Skip to main content
Erschienen in: Calcified Tissue International 4/2017

17.02.2017 | Original Research

Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy

verfasst von: Hiroyuki Tamaki, Kengo Yotani, Futoshi Ogita, Keishi Hayao, Kouki Nakagawa, Kazuhiro Sugawara, Hikari Kirimoto, Hideaki Onishi, Norikatsu Kasuga, Noriaki Yamamoto

Erschienen in: Calcified Tissue International | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

We tested whether daily muscle electrical stimulation (ES) can ameliorate the decrease in cortical bone strength as well as muscle and bone geometric and material properties in the early stages of disuse musculoskeletal atrophy. 7-week-old male F344 rats were randomly divided into three groups: age-matched control group (Cont); a sciatic denervation group (DN); and a DN + direct electrical stimulation group (DN + ES). Denervated tibialis anterior (TA) muscle in the DN + ES group received ES with 16 mA at 10 Hz for 30 min/day, 6 days/week. Micro CT, the three-point bending test, and immunohistochemistry were used to characterize cortical bone mechanical, structural, and material properties of tibiae. TA muscle in the DN + ES group showed significant improvement in muscle mass and myofiber cross-sectional area relative to the DN group. Maximal load and stiffness of tibiae, bone mineral density estimated by micro CT, and immunoreactivity of DMP1 in the cortical bone tissue were also significantly greater in the DN + ES group than in the DN group. These results suggest that daily ES-induced muscle contraction treatment reduced the decrease in muscle mass and cortical bone strength in early-stage disuse musculoskeletal atrophy and is associated with a beneficial effect on material properties such as mineralization of cortical bone tissue.
Literatur
1.
Zurück zum Zitat Tamaki H, Yotani K, Ogita F, Kirimoto H, Onishi H, Kasuga N (2016) Bone loss due to disuse and electrical muscle stimulation. J Phys Fitness Sports Med 5:267–273CrossRef Tamaki H, Yotani K, Ogita F, Kirimoto H, Onishi H, Kasuga N (2016) Bone loss due to disuse and electrical muscle stimulation. J Phys Fitness Sports Med 5:267–273CrossRef
2.
Zurück zum Zitat Tamaki H, Yotani K, Ogita F, Takahashi H, Kirimoto H, Onishi H, Yamamoto N (2013) Changes over time in structural plasticity of trabecular bone in rat tibiae immobilized by reversible sciatic denervation. J Musculoskelet Neuronal Interact 13:251–258 Tamaki H, Yotani K, Ogita F, Takahashi H, Kirimoto H, Onishi H, Yamamoto N (2013) Changes over time in structural plasticity of trabecular bone in rat tibiae immobilized by reversible sciatic denervation. J Musculoskelet Neuronal Interact 13:251–258
3.
Zurück zum Zitat Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183CrossRefPubMed Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183CrossRefPubMed
4.
Zurück zum Zitat Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl 1):S19–S24CrossRefPubMed Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl 1):S19–S24CrossRefPubMed
5.
Zurück zum Zitat Iwamoto J, Yeh JK, Aloia JF (1999) Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone 24:163–169CrossRefPubMed Iwamoto J, Yeh JK, Aloia JF (1999) Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone 24:163–169CrossRefPubMed
6.
Zurück zum Zitat Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2016) The periosteal bone surface is less mechano-responsive than the endocortical. Sci Rep 6:23480CrossRefPubMedPubMedCentral Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM (2016) The periosteal bone surface is less mechano-responsive than the endocortical. Sci Rep 6:23480CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075CrossRefPubMed Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M (2010) Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9:1065–1075CrossRefPubMed
8.
Zurück zum Zitat Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615CrossRefPubMed Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615CrossRefPubMed
9.
Zurück zum Zitat Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMed Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137PubMed
10.
Zurück zum Zitat Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr) 36:545–547CrossRef Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, van Loon LJ (2014) Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr) 36:545–547CrossRef
11.
Zurück zum Zitat Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M (1997) Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61:22–25CrossRefPubMed Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M (1997) Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61:22–25CrossRefPubMed
12.
Zurück zum Zitat Kern H, Salmons S, Mayr W, Rossini K, Carraro U (2005) Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 31:98–101CrossRefPubMed Kern H, Salmons S, Mayr W, Rossini K, Carraro U (2005) Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 31:98–101CrossRefPubMed
13.
Zurück zum Zitat Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW (2012) Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One 7:e30348CrossRefPubMedPubMedCentral Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW (2012) Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One 7:e30348CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Willand MP, Holmes M, Bain JR, Fahnestock M, De Bruin H (2013) Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve 48:219–225CrossRefPubMed Willand MP, Holmes M, Bain JR, Fahnestock M, De Bruin H (2013) Electrical muscle stimulation after immediate nerve repair reduces muscle atrophy without affecting reinnervation. Muscle Nerve 48:219–225CrossRefPubMed
15.
Zurück zum Zitat Dow DE, Cederna PS, Hassett CA, Dennis RG, Faulkner JA (2007) Electrical stimulation prior to delayed reinnervation does not enhance recovery in muscles of rats. Restor Neurol Neurosci 25:601–610PubMed Dow DE, Cederna PS, Hassett CA, Dennis RG, Faulkner JA (2007) Electrical stimulation prior to delayed reinnervation does not enhance recovery in muscles of rats. Restor Neurol Neurosci 25:601–610PubMed
16.
Zurück zum Zitat Gigo-Benato D, Russo TL, Geuna S, Domingues NR, Salvini TF, Parizotto NA (2010) Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 41:685–693CrossRefPubMed Gigo-Benato D, Russo TL, Geuna S, Domingues NR, Salvini TF, Parizotto NA (2010) Electrical stimulation impairs early functional recovery and accentuates skeletal muscle atrophy after sciatic nerve crush injury in rats. Muscle Nerve 41:685–693CrossRefPubMed
17.
Zurück zum Zitat Dupont Salter AC, Richmond FJ, Loeb GE (2003) Effects of muscle immobilization at different lengths on tetrodotoxin-induced disuse atrophy. IEEE Trans Neural Syst Rehabil Eng 11:209–217CrossRefPubMed Dupont Salter AC, Richmond FJ, Loeb GE (2003) Effects of muscle immobilization at different lengths on tetrodotoxin-induced disuse atrophy. IEEE Trans Neural Syst Rehabil Eng 11:209–217CrossRefPubMed
18.
Zurück zum Zitat Fujita N, Murakami S, Arakawa T, Miki A, Fujino H (2011) The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle. Bosn J Basic Med Sci 11:74–79PubMedPubMedCentral Fujita N, Murakami S, Arakawa T, Miki A, Fujino H (2011) The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle. Bosn J Basic Med Sci 11:74–79PubMedPubMedCentral
19.
Zurück zum Zitat Tomori K, Ohta Y, Nishizawa T, Tamaki H, Takekura H (2010) Low-intensity electrical stimulation ameliorates disruption of transverse tubules and neuromuscular junctional architecture in denervated rat skeletal muscle fibers. J Muscle Res Cell Motil 31:195–205CrossRefPubMed Tomori K, Ohta Y, Nishizawa T, Tamaki H, Takekura H (2010) Low-intensity electrical stimulation ameliorates disruption of transverse tubules and neuromuscular junctional architecture in denervated rat skeletal muscle fibers. J Muscle Res Cell Motil 31:195–205CrossRefPubMed
20.
21.
Zurück zum Zitat Umemura Y (2016) Optimal exercise protocol for osteogenic response. J Phys Fitness Sports Med 5:7–12CrossRef Umemura Y (2016) Optimal exercise protocol for osteogenic response. J Phys Fitness Sports Med 5:7–12CrossRef
22.
Zurück zum Zitat Lam H, Qin YX (2008) The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 43:1093–1100CrossRefPubMedPubMedCentral Lam H, Qin YX (2008) The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 43:1093–1100CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Tamaki H, Tomori K, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Yamamoto N, Kasuga N (2014) Electrical stimulation of denervated rat skeletal muscle retards trabecular bone loss in early stages of disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 14:220–228PubMed Tamaki H, Tomori K, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Yamamoto N, Kasuga N (2014) Electrical stimulation of denervated rat skeletal muscle retards trabecular bone loss in early stages of disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 14:220–228PubMed
24.
Zurück zum Zitat Tamaki H, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Kasuga N, Yamamoto N (2015) Effect of electrical stimulation-induced muscle force and streptomycin treatment on muscle and trabecular bone mass in early-stage disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 15:270–278PubMed Tamaki H, Yotani K, Ogita F, Sugawara K, Kirimoto H, Onishi H, Kasuga N, Yamamoto N (2015) Effect of electrical stimulation-induced muscle force and streptomycin treatment on muscle and trabecular bone mass in early-stage disuse musculoskeletal atrophy. J Musculoskelet Neuronal Interact 15:270–278PubMed
25.
Zurück zum Zitat Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229CrossRefPubMed Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229CrossRefPubMed
26.
Zurück zum Zitat Qin YX, Lam H, Ferreri S, Rubin C (2010) Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact 10:12–24PubMedPubMedCentral Qin YX, Lam H, Ferreri S, Rubin C (2010) Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact 10:12–24PubMedPubMedCentral
27.
Zurück zum Zitat Sun X, Liang J, Wang C, Cao S, Hu Y, Xu X (2015) Transient effect of 17 beta-estradiol on osteoporosis in ovariectomized rats accompanied with unilateral disuse in the early phase. Int J Med Sci 12:423–431CrossRefPubMedPubMedCentral Sun X, Liang J, Wang C, Cao S, Hu Y, Xu X (2015) Transient effect of 17 beta-estradiol on osteoporosis in ovariectomized rats accompanied with unilateral disuse in the early phase. Int J Med Sci 12:423–431CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026CrossRefPubMed Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T (2001) Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 16:2017–2026CrossRefPubMed
29.
Zurück zum Zitat Ling Y, Rios HF, Myers ER, Lu Y, Feng JQ, Boskey AL (2005) DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 20:2169–2177CrossRefPubMedPubMedCentral Ling Y, Rios HF, Myers ER, Lu Y, Feng JQ, Boskey AL (2005) DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 20:2169–2177CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, Pavlin D (2003) Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res 18:807–817CrossRefPubMed Gluhak-Heinrich J, Ye L, Bonewald LF, Feng JQ, MacDougall M, Harris SE, Pavlin D (2003) Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo. J Bone Miner Res 18:807–817CrossRefPubMed
31.
Zurück zum Zitat Ferretti JL, Cointry GR, Capozza RF, Capiglioni R, Chiappe MA (2001) Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskelet Neuronal Interact 1:263–274PubMed Ferretti JL, Cointry GR, Capozza RF, Capiglioni R, Chiappe MA (2001) Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskelet Neuronal Interact 1:263–274PubMed
32.
Zurück zum Zitat Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244CrossRefPubMed Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1997) Relationship of spinal fracture to bone density, textural, and anthropometric parameters. Calcif Tissue Int 60:240–244CrossRefPubMed
33.
Zurück zum Zitat Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:417–423CrossRefPubMed Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:417–423CrossRefPubMed
34.
Zurück zum Zitat Umemura Y, Nagasawa S, Honda A, Singh R (2008) High-impact exercise frequency per week or day for osteogenic response in rats. J Bone Miner Metab 26:456–460CrossRefPubMed Umemura Y, Nagasawa S, Honda A, Singh R (2008) High-impact exercise frequency per week or day for osteogenic response in rats. J Bone Miner Metab 26:456–460CrossRefPubMed
35.
Zurück zum Zitat Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95CrossRefPubMed Wachter NJ, Krischak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P (2002) Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone 31:90–95CrossRefPubMed
36.
Zurück zum Zitat Takekura H, Tamaki H, Nishizawa T, Kasuga N (2003) Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres. J Muscle Res Cell Motil 24:439–451CrossRefPubMed Takekura H, Tamaki H, Nishizawa T, Kasuga N (2003) Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres. J Muscle Res Cell Motil 24:439–451CrossRefPubMed
37.
Zurück zum Zitat Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMed Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486CrossRefPubMed
38.
Zurück zum Zitat Iwamoto J, Takeda T, Katsumata T, Tanaka T, Ichimura S, Toyama Y (2002) Effect of etidronate on bone in orchidectomized and sciatic neurectomized adult rats. Bone 30:360–367CrossRefPubMed Iwamoto J, Takeda T, Katsumata T, Tanaka T, Ichimura S, Toyama Y (2002) Effect of etidronate on bone in orchidectomized and sciatic neurectomized adult rats. Bone 30:360–367CrossRefPubMed
39.
Zurück zum Zitat Brouwers JE, van Rietbergen B, Huiskes R, Ito K (2009) Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int 20:1823–1835CrossRefPubMedPubMedCentral Brouwers JE, van Rietbergen B, Huiskes R, Ito K (2009) Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int 20:1823–1835CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT (2013) The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech 46:2611–2618CrossRefPubMed Hsu JT, Wang SP, Huang HL, Chen YJ, Wu J, Tsai MT (2013) The assessment of trabecular bone parameters and cortical bone strength: a comparison of micro-CT and dental cone-beam CT. J Biomech 46:2611–2618CrossRefPubMed
41.
Zurück zum Zitat Rios HF, Ye L, Dusevich V, Eick D, Bonewald LF, Feng JQ (2005) DMP1 is essential for osteocyte formation and function. J Musculoskelet Neuronal Interact 5:325–327PubMed Rios HF, Ye L, Dusevich V, Eick D, Bonewald LF, Feng JQ (2005) DMP1 is essential for osteocyte formation and function. J Musculoskelet Neuronal Interact 5:325–327PubMed
42.
Zurück zum Zitat Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z, Li A, Chang W, Bikle DD (2015) Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J Bone Miner Res 30:1572–1584CrossRefPubMed Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, Cheng Z, Li A, Chang W, Bikle DD (2015) Osteoblast-specific loss of IGF1R signaling results in impaired endochondral bone formation during fracture healing. J Bone Miner Res 30:1572–1584CrossRefPubMed
43.
Zurück zum Zitat Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31CrossRefPubMed Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31CrossRefPubMed
44.
Zurück zum Zitat Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68CrossRefPubMed Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68CrossRefPubMed
45.
Zurück zum Zitat Iwasaki Y, Kazama JJ, Yamato H, Matsugaki A, Nakano T, Fukagawa M (2015) Altered material properties are responsible for bone fragility in rats with chronic kidney injury. Bone 81:247–254CrossRefPubMed Iwasaki Y, Kazama JJ, Yamato H, Matsugaki A, Nakano T, Fukagawa M (2015) Altered material properties are responsible for bone fragility in rats with chronic kidney injury. Bone 81:247–254CrossRefPubMed
46.
Zurück zum Zitat Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18CrossRefPubMed Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14(Suppl 3):S13–S18CrossRefPubMed
47.
Zurück zum Zitat Gajjeraman S, Narayanan K, Hao J, Qin C, George A (2007) Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 282:1193–1204CrossRefPubMed Gajjeraman S, Narayanan K, Hao J, Qin C, George A (2007) Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem 282:1193–1204CrossRefPubMed
48.
Zurück zum Zitat Turner CH (2007) Dentin matrix protein 1 (DMP1). J Musculoskelet Neuronal Interact 7:306–307PubMed Turner CH (2007) Dentin matrix protein 1 (DMP1). J Musculoskelet Neuronal Interact 7:306–307PubMed
49.
Zurück zum Zitat Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280:20680–20690CrossRefPubMed Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE (2005) Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280:20680–20690CrossRefPubMed
50.
Zurück zum Zitat Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809CrossRefPubMed Parfitt AM (2002) Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone 30:807–809CrossRefPubMed
51.
Zurück zum Zitat Favus MJ, American Society for Bone and Mineral Research. (1999) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams & Wilkins, Philadelphia Favus MJ, American Society for Bone and Mineral Research. (1999) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams & Wilkins, Philadelphia
52.
Zurück zum Zitat Goodyear SR, Gibson IR, Skakle JM, Wells RP, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907CrossRefPubMed Goodyear SR, Gibson IR, Skakle JM, Wells RP, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907CrossRefPubMed
53.
Zurück zum Zitat Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793CrossRefPubMedPubMedCentral Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10:56–63PubMedPubMedCentral Elkasrawy MN, Hamrick MW (2010) Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 10:56–63PubMedPubMedCentral
55.
Zurück zum Zitat Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781CrossRefPubMedPubMedCentral Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Liang H, Pun S, Wronski TJ (1999) Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 140:5780–5788 Liang H, Pun S, Wronski TJ (1999) Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology 140:5780–5788
57.
Zurück zum Zitat Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10:1544–1549CrossRefPubMed Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10:1544–1549CrossRefPubMed
Metadaten
Titel
Electrical Stimulation of Denervated Rat Skeletal Muscle Ameliorates Bone Fragility and Muscle Loss in Early-Stage Disuse Musculoskeletal Atrophy
verfasst von
Hiroyuki Tamaki
Kengo Yotani
Futoshi Ogita
Keishi Hayao
Kouki Nakagawa
Kazuhiro Sugawara
Hikari Kirimoto
Hideaki Onishi
Norikatsu Kasuga
Noriaki Yamamoto
Publikationsdatum
17.02.2017
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 4/2017
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-017-0250-y

Weitere Artikel der Ausgabe 4/2017

Calcified Tissue International 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.