Skip to main content
Erschienen in: Digestive Diseases and Sciences 8/2022

09.09.2021 | Original Article

EGR1-CCL2 Feedback Loop Maintains Epithelial-Mesenchymal Transition of Cisplatin-Resistant Gastric Cancer Cells and Promotes Tumor Angiogenesis

verfasst von: Jie Yan, Yaping Gao, Shan Lin, Yi Li, Litong Shi, Quancheng Kan

Erschienen in: Digestive Diseases and Sciences | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

The mechanism of cisplatin resistance in gastric cancer (GC) is still elusive; several recent evidences proposed that chemoresistant tumor cells acquired aggressive behaviors.

Aims

This study was aimed to investigate the mechanism of epithelial-mesenchymal transition (EMT) and angiogenesis in chemoresistant GC.

Methods

Bioinformatics analysis and function or mechanism experiments including RT-qPCR, immunofluorescence, Western blot, luciferase reporter assay, Chromatin immunoprecipitation, Chicken chorioallantoic membrane assay and animal experiments were applied to evaluate the role of EGR1-CCL2 feedback loop.

Results

Compared with the parental cell line SGC7901, cisplatin resistant SGC7901R cells underwent EMT and showed increased angiogenic capabilities. Mechanistically, SGC7901R cells showed increased levels of EGR1, which could transcriptionally activate the angiogenic factor CCL2 and EMT regulator ZEB2. Reciprocally, CCL2 activated the CCR2-ERK-ELK1-EGR1 pathway, thus forming a positive feed-forward loop. Moreover, CCL2 in culture medium of SGC7901R cells promoted angiogenesis of Human Umbilical Vein Endothelial Cells (HUVECs). EGR1 expression was positively correlated with CCL2 and ZEB2 in clinical GC tissues, and the depletion of ERG1 could also decrease microvessel density and ZEB2 expression in metastatic nodules of nude mice.

Conclusions

EGR1-CCL2 feedback loop might exert critical roles on EMT and angiogenesis of chemoresistant GC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol 2020;18:534–542.CrossRef Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol 2020;18:534–542.CrossRef
2.
Zurück zum Zitat J.G.C.A.j.k.k.-m.a. jp, Japanese gastric cancer treatment guidelines 2018, Gastric Cancer, 2020; 1–21. J.G.C.A.j.k.k.-m.a. jp, Japanese gastric cancer treatment guidelines 2018, Gastric Cancer, 2020; 1–21.
3.
Zurück zum Zitat Kelland L. The resurgence of platinum-based cancer chemotherapy, Nature reviews. Cancer 2007;7:573–584.PubMed Kelland L. The resurgence of platinum-based cancer chemotherapy, Nature reviews. Cancer 2007;7:573–584.PubMed
4.
Zurück zum Zitat Madden EC, Gorman AM, Logue SE, Samali A. Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer 2020;6:489–505.CrossRef Madden EC, Gorman AM, Logue SE, Samali A. Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer 2020;6:489–505.CrossRef
5.
Zurück zum Zitat Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019;20:69–84.CrossRef Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019;20:69–84.CrossRef
6.
Zurück zum Zitat Yeung KT, Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol Oncol 2017;11:28–39.CrossRef Yeung KT, Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol Oncol 2017;11:28–39.CrossRef
7.
Zurück zum Zitat van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial–mesenchymal-transition-inducing transcription factors: New targets for tackling chemoresistance in cancer? Oncogene 2018;37:6195–6211.CrossRef van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial–mesenchymal-transition-inducing transcription factors: New targets for tackling chemoresistance in cancer? Oncogene 2018;37:6195–6211.CrossRef
8.
Zurück zum Zitat Zhang B, Ling T, Zhaxi P, Cao Y, Qian L, Zhao D, Kang W, Zhang W, Wang L, Xu G. Proton pump inhibitor pantoprazole inhibits gastric cancer metastasis via suppression of telomerase reverse transcriptase gene expression. Cancer Lett 2019;452:23–30.CrossRef Zhang B, Ling T, Zhaxi P, Cao Y, Qian L, Zhao D, Kang W, Zhang W, Wang L, Xu G. Proton pump inhibitor pantoprazole inhibits gastric cancer metastasis via suppression of telomerase reverse transcriptase gene expression. Cancer Lett 2019;452:23–30.CrossRef
9.
Zurück zum Zitat Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B. HMGA2–FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res 2017;23:3461–3473.CrossRef Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B. HMGA2–FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res 2017;23:3461–3473.CrossRef
10.
Zurück zum Zitat Liu H-T, Liu S, Liu L, Ma R-R, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018;78:5877–5890.CrossRef Liu H-T, Liu S, Liu L, Ma R-R, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018;78:5877–5890.CrossRef
11.
Zurück zum Zitat Tang T, Zhu Q, Li X, Zhu G, Deng S, Wang Y, Ni L, Chen X, Zhang Y, Xia T. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Disease 2019;10:1–17.CrossRef Tang T, Zhu Q, Li X, Zhu G, Deng S, Wang Y, Ni L, Chen X, Zhang Y, Xia T. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Disease 2019;10:1–17.CrossRef
12.
Zurück zum Zitat Jing Z, Ye X, Ma X, Hu X, Yang W, Shi J, Chen G, Gong L. SNGH16 regulates cell autophagy to promote Sorafenib Resistance through suppressing miR-23b-3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med 2020;9:4324–4338.CrossRef Jing Z, Ye X, Ma X, Hu X, Yang W, Shi J, Chen G, Gong L. SNGH16 regulates cell autophagy to promote Sorafenib Resistance through suppressing miR-23b-3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med 2020;9:4324–4338.CrossRef
13.
Zurück zum Zitat Zhang W, Tong H, Zhang Z, Shao S, Liu D, Li S, Yan Y. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol 2018;233:350–362.CrossRef Zhang W, Tong H, Zhang Z, Shao S, Liu D, Li S, Yan Y. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol 2018;233:350–362.CrossRef
14.
Zurück zum Zitat Meng X, Brodsky MH, Wolfe SA. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 2005;23:988–994.CrossRef Meng X, Brodsky MH, Wolfe SA. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 2005;23:988–994.CrossRef
15.
Zurück zum Zitat Ferraro B, Bepler G, Sharma S, Cantor A, Haura EB. EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 2005;23:1921–1926.CrossRef Ferraro B, Bepler G, Sharma S, Cantor A, Haura EB. EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol 2005;23:1921–1926.CrossRef
16.
Zurück zum Zitat Kim J, Kang HS, Lee YJ, Lee HJ, Yun J, Shin JH, Lee CW, Kwon BM, Hong SH. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett 2014;349:35–44.CrossRef Kim J, Kang HS, Lee YJ, Lee HJ, Yun J, Shin JH, Lee CW, Kwon BM, Hong SH. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett 2014;349:35–44.CrossRef
17.
Zurück zum Zitat Yang Y, Wu F, Zhang J, Sun R, Li F, Li Y, Chang SE, Wang L, Wang X, Liu L. EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. J Cell Mol Med 2019;23:7372–7381.CrossRef Yang Y, Wu F, Zhang J, Sun R, Li F, Li Y, Chang SE, Wang L, Wang X, Liu L. EGR1 interacts with DNMT3L to inhibit the transcription of miR-195 and plays an anti-apoptotic role in the development of gastric cancer. J Cell Mol Med 2019;23:7372–7381.CrossRef
18.
Zurück zum Zitat Ma Z, Gao X, Shuai Y, Wu X, Yan Y, Xing X, Ji J. EGR1‐mediated linc01503 promotes cell cycle progression and tumorigenesis in gastric cancer, Cell Prolif, 2020; e12922. Ma Z, Gao X, Shuai Y, Wu X, Yan Y, Xing X, Ji J. EGR1‐mediated linc01503 promotes cell cycle progression and tumorigenesis in gastric cancer, Cell Prolif, 2020; e12922.
19.
Zurück zum Zitat Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005;102:15545–15550.CrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005;102:15545–15550.CrossRef
20.
Zurück zum Zitat Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014;16:488–494.CrossRef Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014;16:488–494.CrossRef
21.
Zurück zum Zitat Tang C, Sun R, Wen G, Zhong C, Yang J, Zhu J, Cong Z, Luo X, Ma C. Bromocriptine and cabergoline induce cell death in prolactinoma cells via the ERK/EGR1 and AKT/mTOR pathway respectively. Cell Death Disease 2019;10:1–14.CrossRef Tang C, Sun R, Wen G, Zhong C, Yang J, Zhu J, Cong Z, Luo X, Ma C. Bromocriptine and cabergoline induce cell death in prolactinoma cells via the ERK/EGR1 and AKT/mTOR pathway respectively. Cell Death Disease 2019;10:1–14.CrossRef
22.
Zurück zum Zitat Shi J, Li F, Yao X, Mou T, Xu Z, Han Z, Chen S, Li W, Yu J, Qi X. The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition. Oncogene 2018;37:3022–3038.CrossRef Shi J, Li F, Yao X, Mou T, Xu Z, Han Z, Chen S, Li W, Yu J, Qi X. The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition. Oncogene 2018;37:3022–3038.CrossRef
23.
Zurück zum Zitat Kinehara M, Kawamura S, Mimura S, Suga M, Hamada A, Wakabayashi M, Nikawa H, Furue MK. Protein kinase C-induced early growth response protein-1 binding to SNAIL promoter in epithelial–mesenchymal transition of human embryonic stem cells. Stem Cells Dev 2014;23:2180–2189.CrossRef Kinehara M, Kawamura S, Mimura S, Suga M, Hamada A, Wakabayashi M, Nikawa H, Furue MK. Protein kinase C-induced early growth response protein-1 binding to SNAIL promoter in epithelial–mesenchymal transition of human embryonic stem cells. Stem Cells Dev 2014;23:2180–2189.CrossRef
24.
Zurück zum Zitat Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178–196.CrossRef Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178–196.CrossRef
25.
Zurück zum Zitat De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 2017;17:457.CrossRef De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 2017;17:457.CrossRef
26.
Zurück zum Zitat He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K, Yeh S. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol 2020;14:1779–1799.CrossRef He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K, Yeh S. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol 2020;14:1779–1799.CrossRef
27.
Zurück zum Zitat Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, Fields P, Cheng N. CCR2 chemokine receptors enhance growth and cell-cycle progression of breast cancer cells through SRC and PKC activation. Mol Cancer Res 2019;17:604–617.CrossRef Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, Fields P, Cheng N. CCR2 chemokine receptors enhance growth and cell-cycle progression of breast cancer cells through SRC and PKC activation. Mol Cancer Res 2019;17:604–617.CrossRef
28.
Zurück zum Zitat Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, Wang Q, Sun J, Feng L, Wang S. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci 2018;14:1054.CrossRef Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, Wang Q, Sun J, Feng L, Wang S. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci 2018;14:1054.CrossRef
29.
Zurück zum Zitat Whiteside T. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008;27:5904–5912.CrossRef Whiteside T. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008;27:5904–5912.CrossRef
30.
Zurück zum Zitat Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance, The Company of Biologists Ltd, 2012. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance, The Company of Biologists Ltd, 2012.
31.
Zurück zum Zitat Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The matrix revolution: matricellular proteins and restructuring of the cancer microenvironment. Cancer Res 2020;80:2705–2717.CrossRef Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The matrix revolution: matricellular proteins and restructuring of the cancer microenvironment. Cancer Res 2020;80:2705–2717.CrossRef
32.
Zurück zum Zitat Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019;79:4557–4566.CrossRef Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019;79:4557–4566.CrossRef
33.
Zurück zum Zitat Wang Y-H, Dong Y-Y, Wang W-M, Xie X-Y, Wang Z-M, Chen R-X, Chen J, Gao D-M, Cui J-F, Ren Z-G. Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. J Exp Clin Cancer Res 2013;32:1–11.CrossRef Wang Y-H, Dong Y-Y, Wang W-M, Xie X-Y, Wang Z-M, Chen R-X, Chen J, Gao D-M, Cui J-F, Ren Z-G. Vascular endothelial cells facilitated HCC invasion and metastasis through the Akt and NF-κB pathways induced by paracrine cytokines. J Exp Clin Cancer Res 2013;32:1–11.CrossRef
Metadaten
Titel
EGR1-CCL2 Feedback Loop Maintains Epithelial-Mesenchymal Transition of Cisplatin-Resistant Gastric Cancer Cells and Promotes Tumor Angiogenesis
verfasst von
Jie Yan
Yaping Gao
Shan Lin
Yi Li
Litong Shi
Quancheng Kan
Publikationsdatum
09.09.2021
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 8/2022
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-07250-5

Weitere Artikel der Ausgabe 8/2022

Digestive Diseases and Sciences 8/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.