Skip to main content
Erschienen in:

19.08.2019 | Special Section: Pancreatitis

Emerging imaging techniques for acute pancreatitis

verfasst von: Saeed Ghandili, Shahab Shayesteh, Daniel F. Fouladi, Alejandra Blanco, Linda C. Chu

Erschienen in: Abdominal Radiology | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Acute pancreatitis (AP) is caused by acute inflammation of the pancreas and adjacent tissue and is a common source of abdominal pain. The current CT and MRI evaluation of AP is mostly based on morphologic features. Recent advances in image acquisition and analysis offer the opportunity to go beyond morphologic features. Advanced MR techniques such as diffusion-weighted imaging, as well as T1 and T2 mapping, can potentially quantify signal changes reflective of underlying tissue abnormalities. Advanced analytic techniques such as radiomics and artificial neural networks (ANNs) offer the promise of uncovering imaging biomarkers that can provide additional classification and prognostic information. The purpose of this article is to review recent advances in imaging acquisition and analytic techniques in the evaluation of AP.
Literatur
3.
Zurück zum Zitat de Freitas Tertulino F, Schraibman V, Ardengh JC, do Espírito-Santo DC, Ajzen SA, Torrez FR, Lobo EJ, Szejnfeld J, Goldman SM (2015) Diffusion-weighted magnetic resonance imaging indicates the severity of acute pancreatitis. Abdominal imaging 40 (2):265-271. https://doi.org/10.1007/s00261-014-0205-y de Freitas Tertulino F, Schraibman V, Ardengh JC, do Espírito-Santo DC, Ajzen SA, Torrez FR, Lobo EJ, Szejnfeld J, Goldman SM (2015) Diffusion-weighted magnetic resonance imaging indicates the severity of acute pancreatitis. Abdominal imaging 40 (2):265-271. https://​doi.​org/​10.​1007/​s00261-014-0205-y
4.
6.
Zurück zum Zitat Shinya S, Sasaki T, Nakagawa Y, Guiquing Z, Yamamoto F, Yamashita Y (2009) The efficacy of diffusion-weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology 56 (94-95):1407-1410PubMed Shinya S, Sasaki T, Nakagawa Y, Guiquing Z, Yamamoto F, Yamashita Y (2009) The efficacy of diffusion-weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology 56 (94-95):1407-1410PubMed
14.
16.
Zurück zum Zitat Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y (2018) Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26008 Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y (2018) Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. Journal of magnetic resonance imaging: JMRI. https://​doi.​org/​10.​1002/​jmri.​26008
18.
Zurück zum Zitat Vietti Violi N, Hilbert T, Bastiaansen JAM, Knebel JF, Ledoux JB, Stemmer A, Meuli R, Kober T, Schmidt S (2019) Patient respiratory-triggered quantitative T2 mapping in the pancreas. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26612 Vietti Violi N, Hilbert T, Bastiaansen JAM, Knebel JF, Ledoux JB, Stemmer A, Meuli R, Kober T, Schmidt S (2019) Patient respiratory-triggered quantitative T2 mapping in the pancreas. Journal of magnetic resonance imaging: JMRI. https://​doi.​org/​10.​1002/​jmri.​26612
22.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications 5:4006. https://doi.org/10.1038/ncomms5006 CrossRefPubMedPubMedCentral Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications 5:4006. https://​doi.​org/​10.​1038/​ncomms5006 CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ (2017) CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (5):1483-1503. https://doi.org/10.1148/rg.2017170056 Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ (2017) CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (5):1483-1503. https://​doi.​org/​10.​1148/​rg.​2017170056
24.
Zurück zum Zitat Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, Graves JS, Horton KM, Hruban RH, Yuille AL, Kinzler KW, Vogelstein B, Fishman EK (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR American journal of roentgenology:1-9. https://doi.org/10.2214/ajr.18.20901 Chu LC, Park S, Kawamoto S, Fouladi DF, Shayesteh S, Zinreich ES, Graves JS, Horton KM, Hruban RH, Yuille AL, Kinzler KW, Vogelstein B, Fishman EK (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR American journal of roentgenology:1-9. https://​doi.​org/​10.​2214/​ajr.​18.​20901
25.
Zurück zum Zitat Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Feng Z, Chen X (2018) The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer imaging : the official publication of the International Cancer Imaging Society 18 (1):37. https://doi.org/10.1186/s40644-018-0170-8 CrossRef Guo C, Zhuge X, Wang Q, Xiao W, Wang Z, Feng Z, Chen X (2018) The differentiation of pancreatic neuroendocrine carcinoma from pancreatic ductal adenocarcinoma: the values of CT imaging features and texture analysis. Cancer imaging : the official publication of the International Cancer Imaging Society 18 (1):37. https://​doi.​org/​10.​1186/​s40644-018-0170-8 CrossRef
28.
Zurück zum Zitat Permuth JB, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker MP, Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno BA, Magliocco A, Li Q, Trevino J, Merchant N, Gillies R, Malafa M, Florida Pancreas C (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7 (52):85785-85797. https://doi.org/10.18632/oncotarget.11768 CrossRefPubMedPubMedCentral Permuth JB, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker MP, Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno BA, Magliocco A, Li Q, Trevino J, Merchant N, Gillies R, Malafa M, Florida Pancreas C (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7 (52):85785-85797. https://​doi.​org/​10.​18632/​oncotarget.​11768 CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Attiyeh MA, Chakraborty J, Doussot A, Langdon-Embry L, Mainarich S, Gönen M, Balachandran VP, D’Angelica MI, DeMatteo RP, Jarnagin WR, Kingham TP, Allen PJ, Simpson AL, Do RK (2018) Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Annals of surgical oncology 25 (4):1034-1042. https://doi.org/10.1245/s10434-017-6323-3 CrossRefPubMedPubMedCentral Attiyeh MA, Chakraborty J, Doussot A, Langdon-Embry L, Mainarich S, Gönen M, Balachandran VP, D’Angelica MI, DeMatteo RP, Jarnagin WR, Kingham TP, Allen PJ, Simpson AL, Do RK (2018) Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Annals of surgical oncology 25 (4):1034-1042. https://​doi.​org/​10.​1245/​s10434-017-6323-3 CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lin Q, Ji YF, Chen Y, Sun H, Yang DD, Chen AL, Chen TW, Zhang XM (2019) Radiomics model of contrast-enhanced MRI for early prediction of acute pancreatitis severity. Journal of magnetic resonance imaging: JMRI. https://doi.org/10.1002/jmri.26798 Lin Q, Ji YF, Chen Y, Sun H, Yang DD, Chen AL, Chen TW, Zhang XM (2019) Radiomics model of contrast-enhanced MRI for early prediction of acute pancreatitis severity. Journal of magnetic resonance imaging: JMRI. https://​doi.​org/​10.​1002/​jmri.​26798
35.
37.
Zurück zum Zitat Kazmierczak SC, Catrou PG, Van Lente F (1993) Diagnostic accuracy of pancreatic enzymes evaluated by use of multivariate data analysis. Clin Chem 39 (9):1960-1965CrossRef Kazmierczak SC, Catrou PG, Van Lente F (1993) Diagnostic accuracy of pancreatic enzymes evaluated by use of multivariate data analysis. Clin Chem 39 (9):1960-1965CrossRef
38.
Zurück zum Zitat Andersson B, Andersson R, Ohlsson M, Nilsson J (2011) Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks. Pancreatology : official journal of the International Association of Pancreatology 11 (3):328-335. https://doi.org/10.1159/000327903 CrossRef Andersson B, Andersson R, Ohlsson M, Nilsson J (2011) Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks. Pancreatology : official journal of the International Association of Pancreatology 11 (3):328-335. https://​doi.​org/​10.​1159/​000327903 CrossRef
45.
Zurück zum Zitat Hong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY (2013) Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics (Sao Paulo) 68 (1):27-31CrossRef Hong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY (2013) Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics (Sao Paulo) 68 (1):27-31CrossRef
47.
Zurück zum Zitat Fei Y, Gao K, Li WQ (2018) Prediction and evaluation of the severity of acute respiratory distress syndrome following severe acute pancreatitis using an artificial neural network algorithm model. HPB: the official journal of the International Hepato Pancreato Biliary Association. https://doi.org/10.1016/j.hpb.2018.11.009 Fei Y, Gao K, Li WQ (2018) Prediction and evaluation of the severity of acute respiratory distress syndrome following severe acute pancreatitis using an artificial neural network algorithm model. HPB: the official journal of the International Hepato Pancreato Biliary Association. https://​doi.​org/​10.​1016/​j.​hpb.​2018.​11.​009
48.
Zurück zum Zitat Pofahl WE, Walczak SM, Rhone E, Izenberg SD (1998) Use of an artificial neural network to predict length of stay in acute pancreatitis. Am Surg 64 (9):868-872PubMed Pofahl WE, Walczak SM, Rhone E, Izenberg SD (1998) Use of an artificial neural network to predict length of stay in acute pancreatitis. Am Surg 64 (9):868-872PubMed
49.
Zurück zum Zitat Keogan MT, Lo JY, Freed KS, Raptopoulos V, Blake S, Kamel IR, Weisinger K, Rosen MP, Nelson RC (2002) Outcome analysis of patients with acute pancreatitis by using an artificial neural network. Acad Radiol 9 (4):410-419CrossRef Keogan MT, Lo JY, Freed KS, Raptopoulos V, Blake S, Kamel IR, Weisinger K, Rosen MP, Nelson RC (2002) Outcome analysis of patients with acute pancreatitis by using an artificial neural network. Acad Radiol 9 (4):410-419CrossRef
50.
Zurück zum Zitat Halonen KI, Leppäniemi AK, Lundin JE, Puolakkainen PA, Kemppainen EA, Haapiainen RK (2003) Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology : official journal of the International Association of Pancreatology 3 (4):309-315. https://doi.org/10.1159/000071769 CrossRef Halonen KI, Leppäniemi AK, Lundin JE, Puolakkainen PA, Kemppainen EA, Haapiainen RK (2003) Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology : official journal of the International Association of Pancreatology 3 (4):309-315. https://​doi.​org/​10.​1159/​000071769 CrossRef
51.
Zurück zum Zitat Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep Learning: A Primer for Radiologists. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (7):2113-2131. https://doi.org/10.1148/rg.2017170077 Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep Learning: A Primer for Radiologists. Radiographics: a review publication of the Radiological Society of North America, Inc 37 (7):2113-2131. https://​doi.​org/​10.​1148/​rg.​2017170077
53.
Zurück zum Zitat Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, Zhu Z, Xia Y, Xie L, Liu F, Yu Q, Fouladi DF, Shayesteh S, Zinreich E, Graves JS, Horton KM, Yuille AL, Hruban RH, K.W. K, Vogelstein B, Fishman EK (2019) Application of deep learning to pancreatic cancer detect - Lessons learned from our initial experience. J Am Coll Radiol In Press Chu LC, Park S, Kawamoto S, Wang Y, Zhou Y, Shen W, Zhu Z, Xia Y, Xie L, Liu F, Yu Q, Fouladi DF, Shayesteh S, Zinreich E, Graves JS, Horton KM, Yuille AL, Hruban RH, K.W. K, Vogelstein B, Fishman EK (2019) Application of deep learning to pancreatic cancer detect - Lessons learned from our initial experience. J Am Coll Radiol In Press
55.
Zurück zum Zitat Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2019) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Medical image analysis 55:88-102CrossRef Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2019) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Medical image analysis 55:88-102CrossRef
56.
Zurück zum Zitat Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans. Paper presented at the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, Quebec, Canada, 07/10/2017 Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans. Paper presented at the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, Quebec City, Quebec, Canada, 07/10/2017
57.
Zurück zum Zitat Xia Y, Xie L, Liu F, Zhu Z, Fishman EK, Yuille AL (2018) Bridging the Gap between 2D and 3D Organ Segmentation with Volumetric Fusion Net. Paper presented at the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain, Xia Y, Xie L, Liu F, Zhu Z, Fishman EK, Yuille AL (2018) Bridging the Gap between 2D and 3D Organ Segmentation with Volumetric Fusion Net. Paper presented at the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain,
58.
Zurück zum Zitat Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2019) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. Paper to be presented at the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, China. Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2019) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. Paper to be presented at the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, Shenzhen, China.
Metadaten
Titel
Emerging imaging techniques for acute pancreatitis
verfasst von
Saeed Ghandili
Shahab Shayesteh
Daniel F. Fouladi
Alejandra Blanco
Linda C. Chu
Publikationsdatum
19.08.2019
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 5/2020
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-019-02192-z

Neu im Fachgebiet Radiologie

Abdominale CT bei Kindern: 40% mit Zufallsbefunden

Wird bei Kindern mit stumpfem Trauma eine CT des Bauchraums veranlasst, sind in rund 40% der Fälle Auffälligkeiten zu sehen, die nichts mit dem Trauma zu tun haben. Die allerwenigsten davon sind klinisch relevant.

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.