, Bhatt DL, Morgan CJ, Ahmed A, Aronow WS, Banach M, Lipid, Blood Pressure Meta-analysis Collaboration G. Hydrophilic vs lipophilic statins in coronary artery disease: a meta-analysis of randomized controlled trials. J Clin Lipidol. 2017;11(3):624–37.CrossRef
7.
Zurück zum Zitat Cicek Ari V, Ilarslan YD, Erman B, Sarkarati B, Tezcan I, Karabulut E, Oz SG, Tanriover MD, Sengun D, Berker E. Statins and IL-1beta, IL-10, and MPO levels in gingival Crevicular fluid: preliminary results. Inflammation. 2016;39(4):1547–57.CrossRef Cicek Ari V, Ilarslan YD, Erman B, Sarkarati B, Tezcan I, Karabulut E, Oz SG, Tanriover MD, Sengun D, Berker E. Statins and IL-1beta, IL-10, and MPO levels in gingival Crevicular fluid: preliminary results. Inflammation. 2016;39(4):1547–57.CrossRef
8.
Zurück zum Zitat Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res. 2006;85(6):520–3.CrossRef Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res. 2006;85(6):520–3.CrossRef
9.
Zurück zum Zitat Thangamani S, Mohammad H, Abushahba MFN, Hamed MI, Sobreira TJP, Hedrick VE, Paul LN, Seleem MN. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci Rep-Uk. 2015;5:16407.CrossRef Thangamani S, Mohammad H, Abushahba MFN, Hamed MI, Sobreira TJP, Hedrick VE, Paul LN, Seleem MN. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci Rep-Uk. 2015;5:16407.CrossRef
10.
Zurück zum Zitat Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science (New York, NY). 1999;286(5446):1946–9.CrossRef Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science (New York, NY). 1999;286(5446):1946–9.CrossRef
11.
Zurück zum Zitat Jin J, Machado ER, Yu H, Zhang X, Lu Z, Li Y, Lopes-Virella MF, Kirkwood KL, Huang Y. Simvastatin inhibits LPS-induced alveolar bone loss during metabolic syndrome. J Dent Res. 2014;93(3):294–9.CrossRef Jin J, Machado ER, Yu H, Zhang X, Lu Z, Li Y, Lopes-Virella MF, Kirkwood KL, Huang Y. Simvastatin inhibits LPS-induced alveolar bone loss during metabolic syndrome. J Dent Res. 2014;93(3):294–9.CrossRef
12.
Zurück zum Zitat Bouitbir J, Singh F, Charles AL, Schlagowski AI, Bonifacio A, Echaniz-Laguna A, Geny B, Krahenbuhl S, Zoll J. Statins trigger mitochondrial reactive oxygen species-induced apoptosis in glycolytic skeletal muscle. Antioxid Redox Sign. 2016;24(2):84–98.CrossRef Bouitbir J, Singh F, Charles AL, Schlagowski AI, Bonifacio A, Echaniz-Laguna A, Geny B, Krahenbuhl S, Zoll J. Statins trigger mitochondrial reactive oxygen species-induced apoptosis in glycolytic skeletal muscle. Antioxid Redox Sign. 2016;24(2):84–98.CrossRef
13.
Zurück zum Zitat Khurana S, Gupta S, Bhalla H, Nandwani S, Gupta V. Comparison of anti-inflammatory effect of atorvastatin with rosuvastatin in patients of acute coronary syndrome. J Pharmacol Pharmacother. 2015;6(3):130–5.CrossRef Khurana S, Gupta S, Bhalla H, Nandwani S, Gupta V. Comparison of anti-inflammatory effect of atorvastatin with rosuvastatin in patients of acute coronary syndrome. J Pharmacol Pharmacother. 2015;6(3):130–5.CrossRef
14.
Zurück zum Zitat Su Y, Xu Y, Sun YM, Li J, Liu XM, Li YB, Liu GD, Bi S. Comparison of the effects of simvastatin versus atorvastatin on oxidative stress in patients with type 2 diabetes mellitus. J Cardiovasc Pharmacol. 2010;55(1):21–5.CrossRef Su Y, Xu Y, Sun YM, Li J, Liu XM, Li YB, Liu GD, Bi S. Comparison of the effects of simvastatin versus atorvastatin on oxidative stress in patients with type 2 diabetes mellitus. J Cardiovasc Pharmacol. 2010;55(1):21–5.CrossRef
15.
Zurück zum Zitat Li GM, Zhao J, Li B, Zhang XF, Ma JX, Ma XL, Liu J. The anti-inflammatory effects of statins on patients with rheumatoid arthritis: a systemic review and meta-analysis of 15 randomized controlled trials. Autoimmun Rev. 2018;17(3):215–25.CrossRef Li GM, Zhao J, Li B, Zhang XF, Ma JX, Ma XL, Liu J. The anti-inflammatory effects of statins on patients with rheumatoid arthritis: a systemic review and meta-analysis of 15 randomized controlled trials. Autoimmun Rev. 2018;17(3):215–25.CrossRef
16.
Zurück zum Zitat Ting M, Whitaker EJ, Albandar JM. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. Eur J Oral Sci. 2016;124(1):4–10.CrossRef Ting M, Whitaker EJ, Albandar JM. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. Eur J Oral Sci. 2016;124(1):4–10.CrossRef
17.
Zurück zum Zitat Sinjab K, Zimmo N, Lin GH, Chung MP, Shaikh L, Wang HL. The effect of locally delivered statins on treating periodontal Intrabony defects: a systematic review and meta-analysis. J Periodontol. 2017;88(4):357–67.CrossRef Sinjab K, Zimmo N, Lin GH, Chung MP, Shaikh L, Wang HL. The effect of locally delivered statins on treating periodontal Intrabony defects: a systematic review and meta-analysis. J Periodontol. 2017;88(4):357–67.CrossRef
18.
Zurück zum Zitat Akram Z, Vohra F, Javed F. Efficacy of statin delivery as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A meta-analysis. J Investig Clin Dent. 2018;9(2):e12304.CrossRef Akram Z, Vohra F, Javed F. Efficacy of statin delivery as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A meta-analysis. J Investig Clin Dent. 2018;9(2):e12304.CrossRef
19.
Zurück zum Zitat Ambrosio LMB, Rovai ES, Sendyk DI, Holzhausen M, Pannuti CM. Does the adjunctive use of statins provide additional benefits to nonsurgical periodontal treatment? A systematic review and meta-analysis. J Periodontal Res. 2018;53(1):12–21.CrossRef Ambrosio LMB, Rovai ES, Sendyk DI, Holzhausen M, Pannuti CM. Does the adjunctive use of statins provide additional benefits to nonsurgical periodontal treatment? A systematic review and meta-analysis. J Periodontal Res. 2018;53(1):12–21.CrossRef
20.
Zurück zum Zitat Muniz F, Taminski K, Cavagni J, Celeste RK, Weidlich P, Rosing CK. The effect of statins on periodontal treatment-a systematic review with meta-analyses and meta-regression. Clin Oral Investig. 2018;22(2):671–87.CrossRef Muniz F, Taminski K, Cavagni J, Celeste RK, Weidlich P, Rosing CK. The effect of statins on periodontal treatment-a systematic review with meta-analyses and meta-regression. Clin Oral Investig. 2018;22(2):671–87.CrossRef
21.
Zurück zum Zitat Meza-Mauricio J, Soto-Penaloza D, Penarrocha-Oltra D, Montiel-Company JM, Peruzzo DC. Locally applied statins as adjuvants to non-surgical periodontal treatment for chronic periodontitis: a systematic review and meta-analysis. Clin Oral Investig. 2018;22(7):2413–30.CrossRef Meza-Mauricio J, Soto-Penaloza D, Penarrocha-Oltra D, Montiel-Company JM, Peruzzo DC. Locally applied statins as adjuvants to non-surgical periodontal treatment for chronic periodontitis: a systematic review and meta-analysis. Clin Oral Investig. 2018;22(7):2413–30.CrossRef
22.
Zurück zum Zitat Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Grp P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev Esp Nutr Hum Die. 2016;20(2):148–60.CrossRef Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Grp P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev Esp Nutr Hum Die. 2016;20(2):148–60.CrossRef
23.
Zurück zum Zitat Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions; 2011. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions; 2011.
24.
Zurück zum Zitat Tu YK, Woolston A, Faggion CM Jr. Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivatives? A network meta-analysis of randomized-controlled trials. J Clin Periodontol. 2010;37(1):59–79.CrossRef Tu YK, Woolston A, Faggion CM Jr. Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivatives? A network meta-analysis of randomized-controlled trials. J Clin Periodontol. 2010;37(1):59–79.CrossRef
25.
Zurück zum Zitat Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29(7–8):932–44.CrossRef Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010;29(7–8):932–44.CrossRef
26.
Zurück zum Zitat Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol. 2002;64:583–616.CrossRef Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol. 2002;64:583–616.CrossRef
27.
Zurück zum Zitat Zhao XJ, Zhou CC, Ma JJ, Zhu YJ, Sun M, Wang PX, Zhang Y, Ma HQ, Zhang HJ. Efficacy and safety of rectal 5-aminosalicylic acid versus corticosteroids in active distal ulcerative colitis: a systematic review and network meta-analysis. Sci Rep-Uk. 2017;7:15.CrossRef Zhao XJ, Zhou CC, Ma JJ, Zhu YJ, Sun M, Wang PX, Zhang Y, Ma HQ, Zhang HJ. Efficacy and safety of rectal 5-aminosalicylic acid versus corticosteroids in active distal ulcerative colitis: a systematic review and network meta-analysis. Sci Rep-Uk. 2017;7:15.CrossRef
28.
Zurück zum Zitat Pradeep AR, Thorat MS. Clinical effect of subgingivally delivered simvastatin in the treatment of patients with chronic periodontitis: a randomized clinical trial. J Periodontol. 2010;81:214–22.CrossRef Pradeep AR, Thorat MS. Clinical effect of subgingivally delivered simvastatin in the treatment of patients with chronic periodontitis: a randomized clinical trial. J Periodontol. 2010;81:214–22.CrossRef
29.
Zurück zum Zitat Pradeep AR, Priyanka N, Kalra N, Naik SB, Singh SP, Martande S. Clinical efficacy of subgingivally delivered 1.2-mg simvastatin in the treatment of individuals with class II furcation defects: a randomized controlled clinical trial. J Periodontol. 2012;83:1472–9.CrossRef Pradeep AR, Priyanka N, Kalra N, Naik SB, Singh SP, Martande S. Clinical efficacy of subgingivally delivered 1.2-mg simvastatin in the treatment of individuals with class II furcation defects: a randomized controlled clinical trial. J Periodontol. 2012;83:1472–9.CrossRef
30.
Zurück zum Zitat Rath A, Mahenra J, Thomas L, Sandhu M, Namasi A, Ramakrishna T. A clinical, radiological and IL-6 evaluation of subgingivally delivered simvastatin in the treatment of chronic periodontitis. Int J Drug Deliv. 2012;4(1):70–81. Rath A, Mahenra J, Thomas L, Sandhu M, Namasi A, Ramakrishna T. A clinical, radiological and IL-6 evaluation of subgingivally delivered simvastatin in the treatment of chronic periodontitis. Int J Drug Deliv. 2012;4(1):70–81.
31.
Zurück zum Zitat Pradeep AR, Kumari M, Rao NS, Martande SS, Naik SB. Clinical efficacy of subgingivally delivered 1.2% atorvastatin in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2013;84:871–9.CrossRef Pradeep AR, Kumari M, Rao NS, Martande SS, Naik SB. Clinical efficacy of subgingivally delivered 1.2% atorvastatin in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2013;84:871–9.CrossRef
32.
Zurück zum Zitat Pradeep AR, Rao NS, Bajaj P, Kumari M. Efficacy of subgingivally delivered simvastatin in the treatment of patients with type 2 diabetes and chronic periodontitis: a randomized double-masked controlled clinical trial. J Periodontol. 2013;84:24–31.CrossRef Pradeep AR, Rao NS, Bajaj P, Kumari M. Efficacy of subgingivally delivered simvastatin in the treatment of patients with type 2 diabetes and chronic periodontitis: a randomized double-masked controlled clinical trial. J Periodontol. 2013;84:24–31.CrossRef
33.
Zurück zum Zitat Rao NS, Pradeep AR, Bajaj P, Kumari M, Naik SB. Simvastatin local drug delivery in smokers with chronic periodontitis: a randomized controlled clinical trial. Aust Dent J. 2013;58:156–62.CrossRef Rao NS, Pradeep AR, Bajaj P, Kumari M, Naik SB. Simvastatin local drug delivery in smokers with chronic periodontitis: a randomized controlled clinical trial. Aust Dent J. 2013;58:156–62.CrossRef
34.
Zurück zum Zitat Pradeep AR, Karvekar S, Nagpal K, Patnaik K, Guruprasad CN, Kumaraswamy KM. Efficacy of locally delivered 1.2% rosuvastatin gel to non-surgical treatment of patients with chronic periodontitis: a randomized, placebo-controlled clinical trial. J Periodontol. 2015;86:738–45.CrossRef Pradeep AR, Karvekar S, Nagpal K, Patnaik K, Guruprasad CN, Kumaraswamy KM. Efficacy of locally delivered 1.2% rosuvastatin gel to non-surgical treatment of patients with chronic periodontitis: a randomized, placebo-controlled clinical trial. J Periodontol. 2015;86:738–45.CrossRef
35.
Zurück zum Zitat Kumari M, Martande SS, Pradeep AR, Naik SB. Efficacy of Subgingivally delivered 1.2% atorvastatin in the treatment of chronic periodontitis in patients with type 2 diabetes mellitus: a randomized controlled clinical trial. J Periodontol. 2016;87(11):1278–85.CrossRef Kumari M, Martande SS, Pradeep AR, Naik SB. Efficacy of Subgingivally delivered 1.2% atorvastatin in the treatment of chronic periodontitis in patients with type 2 diabetes mellitus: a randomized controlled clinical trial. J Periodontol. 2016;87(11):1278–85.CrossRef
36.
Zurück zum Zitat Pradeep AR, Garg V, Kanoriya D, Singhal S. 1.2% Rosuvastatin versus 1.2% atorvastatin gel local drug delivery and redelivery in treatment of Intrabony defects in chronic periodontitis: a randomized placebo-controlled clinical trial. J Periodontol. 2016;87(7):756–62.CrossRef Pradeep AR, Garg V, Kanoriya D, Singhal S. 1.2% Rosuvastatin versus 1.2% atorvastatin gel local drug delivery and redelivery in treatment of Intrabony defects in chronic periodontitis: a randomized placebo-controlled clinical trial. J Periodontol. 2016;87(7):756–62.CrossRef
37.
Zurück zum Zitat Garg S, Pradeep AR. 1.2% Rosuvastatin and 1.2% atorvastatin gel local drug delivery and redelivery in the treatment of class II furcation defects: a randomized controlled clinical trial. J Periodontol. 2017;88(3):259–65.CrossRef Garg S, Pradeep AR. 1.2% Rosuvastatin and 1.2% atorvastatin gel local drug delivery and redelivery in the treatment of class II furcation defects: a randomized controlled clinical trial. J Periodontol. 2017;88(3):259–65.CrossRef
39.
Zurück zum Zitat Pradeep AR, Kanoriya D, Singhal S, Garg V, Manohar B, Chatterjee A. Comparative evaluation of subgingivally delivered 1% alendronate versus 1.2% atorvastatin gel in treatment of chronic periodontitis: a randomized placebo-controlled clinical trial. J Investig Clin Dent. 2017;8(3). https://doi.org/10.1111/jicd.12215.CrossRef Pradeep AR, Kanoriya D, Singhal S, Garg V, Manohar B, Chatterjee A. Comparative evaluation of subgingivally delivered 1% alendronate versus 1.2% atorvastatin gel in treatment of chronic periodontitis: a randomized placebo-controlled clinical trial. J Investig Clin Dent. 2017;8(3). https://​doi.​org/​10.​1111/​jicd.​12215.CrossRef
40.
Zurück zum Zitat S Martande S, Kumari M, Pradeep AR, Pal Singh S, Kumar Suke D. Comparative evaluation of efficacy of subgingivally delivered 1.2% atorvastatin and 1.2% simvastatin in the treatment of intrabony defects in chronic periodontitis: a randomized controlled trial. J Dent Res Dent Clin Dent Prospects. 2017;11(1):18–25.CrossRef S Martande S, Kumari M, Pradeep AR, Pal Singh S, Kumar Suke D. Comparative evaluation of efficacy of subgingivally delivered 1.2% atorvastatin and 1.2% simvastatin in the treatment of intrabony defects in chronic periodontitis: a randomized controlled trial. J Dent Res Dent Clin Dent Prospects. 2017;11(1):18–25.CrossRef
41.
Zurück zum Zitat Pankaj D, Sahu I, Kurian IG, Pradeep AR. Comparative evaluation of subgingivally delivered 1.2% rosuvastatinand 1% metformin gelin treatment of intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2018;89(11):1318–25.CrossRef Pankaj D, Sahu I, Kurian IG, Pradeep AR. Comparative evaluation of subgingivally delivered 1.2% rosuvastatinand 1% metformin gelin treatment of intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2018;89(11):1318–25.CrossRef
42.
Zurück zum Zitat Martande SS, Kumari M, Pradeep AR, Singh SP, Suke DK, Guruprasad CN. Platelet-rich fibrin combined with 1.2% atorvastatin for treatment of Intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2016;87(9):1039–46.CrossRef Martande SS, Kumari M, Pradeep AR, Singh SP, Suke DK, Guruprasad CN. Platelet-rich fibrin combined with 1.2% atorvastatin for treatment of Intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2016;87(9):1039–46.CrossRef
43.
Zurück zum Zitat Fentoglu O, Kirzioglu FY, Ozdem M, Kocak H, Sutcu R, Sert T. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Dis. 2012;18(3):299–306.CrossRef Fentoglu O, Kirzioglu FY, Ozdem M, Kocak H, Sutcu R, Sert T. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Dis. 2012;18(3):299–306.CrossRef
44.
Zurück zum Zitat Surve SM, Acharya AB, Thakur SL. Efficacy of subgingivally delivered atorvastatin and simvastatin as an adjunct to scaling and root planing. Drug Metab Pers Ther. 2015;30:263–9.PubMed Surve SM, Acharya AB, Thakur SL. Efficacy of subgingivally delivered atorvastatin and simvastatin as an adjunct to scaling and root planing. Drug Metab Pers Ther. 2015;30:263–9.PubMed
45.
Zurück zum Zitat Emani S, Gunjiganur GV, Mehta DS. Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: an in vitro study. Contemp Clin Dent. 2014;5(3):377–82.CrossRef Emani S, Gunjiganur GV, Mehta DS. Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: an in vitro study. Contemp Clin Dent. 2014;5(3):377–82.CrossRef
46.
Zurück zum Zitat Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, −2, −3, and −9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 2003;23(5):769–75.CrossRef Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, −2, −3, and −9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol. 2003;23(5):769–75.CrossRef
47.
Zurück zum Zitat Song CL, Guo ZQ, Ma QJ, Chen ZQ, Liu ZJ, Jia HT, Dang GT. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Bioph Res Co. 2003;308(3):458–62.CrossRef Song CL, Guo ZQ, Ma QJ, Chen ZQ, Liu ZJ, Jia HT, Dang GT. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Bioph Res Co. 2003;308(3):458–62.CrossRef
48.
Zurück zum Zitat Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J Cell Biochem. 2004;92(3):458–71.CrossRef Maeda T, Matsunuma A, Kurahashi I, Yanagawa T, Yoshida H, Horiuchi N. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J Cell Biochem. 2004;92(3):458–71.CrossRef
49.
Zurück zum Zitat Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR task force on indirect treatment comparisons good research practices: part 1. Value Health. 2011;14(4):417–28.CrossRef Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K, Boersma C, Annemans L, Cappelleri JC. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR task force on indirect treatment comparisons good research practices: part 1. Value Health. 2011;14(4):417–28.CrossRef
50.
Zurück zum Zitat Jeong C, Kim SE, Shim KS, Kim HJ, Song MH, Park K, Song HR. Exploring the in vivo anti-inflammatory actions of simvastatin-loaded porous microspheres on inflamed tenocytes in a collagenase-induced animal model of Achilles tendinitis. Int J Mol Sci. 2018;19(3). https://doi.org/10.3390/ijms19030820.CrossRef Jeong C, Kim SE, Shim KS, Kim HJ, Song MH, Park K, Song HR. Exploring the in vivo anti-inflammatory actions of simvastatin-loaded porous microspheres on inflamed tenocytes in a collagenase-induced animal model of Achilles tendinitis. Int J Mol Sci. 2018;19(3). https://​doi.​org/​10.​3390/​ijms19030820.CrossRef
51.
Zurück zum Zitat Dalcico R, de Menezes AM, Deocleciano OB, Oria RB, Vale ML, Ribeiro RA, Brito GA. Protective mechanisms of simvastatin in experimental periodontal disease. J Periodontol. 2013;84(8):1145–57.CrossRef Dalcico R, de Menezes AM, Deocleciano OB, Oria RB, Vale ML, Ribeiro RA, Brito GA. Protective mechanisms of simvastatin in experimental periodontal disease. J Periodontol. 2013;84(8):1145–57.CrossRef
52.
Zurück zum Zitat Chen YJ, Chang LS. Simvastatin induces NFkappaB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol. 2014;92(4):530–43.CrossRef Chen YJ, Chang LS. Simvastatin induces NFkappaB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem Pharmacol. 2014;92(4):530–43.CrossRef
53.
Zurück zum Zitat Messora MR, Apolinario Vieira GH, Vanderlei J, Mariguela VC, Fernandes PG, Palioto DB, Scombatti de Souza SL, Novaes AB Jr, Furlaneto F, Taba M Jr. Rosuvastatin promotes benefits on induced periodontitis in hypertensive rats. J Periodontal Res. 2017;52(4):734–44.CrossRef Messora MR, Apolinario Vieira GH, Vanderlei J, Mariguela VC, Fernandes PG, Palioto DB, Scombatti de Souza SL, Novaes AB Jr, Furlaneto F, Taba M Jr. Rosuvastatin promotes benefits on induced periodontitis in hypertensive rats. J Periodontal Res. 2017;52(4):734–44.CrossRef
54.
Zurück zum Zitat Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontology 2000. 2015;69(1):221–54.CrossRef Sonnenschein SK, Meyle J. Local inflammatory reactions in patients with diabetes and periodontitis. Periodontology 2000. 2015;69(1):221–54.CrossRef
55.
Zurück zum Zitat Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol. 2018;45(2):150–66.CrossRef Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol. 2018;45(2):150–66.CrossRef
56.
Zurück zum Zitat Katz J, Caudle RM, Bhattacharyya I, Stewart CM, Cohen DM. Receptor for advanced glycation end product (RAGE) upregulation in human gingival fibroblasts incubated with nornicotine. J Periodontol. 2005;76(7):1171–4.CrossRef Katz J, Caudle RM, Bhattacharyya I, Stewart CM, Cohen DM. Receptor for advanced glycation end product (RAGE) upregulation in human gingival fibroblasts incubated with nornicotine. J Periodontol. 2005;76(7):1171–4.CrossRef
57.
Zurück zum Zitat Katz J, Yoon TY, Mao S, Lamont RJ, Caudle RM. Expression of the receptor of advanced glycation end products in the gingival tissue of smokers with generalized periodontal disease and after nornicotine induction in primary gingival epithelial cells. J Periodontol. 2007;78(4):736–41.CrossRef Katz J, Yoon TY, Mao S, Lamont RJ, Caudle RM. Expression of the receptor of advanced glycation end products in the gingival tissue of smokers with generalized periodontal disease and after nornicotine induction in primary gingival epithelial cells. J Periodontol. 2007;78(4):736–41.CrossRef
Metadaten
Titel
Efficacy of locally-delivered statins adjunct to non-surgical periodontal therapy for chronic periodontitis: a Bayesian network analysis
verfasst von
Ruoyan Cao
Qiulan Li
Yu Chen
Mianfeng Yao
Qiqi Wu
Hongbo Zhou
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2019
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0789-2

Weitere Artikel der Ausgabe 1/2019

BMC Oral Health 1/2019 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.