Skip to main content
Erschienen in: Info Diabetologie 1/2012

03.03.2012 | CME-Fortbildung

Ein interessanter Ansatz für die Therapie bei Diabetes

Niere und Glukosestoffwechsel

verfasst von: Professor Dr. med. Stephan Martin

Erschienen in: Info Diabetologie | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Bedeutung der Nieren im Zusammenhang mit Diabetes mellitus ist weit größer, als nur ein Schauplatz für Endorganschäden zu sein. Sie sind aktive Regulatoren des Blutzuckerspiegels, indem sie die Glukoseausscheidung und den Insulinabbau beeinflussen. Daher wurden sie auch als Ansatzpunkt für die Diabetestherapie interessant. Als Vorbild für neue Antidiabetika dienen zum Beispiel harmlose genetische Veränderungen, die bei einigen Familien zu einer verstärkten Glukosurie führen.

Literatur
  1. Nurjhan N, Bucci A, Perriello G, Stumvoll M, Dailey G, Bier DM, Toft I, Jenssen TG, Gerich JE. Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J Clin Invest. 1995;95:272–7.PubMedView Article
  2. Krebs HA. Renal gluconeogenesis. Adv Enzyme Regul. 1963;1:385–400.PubMedView Article
  3. Fischer KF, Lees JA, Newman JH. Hypoglycemia in hospitalized patients. Causes and outcomes.N Engl J Med. 1986; 13;315:1245–5View Article
  4. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.PubMedView Article
  5. Biava C, Grossman A, West M. Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab Invest. 1966;15: 330–56.PubMed
  6. Stumvoll M. Glucose production by the human kidney-its importance has been underestimated. NephrolDial Transplant. 1998;13:2996–9.View Article
  7. Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J PhysiolEndocrinolMetab. 2002;282:E428–34.
  8. Conjard A, Martin M, Guitton J, Baverel G, Ferrier B. Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J. 2001; 360: 371–7.PubMedView Article
  9. Meyer C, Dostou J, Nadkarni V, Gerich J. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am J Physiol. 1998;275:F915–21.PubMed
  10. Bowman RH. Gluconeogenesis in theisolatedperfusedratkidney. J Biol Chem. 1970;245:1604–12.PubMed
  11. Stumvoll M, Chintalapudi U, Perriello G, Welle S, Gutierrez O, Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive ratesandresponsestoepinephrine. J ClinInvest. 1995;96:2528–33.View Article
  12. Cersosimo E, Garlick P, Ferretti J. Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans. Diabetes 2000;49:1186–93.PubMedView Article
  13. Cersosimo E, Garlick P, Ferretti J.Renal glucose production during insulin-induced hypoglycemia in humans. Diabetes. 1999;48: 261–6.PubMedView Article
  14. Meyer C, Dostou JM, Gerich JE. Role of the human kidney in glucose counterregulation. Diabetes 1999;48:943–8.PubMedView Article
  15. DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1982; 23:313–9.PubMedView Article
  16. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J PhysiolEndocrinolMetab. 2004;287:E1049–56.
  17. Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, Gerich J. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am J Physiol 1998;274: E817–26.PubMed
  18. Rabkin R, Ryan MP, Duckworth WC. The renal metabolismofinsulin. Diabetologia 1984;27:351–7.PubMedView Article
  19. Derlacz RA, Hyc K, Usarek M, Jagielski AK, Drozak J, Jarzyna R. PPAR-gamma independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules. Biochem-CellBiol. 2008;86:396–404.View Article
  20. Valera Mora ME, Scarfone A, Calvani M, Greco AV, Mingrone G. Insulin clearance in obesity. J AmCollNutr. 2003;22:487–93.
  21. Receptor-recycling model of clearance and distribution of insulin in the perfused mouse liver.Sato H, Terasaki T, Mizuguchi H, Okumura K, Tsuji A. Diabetologia 1991;34:613-21.
  22. Fawcett J, Rabkin R. Degradation of insulin by isolated rat renal cortical endosomes. Endocrinology 1993;133:1539–47.PubMedView Article
  23. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease.J Intern Med. 2007;261:32–43.PubMedView Article
  24. Mogensen CE. Maximum tubular reabsorption capacity for glucose and renal hemodynamcis during rapid hypertonic glucose infusion in normal and diabetic subjects.Scand J Clin Lab Invest. 1971; 28:101–9.PubMedView Article
  25. Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 2009;75:1272–7.PubMedView Article
  26. Lee WS, Kanai Y, Wells RG, Hediger MA. The high affinity Na+/glucose cotransporter.Re-evaluation of function and distribution of expression. J Biol Chem 1994 22; 269: 12032–9.
  27. Persson P, Hansell P, Palm F. Tubular reabsorption and diabetesinduced glomerular hyperfiltration. ActaPhysiol 2010;200: 3–10.
  28. Hediger MA, Coady MJ, Ikeda TS, Wright EM. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 1987; 330: 379–81.
  29. Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM, FederJN Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 2010; 1: 57–92.PubMedView Article
  30. Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H. A glucose sensor hiding in a family of transporters.ProcNatlAcadSci U S A. 2003; 100: 11753–8View Article
  31. Löhr G. Beitrag zur Frage des extrainsulinären (realen) Diabetes. Klin-Wochensch 1932;11: 1134–37.View Article
  32. van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet 2002;111: 544–7.PubMedView Article
  33. Calado J, Sznajer Y, Metzger D et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. NephrolDial Transplant. 2008;23:3874–9.View Article
  34. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987; 79: 1510–5.PubMedView Article
  35. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: Sodium glucose cotransport (SGLT) inhibitors. Systematic review and meta-analysis of randomized trials.Annals of Medicine 2011, online on April 15, 2011. doi:10.3109/07853890.2011.560181.
Metadaten
Titel
Ein interessanter Ansatz für die Therapie bei Diabetes
Niere und Glukosestoffwechsel
verfasst von
Professor Dr. med. Stephan Martin
Publikationsdatum
03.03.2012
Verlag
Urban and Vogel
Erschienen in
Info Diabetologie / Ausgabe 1/2012
Print ISSN: 1865-5459
Elektronische ISSN: 2196-6362
DOI
https://doi.org/10.1007/s15034-012-0022-8

Weitere Artikel der Ausgabe 1/2012

Info Diabetologie 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.