Skip to main content
Erschienen in: Inflammation 1/2020

26.11.2019 | Original Article

Ellagic Acid Ameliorates Renal Ischemic-Reperfusion Injury Through NOX4/JAK/STAT Signaling Pathway

verfasst von: Qiong Liu, Xiaobing Liang, Mintong Liang, Rongbin Qin, Feixing Qin, Xuelan Wang

Erschienen in: Inflammation | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Ellagic acid (EA), a natural polyphenolic compound, has been proved to possess multiple biological activities including alleviating ischemic-reperfusion (I/R) injury. The aim of this current study was to investigate whether EA alleviates I/R injury via regulating inflammatory signaling pathway. Rats were subjected to ischemic-reperfusion (I/R) injury and given orally with different doses of EA before surgery. H&E staining, ELISA assay, and biochemical index analysis were performed to evaluate renal injury and inflammatory factors. Oxidative stress level was detected by DCFH-DA staining and corresponding assay kits. In addition, TUNEL assay and flow cytometric assay were applied for exploring the apoptosis of tissue and cells, respectively. Western blot assay was used to assess protein expressions in tissue and cells. The results showed that EA attenuated the renal I/R injury and reserved renal cell function in vivo. The levels of TNF-a, IL-1β, IL-6, and MCP-1, oxidative stress level, and apoptosis were suppressed in EA-treated rats. Mechanistic studies showed that EA suppressed the phosphorylation of JAK1, JAK2, and STAT1 and reduced the NOX4 level. EA reduced apoptosis, hypoxia-induced inflammatory response, and ROS levels. Moreover, overexpression of NOX4 reversed the protective function with NOX4 inhibition, indicating that the effect of EA against renal IRI or cell hypoxia/reoxygenation might mainly depend on NOX4. The results suggest that EA exerts the renoprotective effect via suppressing NOX4/JAK/STAT signaling pathway, which may be a novel potential therapy for the treatment of acute kidney injury in clinic.
Literatur
1.
Zurück zum Zitat Levey, A.S., and M.T. James. 2017. Acute kidney injury. Annals of Internal Medicine 167: Itc66–itc80.CrossRef Levey, A.S., and M.T. James. 2017. Acute kidney injury. Annals of Internal Medicine 167: Itc66–itc80.CrossRef
2.
Zurück zum Zitat Yoshida, T., H. Kumagai, T. Kohsaka, and N. Ikegaya. 2013. Relaxin protects against renal ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology 305: F1169–F1176.CrossRef Yoshida, T., H. Kumagai, T. Kohsaka, and N. Ikegaya. 2013. Relaxin protects against renal ischemia-reperfusion injury. American Journal of Physiology. Renal Physiology 305: F1169–F1176.CrossRef
3.
Zurück zum Zitat Friedewald, J.J., and H. Rabb. 2004. Inflammatory cells in ischemic acute renal failure. Kidney International 66: 486–491.CrossRef Friedewald, J.J., and H. Rabb. 2004. Inflammatory cells in ischemic acute renal failure. Kidney International 66: 486–491.CrossRef
4.
Zurück zum Zitat Goncalves, G.M., A. Castoldi, T.T. Braga, and N.O. Camara. 2011. New roles for innate immune response in acute and chronic kidney injuries. Scandinavian Journal of Immunology 73: 428–435.CrossRef Goncalves, G.M., A. Castoldi, T.T. Braga, and N.O. Camara. 2011. New roles for innate immune response in acute and chronic kidney injuries. Scandinavian Journal of Immunology 73: 428–435.CrossRef
5.
Zurück zum Zitat Gluba, A., M. Banach, S. Hannam, D.P. Mikhailidis, A. Sakowicz, and J. Rysz. 2010. The role of Toll-like receptors in renal diseases. Nature Reviews. Nephrology 6: 224–235.CrossRef Gluba, A., M. Banach, S. Hannam, D.P. Mikhailidis, A. Sakowicz, and J. Rysz. 2010. The role of Toll-like receptors in renal diseases. Nature Reviews. Nephrology 6: 224–235.CrossRef
6.
Zurück zum Zitat Yang, Q., F.R. Wu, J.N. Wang, L. Gao, L. Jiang, H.D. Li, Q. Ma, X.Q. Liu, B. Wei, L. Zhou, J. Wen, T.T. Ma, J. Li, and X.M. Meng. 2018. Nox4 in renal diseases: An update. Free Radical Biology & Medicine 124: 466–472.CrossRef Yang, Q., F.R. Wu, J.N. Wang, L. Gao, L. Jiang, H.D. Li, Q. Ma, X.Q. Liu, B. Wei, L. Zhou, J. Wen, T.T. Ma, J. Li, and X.M. Meng. 2018. Nox4 in renal diseases: An update. Free Radical Biology & Medicine 124: 466–472.CrossRef
7.
Zurück zum Zitat Ihle, J.N. 1995. Cytokine receptor signalling. Nature 377: 591–594.CrossRef Ihle, J.N. 1995. Cytokine receptor signalling. Nature 377: 591–594.CrossRef
8.
Zurück zum Zitat Lin, H.W., J.W. Thompson, K.C. Morris, and M.A. Perez-Pinzon. 2011. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxidants & Redox Signaling 14: 1853–1861.CrossRef Lin, H.W., J.W. Thompson, K.C. Morris, and M.A. Perez-Pinzon. 2011. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxidants & Redox Signaling 14: 1853–1861.CrossRef
9.
Zurück zum Zitat Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413–421.CrossRef Hanada, T., and A. Yoshimura. 2002. Regulation of cytokine signaling and inflammation. Cytokine & Growth Factor Reviews 13: 413–421.CrossRef
10.
Zurück zum Zitat Kim, S.Y., K.A. Moon, H.Y. Jo, S. Jeong, S.H. Seon, E. Jung, Y.S. Cho, E. Chun, and K.Y. Lee. 2012. Anti-inflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation. Immunology and Cell Biology 90: 441–448.CrossRef Kim, S.Y., K.A. Moon, H.Y. Jo, S. Jeong, S.H. Seon, E. Jung, Y.S. Cho, E. Chun, and K.Y. Lee. 2012. Anti-inflammatory effects of apocynin, an inhibitor of NADPH oxidase, in airway inflammation. Immunology and Cell Biology 90: 441–448.CrossRef
11.
Zurück zum Zitat Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.CrossRef Day, C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. The British Journal of Nutrition 80: 5–6.CrossRef
12.
Zurück zum Zitat Zhou, B.H., Z.P. Qiu, H.L. Yi, D.S. Zhou, J. Wang, and Y. Wu. 2016. Research progress of ellagitannin intestinal metabolite urolithins. Zhongguo Zhong Yao Za Zhi 41: 2968–2974.PubMed Zhou, B.H., Z.P. Qiu, H.L. Yi, D.S. Zhou, J. Wang, and Y. Wu. 2016. Research progress of ellagitannin intestinal metabolite urolithins. Zhongguo Zhong Yao Za Zhi 41: 2968–2974.PubMed
13.
Zurück zum Zitat Rogerio, A.P., C. Fontanari, M.C. Melo, S.R. Ambrosio, G.E. de Souza, P.S. Pereira, S.C. Franca, F.B. da Costa, D.A. Albuquerque, and L.H. Faccioli. 2006. Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid. The Journal of Pharmacy and Pharmacology 58: 1265–1273.CrossRef Rogerio, A.P., C. Fontanari, M.C. Melo, S.R. Ambrosio, G.E. de Souza, P.S. Pereira, S.C. Franca, F.B. da Costa, D.A. Albuquerque, and L.H. Faccioli. 2006. Anti-inflammatory, analgesic and anti-oedematous effects of Lafoensia pacari extract and ellagic acid. The Journal of Pharmacy and Pharmacology 58: 1265–1273.CrossRef
14.
Zurück zum Zitat Jordao, J.B.R., H.K.P. Porto, F.M. Lopes, A.C. Batista, and M.L. Rocha. 2017. Protective effects of ellagic acid on cardiovascular injuries caused by hypertension in rats. Planta Medica 83: 830–836.CrossRef Jordao, J.B.R., H.K.P. Porto, F.M. Lopes, A.C. Batista, and M.L. Rocha. 2017. Protective effects of ellagic acid on cardiovascular injuries caused by hypertension in rats. Planta Medica 83: 830–836.CrossRef
15.
Zurück zum Zitat Ahmed, T., W.N. Setzer, S.F. Nabavi, I.E. Orhan, N. Braidy, E. Sobarzo-Sanchez, and S.M. Nabavi. 2016. Insights into effects of ellagic acid on the nervous system: a mini review. Current Pharmaceutical Design 22: 1350–1360.CrossRef Ahmed, T., W.N. Setzer, S.F. Nabavi, I.E. Orhan, N. Braidy, E. Sobarzo-Sanchez, and S.M. Nabavi. 2016. Insights into effects of ellagic acid on the nervous system: a mini review. Current Pharmaceutical Design 22: 1350–1360.CrossRef
16.
Zurück zum Zitat Boyuk, A., A. Onder, M. Kapan, M. Gumus, U. Fiotarat, M.K. Basaraliota, and H. Alp. 2011. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion. Pharmacognosy Magazine 7: 224–228.CrossRef Boyuk, A., A. Onder, M. Kapan, M. Gumus, U. Fiotarat, M.K. Basaraliota, and H. Alp. 2011. Ellagic acid ameliorates lung injury after intestinal ischemia-reperfusion. Pharmacognosy Magazine 7: 224–228.CrossRef
17.
Zurück zum Zitat Iino, T., K. Tashima, M. Umeda, Y. Ogawa, M. Takeeda, K. Takata, and K. Takeuchi. 2002. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sciences 70: 1139–1150.CrossRef Iino, T., K. Tashima, M. Umeda, Y. Ogawa, M. Takeeda, K. Takata, and K. Takeuchi. 2002. Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. Life Sciences 70: 1139–1150.CrossRef
18.
Zurück zum Zitat Sayar, I., S. Bicer, C. Gursul, M. Gurbuzel, K. Peker, and A. Isik. 2016. Protective effects of ellagic acid and ozone on rat ovaries with an ischemia/reperfusion injury. The Journal of Obstetrics and Gynaecology Research 42: 52–58.CrossRef Sayar, I., S. Bicer, C. Gursul, M. Gurbuzel, K. Peker, and A. Isik. 2016. Protective effects of ellagic acid and ozone on rat ovaries with an ischemia/reperfusion injury. The Journal of Obstetrics and Gynaecology Research 42: 52–58.CrossRef
19.
Zurück zum Zitat Bozkurt, Yasar, Ugur Firat, Murat Atar, Ahmet Ali Sancaktutar, Necmettin Pembegul, Haluk Soylemez, Hatice Yuksel, Harun Alp, Mehmet Nuri Bodakci, Namik Kemal Hatipoglu, and Sadik Buyukbas. 2012. The protective effect of ellagic acid against renal ischemia-reperfusion injury in male rats. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 18: 823–828. Bozkurt, Yasar, Ugur Firat, Murat Atar, Ahmet Ali Sancaktutar, Necmettin Pembegul, Haluk Soylemez, Hatice Yuksel, Harun Alp, Mehmet Nuri Bodakci, Namik Kemal Hatipoglu, and Sadik Buyukbas. 2012. The protective effect of ellagic acid against renal ischemia-reperfusion injury in male rats. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 18: 823–828.
20.
Zurück zum Zitat Kumagai, Y., J. Sobajima, M. Higashi, T. Ishiguro, M. Fukuchi, K. Ishibashi, E. Mochiki, K. Yakabi, T. Kawano, J. Tamaru, and H. Ishida. 2015. Coexpression of COX-2 and iNOS in angiogenesis of superficial esophageal squamous cell carcinoma. International Surgery 100: 733–743.CrossRef Kumagai, Y., J. Sobajima, M. Higashi, T. Ishiguro, M. Fukuchi, K. Ishibashi, E. Mochiki, K. Yakabi, T. Kawano, J. Tamaru, and H. Ishida. 2015. Coexpression of COX-2 and iNOS in angiogenesis of superficial esophageal squamous cell carcinoma. International Surgery 100: 733–743.CrossRef
21.
Zurück zum Zitat Suschek, C.V., O. Schnorr, and V. Kolb-Bachofen. 2004. The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all? Current Molecular Medicine 4: 763–775.CrossRef Suschek, C.V., O. Schnorr, and V. Kolb-Bachofen. 2004. The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all? Current Molecular Medicine 4: 763–775.CrossRef
22.
Zurück zum Zitat Zhang, X., J. Cao, and L. Zhong. 2009. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn-Schmiedeberg's Archives of Pharmacology 379: 581–586.CrossRef Zhang, X., J. Cao, and L. Zhong. 2009. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn-Schmiedeberg's Archives of Pharmacology 379: 581–586.CrossRef
23.
Zurück zum Zitat Cho, H., C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee, and B.K. Kim. 2004. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research 49: 37–43.CrossRef Cho, H., C.W. Yun, W.K. Park, J.Y. Kong, K.S. Kim, Y. Park, S. Lee, and B.K. Kim. 2004. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research 49: 37–43.CrossRef
24.
Zurück zum Zitat Qi, M., L. Zheng, Y. Qi, X. Han, Y. Xu, L. Xu, L. Yin, C. Wang, Y. Zhao, H. Sun, K. Liu, and J. Peng. 2015. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacological Research 100: 341–352.CrossRef Qi, M., L. Zheng, Y. Qi, X. Han, Y. Xu, L. Xu, L. Yin, C. Wang, Y. Zhao, H. Sun, K. Liu, and J. Peng. 2015. Dioscin attenuates renal ischemia/reperfusion injury by inhibiting the TLR4/MyD88 signaling pathway via up-regulation of HSP70. Pharmacological Research 100: 341–352.CrossRef
25.
Zurück zum Zitat Jiang, G., X. Liu, M. Wang, H. Chen, Z. Chen, and T. Qiu. 2015. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cirúrgica Brasileira 30: 422–429.CrossRef Jiang, G., X. Liu, M. Wang, H. Chen, Z. Chen, and T. Qiu. 2015. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cirúrgica Brasileira 30: 422–429.CrossRef
26.
Zurück zum Zitat O'Shea, J.J., D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, and A. Laurence. 2015. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.CrossRef O'Shea, J.J., D.M. Schwartz, A.V. Villarino, M. Gadina, I.B. McInnes, and A. Laurence. 2015. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.CrossRef
27.
Zurück zum Zitat Villarino, A.V., Y. Kanno, and J.J. O'Shea. 2017. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology 18: 374–384.CrossRef Villarino, A.V., Y. Kanno, and J.J. O'Shea. 2017. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nature Immunology 18: 374–384.CrossRef
28.
Zurück zum Zitat Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRef Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRef
29.
Zurück zum Zitat Dodington, D.W., H.R. Desai, and M. Woo. 2018. JAK/STAT - Emerging players in metabolism. Trends in Endocrinology and Metabolism 29: 55–65.CrossRef Dodington, D.W., H.R. Desai, and M. Woo. 2018. JAK/STAT - Emerging players in metabolism. Trends in Endocrinology and Metabolism 29: 55–65.CrossRef
30.
Zurück zum Zitat Heumuller, S., S. Wind, E. Barbosa-Sicard, H.H. Schmidt, R. Busse, K. Schroder, and R.P. Brandes. 2008. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51: 211–217.CrossRef Heumuller, S., S. Wind, E. Barbosa-Sicard, H.H. Schmidt, R. Busse, K. Schroder, and R.P. Brandes. 2008. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51: 211–217.CrossRef
31.
Zurück zum Zitat Byfield, G., S. Budd, and M.E. Hartnett. 2009. The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Investigative Ophthalmology & Visual Science 50: 3360–3365.CrossRef Byfield, G., S. Budd, and M.E. Hartnett. 2009. The role of supplemental oxygen and JAK/STAT signaling in intravitreous neovascularization in a ROP rat model. Investigative Ophthalmology & Visual Science 50: 3360–3365.CrossRef
32.
Zurück zum Zitat Banes, A.K., S.M. Shaw, A. Tawfik, B.P. Patel, S. Ogbi, D. Fulton, and M.B. Marrero. 2005. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. American Journal of Physiology. Cell Physiology 288: C805–C812.CrossRef Banes, A.K., S.M. Shaw, A. Tawfik, B.P. Patel, S. Ogbi, D. Fulton, and M.B. Marrero. 2005. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. American Journal of Physiology. Cell Physiology 288: C805–C812.CrossRef
33.
Zurück zum Zitat Gao, X., J. Sun, C. Huang, X. Hu, N. Jiang, and C. Lu. 2017. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. American Journal of Translational Research 9: 4440–4449.PubMedPubMedCentral Gao, X., J. Sun, C. Huang, X. Hu, N. Jiang, and C. Lu. 2017. RNAi-mediated silencing of NOX4 inhibited the invasion of gastric cancer cells through JAK2/STAT3 signaling. American Journal of Translational Research 9: 4440–4449.PubMedPubMedCentral
34.
Zurück zum Zitat Rozentsvit, A., K. Vinokur, S. Samuel, Y. Li, A.M. Gerdes, and M.A. Carrillo-Sepulveda. 2017. Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cellular Physiology and Biochemistry 44: 1174–1187.CrossRef Rozentsvit, A., K. Vinokur, S. Samuel, Y. Li, A.M. Gerdes, and M.A. Carrillo-Sepulveda. 2017. Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cellular Physiology and Biochemistry 44: 1174–1187.CrossRef
Metadaten
Titel
Ellagic Acid Ameliorates Renal Ischemic-Reperfusion Injury Through NOX4/JAK/STAT Signaling Pathway
verfasst von
Qiong Liu
Xiaobing Liang
Mintong Liang
Rongbin Qin
Feixing Qin
Xuelan Wang
Publikationsdatum
26.11.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01120-z

Weitere Artikel der Ausgabe 1/2020

Inflammation 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.