Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 1/2012

01.01.2012 | Original Article

Elbow loading promotes longitudinal bone growth of the ulna and the humerus

verfasst von: Ping Zhang, Hiroki Yokota

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Mechanical stimulation plays a critical role in bone development and growth. In view of recently recognized anabolic responses promoted by a joint-loading modality, we examined the effects of elbow loading on longitudinal growth of the ulna and the humerus. Using a custom-made piezoelectric loader, the left elbow of growing C57/BL/6 female mice was given daily 5-min bouts of dynamic loading for 10 days. The right forelimbs of those mice served as contralateral controls, and the limbs of non-treated mice were used as age-matched controls. The effects of elbow loading were evaluated through measurement of bone length, weight, bone mineral density (BMD), and bone mineral content (BMC), as well as mRNA expression levels of load-sensitive transcription factors such as c-fos, egr1, and atf3. The results revealed that the humerus was elongated by 1.2% compared to the contralateral and age-matched controls (both p < 0.001), while the ulna had become longer than the contralateral control (1.7%; p < 0.05) and the age-match control (3.4%; p < 0.001). Bone lengthening was associated with increases in bone weight, BMD and BMC. Furthermore, the mRNA levels of the selected transcription factors were elevated in the loaded ulna and humerus. Interestingly, the increase was observed not only at the elbow but also at the wrist and shoulder in the loaded limb. The present study demonstrates that joint loading is potentially useful for stimulating bone lengthening and treating limb length discrepancy.
Literatur
1.
Zurück zum Zitat Vitale MA, Choe JC, Sesko AM, Hyman JE, Lee FY, Roye DP Jr, Vitale MG (2006) The effect of limb length discrepancy on health-related quality of life: is the ‘2 cm rule’ appropriate? J Pediatr Orthop B 15:1–5PubMedCrossRef Vitale MA, Choe JC, Sesko AM, Hyman JE, Lee FY, Roye DP Jr, Vitale MG (2006) The effect of limb length discrepancy on health-related quality of life: is the ‘2 cm rule’ appropriate? J Pediatr Orthop B 15:1–5PubMedCrossRef
2.
Zurück zum Zitat Bagatur AE, Doğan A, Zorer G (2002) Correction of deformities and length discrepancies of the forearm in children by distraction osteogenesis. Acta Orthop Traumatol Turc 36:111–116PubMed Bagatur AE, Doğan A, Zorer G (2002) Correction of deformities and length discrepancies of the forearm in children by distraction osteogenesis. Acta Orthop Traumatol Turc 36:111–116PubMed
3.
Zurück zum Zitat White SC, Gilchrist LA, Wilk BE (2004) Asymmetric limb loading with true or simulated leg-length differences. Clin Orthop Relat Res 421:287–292PubMedCrossRef White SC, Gilchrist LA, Wilk BE (2004) Asymmetric limb loading with true or simulated leg-length differences. Clin Orthop Relat Res 421:287–292PubMedCrossRef
4.
Zurück zum Zitat Rancont CM (2007) Chronic psoas syndrome caused by the inappropriate use of a heel lift. J Am Osteopath Assoc 107:415–418PubMed Rancont CM (2007) Chronic psoas syndrome caused by the inappropriate use of a heel lift. J Am Osteopath Assoc 107:415–418PubMed
5.
Zurück zum Zitat Stanitski DF (1999) Limb-length inequality: assessment and treatment options. J Am Acad Orthop Surg 7:143–153PubMed Stanitski DF (1999) Limb-length inequality: assessment and treatment options. J Am Acad Orthop Surg 7:143–153PubMed
6.
Zurück zum Zitat Friend L, Widmann RF (2008) Advances in management of limb length discrepancy and lower limb deformity. Curr Opin Pediatr 20:46–51PubMedCrossRef Friend L, Widmann RF (2008) Advances in management of limb length discrepancy and lower limb deformity. Curr Opin Pediatr 20:46–51PubMedCrossRef
7.
Zurück zum Zitat Birch JG, Samchukov ML (2004) Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J Am Acad Orthop Surg 12:144–154PubMed Birch JG, Samchukov ML (2004) Use of the Ilizarov method to correct lower limb deformities in children and adolescents. J Am Acad Orthop Surg 12:144–154PubMed
8.
Zurück zum Zitat Fixsen JA (2003) Major lower limb congenital shortening: a mini review. J Pediatr Orthop B 12:1–12PubMedCrossRef Fixsen JA (2003) Major lower limb congenital shortening: a mini review. J Pediatr Orthop B 12:1–12PubMedCrossRef
9.
Zurück zum Zitat Hantes ME, Malizos KN, Xenakis TA, Beris AE, Mavrodontidis AN, Soucacos PN (2001) Complications in limb-lengthening procedures: a review of 49 cases. Am J Orthop 30:479–483PubMedCrossRef Hantes ME, Malizos KN, Xenakis TA, Beris AE, Mavrodontidis AN, Soucacos PN (2001) Complications in limb-lengthening procedures: a review of 49 cases. Am J Orthop 30:479–483PubMedCrossRef
10.
Zurück zum Zitat Coppola C, Maffulli N (1999) Limb shortening for the management of leg length discrepancy. J R Coll Surg Edinb 44:46–54PubMed Coppola C, Maffulli N (1999) Limb shortening for the management of leg length discrepancy. J R Coll Surg Edinb 44:46–54PubMed
11.
Zurück zum Zitat Niedzielski K, Synder M, Borowski A (2002) Distraction epiphysiolysis in the treatment of uneven limb length. Ortop Traumatol Rehabil 30:459–463 Niedzielski K, Synder M, Borowski A (2002) Distraction epiphysiolysis in the treatment of uneven limb length. Ortop Traumatol Rehabil 30:459–463
12.
13.
Zurück zum Zitat Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Chin Invest 118:429–438CrossRef Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Chin Invest 118:429–438CrossRef
14.
Zurück zum Zitat Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ (2008) Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop 28:471–477PubMedCrossRef Henderson ER, Feldman DS, Lusk C, van Bosse HJ, Sala D, Kummer FJ (2008) Conformational instability of the taylor spatial frame: a case report and biomechanical study. J Pediatr Orthop 28:471–477PubMedCrossRef
15.
Zurück zum Zitat Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31:1114–1124PubMedCrossRef Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31:1114–1124PubMedCrossRef
16.
Zurück zum Zitat Tanck E, Hannink G, Ruimerman R, Buma P, Burger EH, Huiskes R (2006) Cortical bone development under the growth plate is regulated by mechanical load transfer. J Anat 208:73–79PubMedCrossRef Tanck E, Hannink G, Ruimerman R, Buma P, Burger EH, Huiskes R (2006) Cortical bone development under the growth plate is regulated by mechanical load transfer. J Anat 208:73–79PubMedCrossRef
17.
Zurück zum Zitat Stokes IA, Clark KC, Farnum CE, Aronsson DD (2007) Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 24:197–205CrossRef Stokes IA, Clark KC, Farnum CE, Aronsson DD (2007) Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 24:197–205CrossRef
18.
Zurück zum Zitat Stokes IA, Aronsson DD, Dimock AN, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24:1327–1334PubMedCrossRef Stokes IA, Aronsson DD, Dimock AN, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24:1327–1334PubMedCrossRef
19.
Zurück zum Zitat Stokes IA, Gwadera J, Dimock A, Farnum CE, Aronsson DD (2005) Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. J Orthop Res 23:188–195PubMedCrossRef Stokes IA, Gwadera J, Dimock A, Farnum CE, Aronsson DD (2005) Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. J Orthop Res 23:188–195PubMedCrossRef
20.
Zurück zum Zitat Ohashi N, Robling AG, Burr DB, Turner CH (2002) The effects of dynamic axial loading on the rat growth plate. J Bone Miner Res 17:284–292PubMedCrossRef Ohashi N, Robling AG, Burr DB, Turner CH (2002) The effects of dynamic axial loading on the rat growth plate. J Bone Miner Res 17:284–292PubMedCrossRef
21.
Zurück zum Zitat Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29:105–113PubMedCrossRef Robling AG, Duijvelaar KM, Geevers JV, Ohashi N, Turner CH (2001) Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 29:105–113PubMedCrossRef
22.
Zurück zum Zitat Yokota H, Tanaka SM (2005) Osteogenic potentials with joint-loading modality. J Bone Miner Metab 23:302–308PubMedCrossRef Yokota H, Tanaka SM (2005) Osteogenic potentials with joint-loading modality. J Bone Miner Metab 23:302–308PubMedCrossRef
23.
Zurück zum Zitat Zhang P, Tanaka SM, Jiang H, Su M, Yokota H (2006) Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol 100:1452–1459PubMedCrossRef Zhang P, Tanaka SM, Jiang H, Su M, Yokota H (2006) Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol 100:1452–1459PubMedCrossRef
24.
Zurück zum Zitat Zhang P, Sun Q, Turner CH, Yokota H (2007) Knee loading accelerates bone healing in mice. J Bone Miner Res 22:1979–1987PubMedCrossRef Zhang P, Sun Q, Turner CH, Yokota H (2007) Knee loading accelerates bone healing in mice. J Bone Miner Res 22:1979–1987PubMedCrossRef
25.
Zurück zum Zitat Zhang P, Yokota H (2007) Effects of surgical holes in mouse tibiae on bone formation induced by knee loading. Bone 40:1320–1328PubMedCrossRef Zhang P, Yokota H (2007) Effects of surgical holes in mouse tibiae on bone formation induced by knee loading. Bone 40:1320–1328PubMedCrossRef
26.
Zurück zum Zitat Zhang P, Turner CH, Yokota H (2009) Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone 44:989–998PubMedCrossRef Zhang P, Turner CH, Yokota H (2009) Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone 44:989–998PubMedCrossRef
27.
Zurück zum Zitat Zhang P, Tanaka S, Sun Q, Turner CH, Yokota H (2007) Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading. J Bone Miner Metab 25:383–391PubMedCrossRef Zhang P, Tanaka S, Sun Q, Turner CH, Yokota H (2007) Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading. J Bone Miner Metab 25:383–391PubMedCrossRef
28.
Zurück zum Zitat Zhang P, Su M, Tanaka S, Yokota H (2006) Knee loading causes diaphyseal cortical bone formation in murine femurs. BMC Musculoskelet Dis 73:1–12 Zhang P, Su M, Tanaka S, Yokota H (2006) Knee loading causes diaphyseal cortical bone formation in murine femurs. BMC Musculoskelet Dis 73:1–12
29.
Zurück zum Zitat Zhang P, Hamamura K, Turner CH, Yokota H (2010) Lengthening of mouse hindlimbs with joint loading. J Bone Miner Metab 28:268–275PubMedCrossRef Zhang P, Hamamura K, Turner CH, Yokota H (2010) Lengthening of mouse hindlimbs with joint loading. J Bone Miner Metab 28:268–275PubMedCrossRef
30.
Zurück zum Zitat Evans KD, Lau ST, Oberbauer AM, Martin RB (2003) Alendronate affects long bone length and growth plate morphology in the oim mouse model for Osteogenesis Imperfecta. Bone 32:268–274PubMedCrossRef Evans KD, Lau ST, Oberbauer AM, Martin RB (2003) Alendronate affects long bone length and growth plate morphology in the oim mouse model for Osteogenesis Imperfecta. Bone 32:268–274PubMedCrossRef
31.
Zurück zum Zitat Shin HD, Yang KJ, Park BR, Son CW, Jang HJ, Ku SK (2007) Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice. Nutrition 23:853–860PubMedCrossRef Shin HD, Yang KJ, Park BR, Son CW, Jang HJ, Ku SK (2007) Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice. Nutrition 23:853–860PubMedCrossRef
32.
Zurück zum Zitat Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S (2008) Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 295:E1172–E7780PubMedCrossRef Govoni KE, Wergedal JE, Chadwick RB, Srivastava AK, Mohan S (2008) Prepubertal OVX increases IGF-I expression and bone accretion in C57BL/6J mice. Am J Physiol Endocrinol Metab 295:E1172–E7780PubMedCrossRef
33.
Zurück zum Zitat Soon G, Quintin A, Scalfo F, Antille N, Williamson G, Offord E, Ginty F (2006) PIXImus bone densitometer and associated technical measurement issues of skeletal growth in the young rat. Calcif Tissue Int 78:186–192PubMedCrossRef Soon G, Quintin A, Scalfo F, Antille N, Williamson G, Offord E, Ginty F (2006) PIXImus bone densitometer and associated technical measurement issues of skeletal growth in the young rat. Calcif Tissue Int 78:186–192PubMedCrossRef
34.
Zurück zum Zitat Yang L, Zhang P, Liu S, Samala P, Yokota H (2007) Measurement of strain distributions in mouse femora with 3D-digital speckle pattern interferometry. Opt Laser Eng 45:843–851CrossRef Yang L, Zhang P, Liu S, Samala P, Yokota H (2007) Measurement of strain distributions in mouse femora with 3D-digital speckle pattern interferometry. Opt Laser Eng 45:843–851CrossRef
35.
Zurück zum Zitat Zhang P, Su M, Liu Y, Hus A, Yokota H (2007) Knee loading dynamically alters intramedullary pressure in mouse femora. Bone 40:538–543PubMedCrossRef Zhang P, Su M, Liu Y, Hus A, Yokota H (2007) Knee loading dynamically alters intramedullary pressure in mouse femora. Bone 40:538–543PubMedCrossRef
36.
Zurück zum Zitat Su M, Jiang H, Zhang P, Liu Y, Wang E, Hsu A, Yokota H (2006) Load-driven molecular transport in mouse femur with knee-loading modality. Ann Biomed Eng 34:1600–1606PubMedCrossRef Su M, Jiang H, Zhang P, Liu Y, Wang E, Hsu A, Yokota H (2006) Load-driven molecular transport in mouse femur with knee-loading modality. Ann Biomed Eng 34:1600–1606PubMedCrossRef
37.
Zurück zum Zitat Zhang P, Malacinski GM, Yokota H (2008) Joint loading modality: its application to bone formation and fracture healing. Br J Sport Med 42:556–560CrossRef Zhang P, Malacinski GM, Yokota H (2008) Joint loading modality: its application to bone formation and fracture healing. Br J Sport Med 42:556–560CrossRef
38.
Zurück zum Zitat Fowlkes JL, Thraikill KM, Liu L, Wahl EC, Bunn RC, Cockrell GE, Perrien DS, Aronson J, Lumpkin CK Jr (2006) Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res 21:1359–1366PubMedCrossRef Fowlkes JL, Thraikill KM, Liu L, Wahl EC, Bunn RC, Cockrell GE, Perrien DS, Aronson J, Lumpkin CK Jr (2006) Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res 21:1359–1366PubMedCrossRef
39.
Zurück zum Zitat Suzuki S, Itoh K, Ohyama K (2004) Local administration of IGF-I stimulates the growth of mandibular condyle in mature rats. J Orthod 31:138–143PubMedCrossRef Suzuki S, Itoh K, Ohyama K (2004) Local administration of IGF-I stimulates the growth of mandibular condyle in mature rats. J Orthod 31:138–143PubMedCrossRef
40.
Zurück zum Zitat Reijinders CM, Bravenboer N, Tromp AM, Blankenstein MA, Lips P (2007) Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol 192:131–140CrossRef Reijinders CM, Bravenboer N, Tromp AM, Blankenstein MA, Lips P (2007) Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol 192:131–140CrossRef
41.
Zurück zum Zitat Abbaspour A, Takata S, Matsui Y, Katoh S, Takahashi M, Yasui N (2008) Continuous infusion of insulin-like growth factor-I into the epiphysis of the tibia. Int Orthop 32:395–402PubMedCrossRef Abbaspour A, Takata S, Matsui Y, Katoh S, Takahashi M, Yasui N (2008) Continuous infusion of insulin-like growth factor-I into the epiphysis of the tibia. Int Orthop 32:395–402PubMedCrossRef
42.
Zurück zum Zitat Rosenbloom AL (2007) The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 19:458–464PubMedCrossRef Rosenbloom AL (2007) The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 19:458–464PubMedCrossRef
43.
Zurück zum Zitat Rosenbloom AL (2006) Is there a role for recombinant insulin-like growth factor-I in the treatment of idiopathic short stature? Lancet 368:612–616PubMedCrossRef Rosenbloom AL (2006) Is there a role for recombinant insulin-like growth factor-I in the treatment of idiopathic short stature? Lancet 368:612–616PubMedCrossRef
44.
Zurück zum Zitat Rosenbloom AL, Guevara-Aguirre J (2006) Controversy in clinical endocrinology: reclassification of insulin-like growth factor I production and action disorders. J Clin Endocrinol Metab 91:4232–4234PubMedCrossRef Rosenbloom AL, Guevara-Aguirre J (2006) Controversy in clinical endocrinology: reclassification of insulin-like growth factor I production and action disorders. J Clin Endocrinol Metab 91:4232–4234PubMedCrossRef
Metadaten
Titel
Elbow loading promotes longitudinal bone growth of the ulna and the humerus
verfasst von
Ping Zhang
Hiroki Yokota
Publikationsdatum
01.01.2012
Verlag
Springer Japan
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 1/2012
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-011-0292-6

Weitere Artikel der Ausgabe 1/2012

Journal of Bone and Mineral Metabolism 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.