Skip to main content
Erschienen in: Dysphagia 6/2022

26.02.2022 | Original Article

Electrophysiological Measures of Swallowing Functions: A Systematic Review

verfasst von: Ankita M. Bhutada, Tara M. Davis, Kendrea L. Garand

Erschienen in: Dysphagia | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this systematic review was to examine the application of event-related potentials (ERPs) to investigate neural processes of swallowing functions in adults with and without dysphagia. Computerized literature searches were performed from three search engines. Studies were screened using Covidence (Cochrane tool) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement standards (PRISMA-2009). A total of 759 studies were initially retrieved, of which 12 studies met inclusion criteria. Electrophysiological measures assessing swallowing functions were identified in two major ERP categories: (1) sensory potentials and (2) pre-motor potentials. Approximately 80% of eligible studies demonstrated strong methodological quality, although most employed a case series or case–control study design. Pharyngeal sensory-evoked potentials (PSEPs) were used to assess pharyngeal afferent cortical processing. The temporal sequence of the PSEP waveforms varied based on the sensory stimuli. PSEPs were delayed with localized scalp maps in patients with dysphagia as compared to healthy controls. The pre-motor ERPs assessed the cortical substrates involved in motor planning for swallowing, with the following major neural substrates identified: pre-motor cortex, supplementary motor area, and primary sensorimotor cortex. The pre-motor ERPs differed in amplitude for the swallow task (saliva versus liquid swallow), and the neural networks differed for cued versus non-cued task of swallowing suggesting differences in cognitive processes. This systematic review describes the application of electrophysiological measures to assess swallowing function and the promising application for furthering understanding of the neural substrates of swallowing. Standardization of protocols for use of electrophysiological measures to examine swallowing would allow for aggregation of study data to inform clinical practice for dysphagia rehabilitation.
Literatur
1.
Zurück zum Zitat Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36:2756–63.PubMedCrossRef Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36:2756–63.PubMedCrossRef
2.
Zurück zum Zitat Kalf JG, de Swart BJM, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18:311–5.PubMedCrossRef Kalf JG, de Swart BJM, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18:311–5.PubMedCrossRef
3.
Zurück zum Zitat Hutcheson KA, Nurgalieva Z, Zhao H, Gunn GB, Giordano SH, Bhayani MK, et al. Two-year prevalence of dysphagia and related outcomes in head and neck cancer survivors: an updated SEER-medicare analysis. Head Neck. 2019;41:479–87.PubMed Hutcheson KA, Nurgalieva Z, Zhao H, Gunn GB, Giordano SH, Bhayani MK, et al. Two-year prevalence of dysphagia and related outcomes in head and neck cancer survivors: an updated SEER-medicare analysis. Head Neck. 2019;41:479–87.PubMed
4.
Zurück zum Zitat Attrill S, White S, Murray J, Hammond S, Doeltgen S. Impact of oropharyngeal dysphagia on healthcare cost and length of stay in hospital: a systematic review. BMC Health Serv Res. 2018;18:594.PubMedPubMedCentralCrossRef Attrill S, White S, Murray J, Hammond S, Doeltgen S. Impact of oropharyngeal dysphagia on healthcare cost and length of stay in hospital: a systematic review. BMC Health Serv Res. 2018;18:594.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Allen J, Greene M, Sabido I, Stretton M, Miles A. Economic costs of dysphagia among hospitalized patients. Laryngoscope. 2020;130:974–9.PubMedCrossRef Allen J, Greene M, Sabido I, Stretton M, Miles A. Economic costs of dysphagia among hospitalized patients. Laryngoscope. 2020;130:974–9.PubMedCrossRef
6.
Zurück zum Zitat Patel DA, Krishnaswami S, Steger E, Conover E, Vaezi MF, Ciucci MR, et al. Economic and survival burden of dysphagia among inpatients in the United States. Dis Esophagus Off J Int Soc Dis Esophagus. 2018;31:1–7. Patel DA, Krishnaswami S, Steger E, Conover E, Vaezi MF, Ciucci MR, et al. Economic and survival burden of dysphagia among inpatients in the United States. Dis Esophagus Off J Int Soc Dis Esophagus. 2018;31:1–7.
7.
Zurück zum Zitat Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.PubMedCrossRef Sörös P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30:2426–39.PubMedCrossRef
8.
Zurück zum Zitat Malandraki GA, Johnson S, Robbins J. Functional magnetic resonance imaging of swallowing function: from neurophysiology to neuroplasticity. Head & Neck. 2011;33:S14-20.CrossRef Malandraki GA, Johnson S, Robbins J. Functional magnetic resonance imaging of swallowing function: from neurophysiology to neuroplasticity. Head & Neck. 2011;33:S14-20.CrossRef
9.
Zurück zum Zitat Loose R, Hamdy S, Enck P. Magnetoencephalographic response characteristics associated with tongue movement. Dysphagia. 2001;16:183–5.PubMedCrossRef Loose R, Hamdy S, Enck P. Magnetoencephalographic response characteristics associated with tongue movement. Dysphagia. 2001;16:183–5.PubMedCrossRef
10.
Zurück zum Zitat Michou E, Raginis-Zborowska A, Watanabe M, Lodhi T, Hamdy S. Repetitive transcranial magnetic stimulation: a novel approach for treating oropharyngeal dysphagia. Curr Gastroenterol Rep. 2016;18:10.PubMedPubMedCentralCrossRef Michou E, Raginis-Zborowska A, Watanabe M, Lodhi T, Hamdy S. Repetitive transcranial magnetic stimulation: a novel approach for treating oropharyngeal dysphagia. Curr Gastroenterol Rep. 2016;18:10.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.PubMedCrossRef Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.PubMedCrossRef
12.
Zurück zum Zitat Maezawa H. Cortical mechanisms of tongue sensorimotor functions in humans: a review of the magnetoencephalography approach. Front Hum Neurosci. 2017;11:134.PubMedPubMedCentralCrossRef Maezawa H. Cortical mechanisms of tongue sensorimotor functions in humans: a review of the magnetoencephalography approach. Front Hum Neurosci. 2017;11:134.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22:1447–55.PubMedCrossRef Furlong PL, Hobson AR, Aziz Q, Barnes GR, Singh KD, Hillebrand A, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22:1447–55.PubMedCrossRef
14.
Zurück zum Zitat Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42:285–95.PubMedCrossRef Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42:285–95.PubMedCrossRef
15.
Zurück zum Zitat Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.PubMedCrossRef Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85:938–50.PubMedCrossRef
16.
17.
Zurück zum Zitat Luck SJ. An introduction to the event-related potential technique. 2nd ed. Cambridge, MA, USA: A Bradford Book; 2014. Luck SJ. An introduction to the event-related potential technique. 2nd ed. Cambridge, MA, USA: A Bradford Book; 2014.
18.
Zurück zum Zitat Woodman GF. A brief introduction to the use of event-related potentials (ERPs) in studies of perception and attention. Atten Percept Psychophys. 2010;72(8):2031–46.PubMedCrossRef Woodman GF. A brief introduction to the use of event-related potentials (ERPs) in studies of perception and attention. Atten Percept Psychophys. 2010;72(8):2031–46.PubMedCrossRef
19.
Zurück zum Zitat Handy TC. Event-related potentials: A methods handbook. Cambridge: MIT Press; 2005. Handy TC. Event-related potentials: A methods handbook. Cambridge: MIT Press; 2005.
20.
21.
Zurück zum Zitat Fujiu M, Toleikis JR, Logemann JA, Larson CR. Glossopharyngeal evoked potentials in normal subjects following mechanical stimulation of the anterior faucial pillar. Electroencephalogr Clin Neurophysiol. 1994;92:183–95.PubMedCrossRef Fujiu M, Toleikis JR, Logemann JA, Larson CR. Glossopharyngeal evoked potentials in normal subjects following mechanical stimulation of the anterior faucial pillar. Electroencephalogr Clin Neurophysiol. 1994;92:183–95.PubMedCrossRef
22.
Zurück zum Zitat Huckabee M-L, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the bereitschaftspotential. Brain Topogr. 2003;16(1):3–17.PubMedCrossRef Huckabee M-L, Deecke L, Cannito MP, Gould HJ, Mayr W. Cortical control mechanisms in volitional swallowing: the bereitschaftspotential. Brain Topogr. 2003;16(1):3–17.PubMedCrossRef
23.
Zurück zum Zitat Satow T, Ikeda A, Yamamoto J, Begum T, Thuy DHD, Matsuhashi M, et al. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol-Gastrointest Liver Physiol. 2004;287:G459–70.PubMedCrossRef Satow T, Ikeda A, Yamamoto J, Begum T, Thuy DHD, Matsuhashi M, et al. Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: a movement-related cortical potential study. Am J Physiol-Gastrointest Liver Physiol. 2004;287:G459–70.PubMedCrossRef
24.
Zurück zum Zitat Hiraoka K. Movement-related cortical potentials associated with saliva and water bolus swallowing. Dysphagia. 2004;19(3):155–9.PubMedCrossRef Hiraoka K. Movement-related cortical potentials associated with saliva and water bolus swallowing. Dysphagia. 2004;19(3):155–9.PubMedCrossRef
25.
Zurück zum Zitat Nonaka T, Yoshida M, Yamaguchi T, Uchida A, Ohba H, Oka S, et al. Contingent negative variations associated with command swallowing in humans. Clin Neurophysiol. 2009;120:1845–51.PubMedCrossRef Nonaka T, Yoshida M, Yamaguchi T, Uchida A, Ohba H, Oka S, et al. Contingent negative variations associated with command swallowing in humans. Clin Neurophysiol. 2009;120:1845–51.PubMedCrossRef
26.
Zurück zum Zitat Wheeler-Hegland K, Pitts T, Davenport PW. Peak morphology and scalp topography of the pharyngeal sensory-evoked potential. Dysphagia. 2011;26:287–94.PubMedCrossRef Wheeler-Hegland K, Pitts T, Davenport PW. Peak morphology and scalp topography of the pharyngeal sensory-evoked potential. Dysphagia. 2011;26:287–94.PubMedCrossRef
27.
Zurück zum Zitat Wheeler-Hegland K, Pitts T, Davenport PW. Cortical gating of oropharyngeal sensory stimuli. Front Physiol. 2011;1:167.CrossRef Wheeler-Hegland K, Pitts T, Davenport PW. Cortical gating of oropharyngeal sensory stimuli. Front Physiol. 2011;1:167.CrossRef
28.
Zurück zum Zitat Pitts T, Hegland KW, Sapienza CM, Bolser DC, Davenport PW. Alterations in oropharyngeal sensory evoked potentials (PSEP) with Parkinson’s disease. Respir Physiol Neurobiol. 2016;229:11–6.PubMedPubMedCentralCrossRef Pitts T, Hegland KW, Sapienza CM, Bolser DC, Davenport PW. Alterations in oropharyngeal sensory evoked potentials (PSEP) with Parkinson’s disease. Respir Physiol Neurobiol. 2016;229:11–6.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Rofes L, Ortega O, Vilardell N, Mundet L, Clavé P. Spatiotemporal characteristics of the pharyngeal event-related potential in healthy subjects and older patients with oropharyngeal dysfunction. Neurogastroenterol Motil. 2017;29:e12916.CrossRef Rofes L, Ortega O, Vilardell N, Mundet L, Clavé P. Spatiotemporal characteristics of the pharyngeal event-related potential in healthy subjects and older patients with oropharyngeal dysfunction. Neurogastroenterol Motil. 2017;29:e12916.CrossRef
30.
Zurück zum Zitat Cabib C, Ortega O, Vilardell N, Mundet L, Clavé P, Rofes L. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs. Eur J Neurol. 2017;24:1355–62.PubMedCrossRef Cabib C, Ortega O, Vilardell N, Mundet L, Clavé P, Rofes L. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs. Eur J Neurol. 2017;24:1355–62.PubMedCrossRef
31.
Zurück zum Zitat Tomsen N, Ortega O, Rofes L, Arreola V, Martin A, Mundet L, et al. Acute and subacute effects of oropharyngeal sensory stimulation with TRPV1 agonists in older patients with oropharyngeal dysphagia: a biomechanical and neurophysiological randomized pilot study. Ther Adv Gastroenterol. 2019;12:1756284819842043.CrossRef Tomsen N, Ortega O, Rofes L, Arreola V, Martin A, Mundet L, et al. Acute and subacute effects of oropharyngeal sensory stimulation with TRPV1 agonists in older patients with oropharyngeal dysphagia: a biomechanical and neurophysiological randomized pilot study. Ther Adv Gastroenterol. 2019;12:1756284819842043.CrossRef
32.
Zurück zum Zitat Tomsen N, Alvarez-Berdugo D, Rofes L, Ortega O, Arreola V, Nascimento W, et al. A randomized clinical trial on the acute therapeutic effect of TRPA1 and TRPM8 agonists in patients with oropharyngeal dysphagia. Neurogastroenterol Motil. 2020;32:e13821.PubMedCrossRef Tomsen N, Alvarez-Berdugo D, Rofes L, Ortega O, Arreola V, Nascimento W, et al. A randomized clinical trial on the acute therapeutic effect of TRPA1 and TRPM8 agonists in patients with oropharyngeal dysphagia. Neurogastroenterol Motil. 2020;32:e13821.PubMedCrossRef
33.
Zurück zum Zitat Shibasaki H, Hallett M. What is the bereitschaftspotential? Clin Neurophysiol. 2006;117:2341–56.PubMedCrossRef Shibasaki H, Hallett M. What is the bereitschaftspotential? Clin Neurophysiol. 2006;117:2341–56.PubMedCrossRef
34.
Zurück zum Zitat Deecke L. Planning, preparation, execution, and imagery of volitional action. Cogn Brain Res. 1996;3:59–64.CrossRef Deecke L. Planning, preparation, execution, and imagery of volitional action. Cogn Brain Res. 1996;3:59–64.CrossRef
35.
Zurück zum Zitat Walter WG, Cooper R, Aldridge VJ, Mccallum WC, Winter AL. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature. 1964;203:380–4.PubMedCrossRef Walter WG, Cooper R, Aldridge VJ, Mccallum WC, Winter AL. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature. 1964;203:380–4.PubMedCrossRef
36.
Zurück zum Zitat Rektor I, Bareš M, Brázdil M, Kaňovský P, Rektorová I, Sochǔrková D, et al. Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord. 2005;20:562–8.PubMedCrossRef Rektor I, Bareš M, Brázdil M, Kaňovský P, Rektorová I, Sochǔrková D, et al. Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord. 2005;20:562–8.PubMedCrossRef
37.
Zurück zum Zitat Brunner JF, Olsen A, Aasen IE, Løhaugen GC, Håberg AK, Kropotov J. Neuropsychological parameters indexing executive processes are associated with independent components of ERPs. Neuropsychologia. 2015;66:144–56.PubMedCrossRef Brunner JF, Olsen A, Aasen IE, Løhaugen GC, Håberg AK, Kropotov J. Neuropsychological parameters indexing executive processes are associated with independent components of ERPs. Neuropsychologia. 2015;66:144–56.PubMedCrossRef
38.
Zurück zum Zitat Taylor BK, Gavin WJ, Davies PL. The test-retest reliability of the visually-evoked contingent negative variation (CNV) in children and adults. Dev Neuropsychol. 2016;41:162–75.PubMedPubMedCentralCrossRef Taylor BK, Gavin WJ, Davies PL. The test-retest reliability of the visually-evoked contingent negative variation (CNV) in children and adults. Dev Neuropsychol. 2016;41:162–75.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ British Medical Journal Publishing Group. 2021;372:n71. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ British Medical Journal Publishing Group. 2021;372:n71.
42.
Zurück zum Zitat Rofes L, Arreola V, López I, Martin A, Sebastián M, Ciurana A, et al. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction. Neurogastroenterol Motil. 2013;25:888-e701.PubMedCrossRef Rofes L, Arreola V, López I, Martin A, Sebastián M, Ciurana A, et al. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction. Neurogastroenterol Motil. 2013;25:888-e701.PubMedCrossRef
43.
Zurück zum Zitat Cabib C, Nascimento W, Rofes L, Arreola V, Tomsen N, Mundet L, et al. Neurophysiological and biomechanical evaluation of the mechanisms which impair safety of swallow in chronic post-stroke patients. Transl Stroke Res. 2020;11:16–28.PubMedCrossRef Cabib C, Nascimento W, Rofes L, Arreola V, Tomsen N, Mundet L, et al. Neurophysiological and biomechanical evaluation of the mechanisms which impair safety of swallow in chronic post-stroke patients. Transl Stroke Res. 2020;11:16–28.PubMedCrossRef
44.
Zurück zum Zitat Magara J, Watanabe M, Tsujimura T, Hamdy S, Inoue M. Lasting modulation of human cortical swallowing motor pathways following thermal tongue stimulation. Neurogastroenterol Motil. 2021;33:3938.CrossRef Magara J, Watanabe M, Tsujimura T, Hamdy S, Inoue M. Lasting modulation of human cortical swallowing motor pathways following thermal tongue stimulation. Neurogastroenterol Motil. 2021;33:3938.CrossRef
45.
Zurück zum Zitat Hamdy S. Role of cerebral cortex in the control of swallowing. GI Motil Online [Internet]. 2006. Hamdy S. Role of cerebral cortex in the control of swallowing. GI Motil Online [Internet]. 2006.
46.
Zurück zum Zitat Wilmskoetter J, Daniels SK, Miller AJ. Cortical and subcortical control of swallowing—can we use information from lesion locations to improve diagnosis and treatment for patients with stroke? Am J Speech Lang Pathol. 2020;29:1030–43.PubMedPubMedCentralCrossRef Wilmskoetter J, Daniels SK, Miller AJ. Cortical and subcortical control of swallowing—can we use information from lesion locations to improve diagnosis and treatment for patients with stroke? Am J Speech Lang Pathol. 2020;29:1030–43.PubMedPubMedCentralCrossRef
47.
48.
Zurück zum Zitat Woodman GF. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys. 2010;72:2031–46.PubMedCrossRef Woodman GF. A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys. 2010;72:2031–46.PubMedCrossRef
49.
Zurück zum Zitat von Leupoldt A, Keil A, Chan P-YS, Bradley MM, Lang PJ, Davenport PW. Cortical sources of the respiratory-related evoked potential. Respir Physiol Neurobiol. 2010;170:198–201.CrossRef von Leupoldt A, Keil A, Chan P-YS, Bradley MM, Lang PJ, Davenport PW. Cortical sources of the respiratory-related evoked potential. Respir Physiol Neurobiol. 2010;170:198–201.CrossRef
50.
Zurück zum Zitat Chan P-YS, Davenport PW. Respiratory related evoked potential measures of cerebral cortical respiratory information processing. Biol Psychol. 2010;84:4–12.PubMedCrossRef Chan P-YS, Davenport PW. Respiratory related evoked potential measures of cerebral cortical respiratory information processing. Biol Psychol. 2010;84:4–12.PubMedCrossRef
51.
Zurück zum Zitat von Leupoldt A, Keil A, Davenport PW. Respiratory-related evoked potential measurements using high-density electroencephalography. Clin Neurophysiol. 2011;122:815–8.CrossRef von Leupoldt A, Keil A, Davenport PW. Respiratory-related evoked potential measurements using high-density electroencephalography. Clin Neurophysiol. 2011;122:815–8.CrossRef
52.
Zurück zum Zitat Cabib C, Ortega O, Kumru H, Palomeras E, Vilardell N, Alvarez-Berdugo D, et al. Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function. Ann N Y Acad Sci. 2016;1380:121–38.PubMedCrossRef Cabib C, Ortega O, Kumru H, Palomeras E, Vilardell N, Alvarez-Berdugo D, et al. Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function. Ann N Y Acad Sci. 2016;1380:121–38.PubMedCrossRef
53.
Zurück zum Zitat Cuellar M, Harkrider AW, Jenson D, Thornton D, Bowers A, Saltuklaroglu T. Time–frequency analysis of the EEG mu rhythm as a measure of sensorimotor integration in the later stages of swallowing. Clin Neurophysiol. 2016;127:2625–35.PubMedCrossRef Cuellar M, Harkrider AW, Jenson D, Thornton D, Bowers A, Saltuklaroglu T. Time–frequency analysis of the EEG mu rhythm as a measure of sensorimotor integration in the later stages of swallowing. Clin Neurophysiol. 2016;127:2625–35.PubMedCrossRef
54.
Zurück zum Zitat Jestrović I, Coyle JL, Sejdić E. Characterizing functional connectivity patterns during saliva swallows in different head positions. J NeuroEng Rehabil. 2015;12:61.PubMedPubMedCentralCrossRef Jestrović I, Coyle JL, Sejdić E. Characterizing functional connectivity patterns during saliva swallows in different head positions. J NeuroEng Rehabil. 2015;12:61.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Yang H, Guan C, Chua KSG, Chok SS, Wang CC, Soon PK, et al. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection. J Neural Eng. 2014;11:035016.PubMedCrossRef Yang H, Guan C, Chua KSG, Chok SS, Wang CC, Soon PK, et al. Detection of motor imagery of swallow EEG signals based on the dual-tree complex wavelet transform and adaptive model selection. J Neural Eng. 2014;11:035016.PubMedCrossRef
56.
Zurück zum Zitat Jestrović I, Coyle JL, Sejdić E. Differences in brain networks during consecutive swallows detected using an optimized vertex-frequency algorithm. Neuroscience. 2017;344:113–23.PubMedCrossRef Jestrović I, Coyle JL, Sejdić E. Differences in brain networks during consecutive swallows detected using an optimized vertex-frequency algorithm. Neuroscience. 2017;344:113–23.PubMedCrossRef
57.
Zurück zum Zitat Jestrović I, Coyle JL, Perera S, Sejdić E. Influence of attention and bolus volume on brain organization during swallowing. Brain Struct Funct. 2018;223:955–64.PubMedCrossRef Jestrović I, Coyle JL, Perera S, Sejdić E. Influence of attention and bolus volume on brain organization during swallowing. Brain Struct Funct. 2018;223:955–64.PubMedCrossRef
Metadaten
Titel
Electrophysiological Measures of Swallowing Functions: A Systematic Review
verfasst von
Ankita M. Bhutada
Tara M. Davis
Kendrea L. Garand
Publikationsdatum
26.02.2022
Verlag
Springer US
Erschienen in
Dysphagia / Ausgabe 6/2022
Print ISSN: 0179-051X
Elektronische ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-022-10426-4

Weitere Artikel der Ausgabe 6/2022

Dysphagia 6/2022 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.