Skip to main content
Erschienen in: Critical Care 1/2016

Open Access 01.12.2016 | Letter

Electrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease

verfasst von: Eirini Kostakou, Nicholas Barrett, Luigi Camporota

Erschienen in: Critical Care | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Abkürzungen
COPD
Chronic obstructive pulmonary disease
DH
Dynamic hyperinflation
EIT
Electrical impedance tomography
iPEEP
Intrinsic positive end-expiratory pressure
PEEP
Positive end-expiratory pressure
ZEEP
Zero end-expiratory pressure
Dynamic hyperinflation (DH) is a consequence of severe airflow obstruction in patients with asthma and chronic obstructive pulmonary disease (COPD). Incorrect setting of positive end-expiratory pressure (PEEP) can lead either to unopposed intrinsic PEEP (iPEEP) (when set too low) or to an increase in lung volume if PEEP is set above iPEEP. DH and iPEEP can lead to haemodynamic compromise [1], increased work of breathing and asynchrony [2]. PEEP setting is challenging because iPEEP is clinically difficult to quantify. Electrical impedance tomography (EIT) provides information on the temporal and spatial heterogeneity of ventilation [3]. EIT may prove useful in optimizing PEEP to overcome gas trapping and DH [4]. We present a method in which the use of EIT allowed selection of PEEP to provide the least DH and inhomogeneity of lung mechanics.
A patient with severe acute COPD exacerbation was on pressure control ventilation: FiO2 0.25, PEEP 10 cmH2O, peak pressure 28 cmH2O, tidal volume 515 ml, I:E 1:4.4 and set frequency 14/min using an Evita XL ventilator (Draeger–Luebek, Germany). After a short period, the patient developed worsening hypercapnia and clinical evidence of DH. Subsequently a PEEP titration using EIT (Pulmovista®; Draeger–Luebek) was performed to optimize ventilator settings with the aim of minimizing DH.
The patient remained sedated, paralysed and in a supine position throughout the PEEP titration. We measured static iPEEP and compliance using end-inspiratory and end-expiratory hold manoeuvres. iPEEP was measured in a range of set external PEEP, and the iPEEP was calculated as total PEEP minus set PEEP. EIT, tidal volumes, trapped gas volumes and ventilator pressures were then measured at PEEP set to 0 %, 50 %, 80 %, 100 % and 150 % of iPEEP.
EIT waveforms were analysed offline to determine ventilation heterogeneity at different levels of applied PEEP corresponding to 50 %, 80 %, 100 % and 150 % of the static iPEEP. We measured the regional delay of ventilation as a marker of homogeneity of ventilation [5]. We compared this index with oesophageal pressure, with static and dynamic compliance and with arterial blood gases.
EIT allowed determination of the level of PEEP able to achieve greatest lung homogeneity. This level of PEEP was 80 % of iPEEP (Fig. 1). This value also achieved the highest expired tidal volume and the lowest airway resistance. Lung mechanics suggest that PEEP between 80 and 100 % of iPEEP achieves the best compromise between total PEEP and trapped volume (Table 1).
Table 1
Measurements of lung mechanics at different PEEP levels
 
ZEEP
50 % iPEEP
80 % iPEEP
100 % iPEEP
150 % iPEEP
Set PEEP (cmH2O)
0
5
8
10
15
PEEP tot measured (cmH2O)
10
10
11
11
15
Plateau pressure (cmH2O)
18
21
20
19
21
Expired tidal volume (ml)
505
515
515
500
372
Static compliance (ml/cmH2O)
63
47
57
62.5
62
Trapped volume (ml)
390
350
150
80
0
ZEEP zero end-expiratory pressure, iPEEP intrinsic positive end-expiratory pressure, PEEP positive end-expiratory pressure
This case illustrates how EIT may be useful in assessing regional ventilation and suggesting optimal PEEP. Through optimizing conventional ventilation, bedside EIT may guide ventilatory strategy to reduce hyperinflation, reduce dead space and hence reduce asynchrony and work of breathing without the need for more invasive procedures.

Authors’contributions

EK, NB and LC designed and participated in drafting the manuscript. EK and LC approved the final version. All authors read and approved the final manuscript.

Competing interests

LC received speaking honoraria from Draeger. NB receives research and educational funding from Draeger, ALung, Maquet, Corpak, Fisher & Paykel and Mitsubishi-Tanabe Pharmaceuticals. EK declares that they have no competing interests.

Declaration of interests

EK is in a clinical research fellowship funded by ALung Technologies Incorporated. LC and NB have no personal financial interests to disclose.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Brandolese R, Broseghini C, Polese G, Bernasconi M, Brandi G, Milic-Emili J, Rossi A. Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients. Eur Respir J. 1993;6(3):358–63.PubMed Brandolese R, Broseghini C, Polese G, Bernasconi M, Brandi G, Milic-Emili J, Rossi A. Effects of intrinsic PEEP on pulmonary gas exchange in mechanically-ventilated patients. Eur Respir J. 1993;6(3):358–63.PubMed
2.
Zurück zum Zitat Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78(2):201–21.PubMed Laghi F, Goyal A. Auto-PEEP in respiratory failure. Minerva Anestesiol. 2012;78(2):201–21.PubMed
3.
Zurück zum Zitat Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, Frerichs I. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–61. doi:10.1152/japplphysiol.01630.2011.CrossRefPubMed Vogt B, Pulletz S, Elke G, Zhao Z, Zabel P, Weiler N, Frerichs I. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113:1154–61. doi:10.​1152/​japplphysiol.​01630.​2011.CrossRefPubMed
5.
Zurück zum Zitat Muders T, Luepschen H, Zinserling J, Susanne Greschus S, Fimmers R, Guenther U, Buchwald M, Grigutsch D, Leonhardt S, Putensen C, Wrigge H. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40(3):903–11. doi:10.1097/CCM.0b013e318236f452.CrossRefPubMed Muders T, Luepschen H, Zinserling J, Susanne Greschus S, Fimmers R, Guenther U, Buchwald M, Grigutsch D, Leonhardt S, Putensen C, Wrigge H. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med. 2012;40(3):903–11. doi:10.​1097/​CCM.​0b013e318236f452​.CrossRefPubMed
Metadaten
Titel
Electrical impedance tomography to determine optimal positive end-expiratory pressure in severe chronic obstructive pulmonary disease
verfasst von
Eirini Kostakou
Nicholas Barrett
Luigi Camporota
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2016
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1475-2

Weitere Artikel der Ausgabe 1/2016

Critical Care 1/2016 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.