Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Review

Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora

verfasst von: Hourieh Sadrekarimi, Zhanna R. Gardanova, Morteza Bakhshesh, Farnoosh Ebrahimzadeh, Amirhossein Fakhre Yaseri, Lakshmi Thangavelu, Zahra Hasanpoor, Firoozeh Abolhasani Zadeh, Mohammad Saeed Kahrizi

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The human gut microbiome is the genomic content of the gut microbiota, which comprises all microorganisms that are colonized in the human gastrointestinal tract (GIT), such as viruses, fungi, protozoa, and predominantly bacteria [1]. The diversity and composition of normal gut microbiota were altered throughout the individual life span and shaped by factors such as dietary nutrients, mode of delivery, age, geographical area, use of antibiotics, and host genetics [25]. They serve specific functions in producing short-chain fatty acids (SCFAs), immune system homeostasis, nutrient and drug metabolism, vitamin synthesis, and protection against pathogen colonization [68].
Progress in sequencing technologies and bioinformatics tools have facilitated large-scale microbiome studies, such as the Human Microbiome Project (HMP) and the MetaHIT (Metagenomics of the Human Intestinal Tract) funded by the U.S. National Institutes of Health (NIH) and the European Commission, respectively to understand the impact of the microbiome on human health and disease [912]. Gut dysbiosis is defined as the functional and compositional alterations of gut microbiota in response to environmental or host-related changes associated with the manifestation, detection, or therapy of the disease [13]. It is increasingly appreciated that gut dysbiosis relates to various conditions such as inflammatory bowel disease (IBD), neurodegenerative disease [e.g., Parkinson’s and Alzheimer’s disease(A.D.)], diabetes mellitus (D.M.), and cancer [1418]. Moreover, altered gut inhabitant microbes influenced the development of autoimmune diseases, i.e., rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus (SLE) [1921].
Cancer is defined as a group of diseases characterized by uncontrolled cell proliferation and caused by genetic and environmental factors [22, 23]. A growing body of research has revealed the link between microbiota and cancer, particularly stomach cancer. For instance, the variation in the gastric microbial composition in the various stages of carcinogenesis including superficial gastritis, atrophic gastritis, gastric intraepithelial neoplasia and gastric cancer, was reported by Zhang et al. [24]. Alteration in gut flora increases the risk of gastrointestinal malignancy and potentiates carcinogenesis by inducing chronic inflammation, producing mutagenic metabolites, modifying stem cell dynamics, and stimulating cell proliferation [25]. In addition, the imbalanced microbial community could be affected the genetic and epigenetic mechanisms of colorectal cancer development [26]. Epigenetic alteration regulates gene expression through the changes in miRNA regulation, DNA methylation, and histone modification. Hence, gut microbiome involvement in carcinogenesis could be mediated by deregulating the epigenetic modifications [27, 28]. For instance, induction of malignant phenotype in murine gastric tissue by Helicobacter pylori is associated with hypomethylation and downregulation of miR-490-3p [29]. Accordingly, cancer-related microbes were associated with specific miRNA expression and other epigenetic modifications that regulate genes involved in cancer-related pathways.
The diversity and composition of gastrointestinal microbes are impacted not only by cancer development but also influence the anti-tumor immunity and response to therapy [30]. Hence, multiple strategies have been recommended to manipulate microbiota in cancer treatment, e.g., probiotics and fecal microbiota transplantation (FMT) [30, 31].
In addition to bacterial components, the microbiome comprises fungal communities known as the mycobiome, which influence cancer development [32]. As documented by Luan et al. the fungal diversity in adenoma was lower compared with adjacent biopsy samples. Moreover, operational taxonomic units (OTUs) revealed substantial differences between adenomas and adjacent tissues, as well as between advanced and non-advanced samples. For instance, Fusarium and Trichoderma were enriched in the adjacent biopsy samples of advanced and non-advanced adenoma, respectively [33]. According to Coker et al. a higher ratio of Basidiomycota/Ascomycota and alteration in enteric fungal diversity in patients with colorectal cancer (CRC) is associated with the colorectal carcinogenesis [34]. Furthermore, the fungal diversity was higher in late-stage CRC than in early-stage CRC [35]. It’s worth noting that we’re focusing on the bacterium's role in cancer development.
Elucidating the interaction between microbiota and various stages of cancer development (i.e., initiation, promotion, and progression) might shed light on the gut flora’s specific function in cancer prevention or treatment. This review intends to delineate the role of the microbiome in cancer development and therapy and recapitulate the strategies that manipulated the microbiota to improve cancer treatment (see Table 1).
Table 1
Association between bacterial colonization and cancer development
Bacteria
Types of tumor
References
Salmonella typhi
↑ Gallbladder cancer
Di Domenico et al. [212]
Helicobacter pylori
↑ Gastric cancer
Wang et al. [213]
Uropathogenic Escherichia coli
↑ Prostate cancer
Elkahwaji et al. [214]
Escherichia coli (strain CP1)
↑ Prostate cancer
Simons et al. [215]
Escherichia coli
↑ Bladder cancer
El-Mosalamy et al. [216]
Bacteroides vulgatus, Bacteroides stercoris
↑ Colorectal cancer
Hu et al. [79]
Lactobacillus acidophilus, Lactobacillus S06, and Eubacterium aerofaciens
↓ Colorectal cancer
Hu et al. [79]
Fusobacteria, Leptotrichia genus
↓ Pancreatic cancer
Fan et al. [217]
Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans
↑ Pancreatic cancer
Fan et al. [217]
↑↑↑ Enterotoxigenic Bacteroides fragilis
Colorectal cancer
Haghi et al. [218]
Zamani et al. [219]
↑↑↑ Fusobacterium nucleatum
Colorectal cancer
Chen et al. [220]
↑↑↑ Porphyromonas gingivalis, Fusobacterium nucleatum
Oral squamous cell carcinoma
Chang et al. [221]
↑↑↑ Enterobacteriaceae
Stomach cancer
Youssef et al. [222]
↓↓↓ Bifidobacteriaceae
Rectal neoplasm
Youssef et al. [222]
↑↑↑ Capnocytophaga, Veillonella (in saliva)
Lung cancer
Yan et al. [223]
Some bacterial species diminished or raised the risk of various types of cancer as shown by the direction of the arrows, i.e., ↓ or ↑
On the other hand, the comparison of the microbial composition between patients and healthy individuals revealed the higher/lower abundance of the bacterial population as indicated by ↑↑↑and ↓↓↓, respectively

Association between microbiome and cancer development

Accumulating evidence sheds light on the association of microbiota with cancer initiation and progression, including the studies conducted on germ-free and gnotobiotic animals (i.e., animals born and raised under aseptic conditions and colonized with specific microorganisms) and their comparison with their conventional counterparts, which presented convincing evidence for microbiota's involvement in tumor induction and the establishment of local and systemic immune responses [36, 37]. In some of these investigations, researchers found a higher frequency of liver cancer, a lower incidence of small intestinal polyposis, and little or no difference in the occurrence of mammary tumors in germ-free mice [3840]. Moreover, the incidence of tumors induced by carcinogens in germ-free (GF) and conventional (CV) animals exhibited contradictory results, which could be related to differences in animal strains, tumor induction protocol (including type, dose, and route of administration of carcinogen), and organs involved in carcinogenesis [37, 4145].
The oral cavity is inhabited by various types of the microbial community that could be translocated to the other sites of the body, as well as tumor tissue, and involved in cancer initiation and progression by multiple pathways (such as producing inflammatory mediators, inhibiting immune response, and inducing malignant transformation) [46]. It has been confirmed that some oral bacterial species could have reached the intestinal flora and contributed to gut dysbiosis [47]. This imbalanced gut microbiota may have been attributed to gastrointestinal diseases and cancer. The association between oral microbiota and tumor development is documented by several reports [48, 49]. For instance, the genomic analysis of colorectal adenocarcinoma tissue revealed the F. nucleatum and other Fusobacterium species enrichment [50]. In addition, these data were consistent with a meta-analysis conducted by Drewes et al. that elucidated increased levels of oral microbiota such as Peptostreptococcus stomatis, Parvimonas micra, and Fusobacterium nucleatum on CRC tissue [51]. Accordingly, it has been suggested that the analysis of oral microbiota could be considered as a noninvasive cancer biomarker [52, 53].
Sears et al. proposed a paradigm for describing the role of microbiota in the causation of colorectal cancer, in which three models were considered: individual microbes (model 1), a microbiota population (model 2), and individual microbes that interact with the microbial community (model 3) [54]. The causal role of individual microbes in carcinogenesis could be determined by reproducibly generating specific cancers in mice [55]. For instance, the carcinogenic potential of enterotoxigenic Bacteroides fragilis (ETBF) was evaluated in multiple intestinal neoplasia (Min) mouse strain. Additionally, the rate of carcinogenesis after antibiotic therapy could be determined in order to assess the collaboration and synergistic effect of other microbiota members [56]. Considering the first model, individual microbes (such as Streptococcus gallolyticus, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis, Escherichia coli, and Fusobacterium nucleatum) may contribute to colorectal cancer pathogenesis by triggering inflammation and DNA damage or impairing the DNA repair [54]. Contrarily, as an example of illustrating the contribution of the microbial community, the study conducted by Wong et al. provided evidence to confirm the tumorigenesis effect of altered gut microbiota in CRC patients. Increased infiltration of T-helper (Th) 1 and Th17 cells, upregulation of genes involved in the pro-inflammatory response (including interleukin (IL) 17A, IL-22, IL-23A, CXC chemokine receptor (CXCR) 1, and CXCR2), and the oncogenic pathway were observed in intestinal tissue of germ-free and conventional mice gavaged by feces from CRC patients [57]. The bacteria associated with specific human cancers are listed below (Table 2).
Table 2
Oncogenic potential of bacterial toxin
Bacterium
Toxin
Oncogenic activity
Helicobacter pylori
Cytotoxin-associated gene A (CagA)
Binding and activating the SHP-2 tyrosine phosphatase [224, 225]
Disrupting the polarity of epithelial cells [103, 226]
Increasing cell survival by cyclin D1 induction [227]
Cell scattering by binding to Grb2 [228]
Stimulating MMP10 expression [229]
Inhibiting apoptosis by downregulating Siva1 protein [230]
Enhancing cell proliferation by upregulating reg3 [231]
Helicobacter pylori
Vacuolating toxin (VacA)
Vacuolation of gastric epithelial cells [232, 233]
Disrupting the integrity of epithelial cells leading to carcinogen penetration [234]
Inhibiting acid secretion from gastric parietal cells that proper the stomach microenvironment for the colonization of other bacterial species [235, 236]
Interfering with protective immunity by suppressing the function of immune cells [237, 238]
Causing cell death via necrosis and apoptosis [239241]
Stimulating pro-inflammatory activity [238, 242]
Pasteurella multocida
Pasteurella multocida toxin (PMT)
Eliciting mitogenic effect through Gq-signaling pathways [243, 244]
Preventing apoptosis by inducing pim1 and Akt pathway and modulating the expression of Bcl2 family [245]
Promoting the activation of STAT transcription factor and other signaling pathways involved in carcinogenesis [246]
Escherichia coli
Cytotoxic necrotizing factor 1 (CNF1)
Impacting several cellular processes (e.g., inflammation, survival, cell adhesion, and motility) by modifying Rho GTPases activity and actin cytoskeleton arrangement [247249]
Activating the RhoC in bladder cancer cells leading to HIF-1α expression, VEGF secretion, and promoting angiogenesis [250]
Promoting the migration and invasion of prostate cancer cells [251]
Inducing epithelial-mesenchymal transition[252]
Escherichia coli
Colibactin
Inducing cell proliferation [253, 254]
Diminishing tumor-infiltrating lymphocytes (CD3+ T population) [255]
Enterotoxigenic Bacteroides fragilis
Bacteroides fragilis enterotoxin (BFT)
Enhnaced cleavages the E-cadherin that leads to disruption of intercellular junction, release and nuclear translocation of β-catenin, c-myc upregulation, and cell proliferation [256, 257]
Increasing mucosal permeability [258]
Inducing oncogenic inflammation by activating NF-κB [259261]
SHP-2 SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2), Grb2 Growth factor receptor-bound protein 2, MMP10 Matrix metalloproteinase 10, Siva1 Apoptosis-Inducing Factor, Reg3 Regeneration gene 3, Pim1 Proviral integration site for Moloney murine leukemia virus-1, Akt protein kinase B, BCL2 B-cell lymphoma 2, STAT Signal transducer and activator of transcription, VEGF vascular endothelial growth factor, RhoC Ras homolog family member C, HIF1α hypoxia-inducible factor 1α, SENP1 SUMO1/sentrin specific peptidase 1, CDK1 cyclin-dependent kinase 1
It should be noted that some bacteria cause cancer, while others hasten tumor growth by suppressing the immune system and promoting cancer cell proliferation. As an example for the latter groups, F. nucleatum colonized malignant tissue selectively through the interaction between fibroblast activation protein 2 (Fap2) lectin and upregulated galactose/N-acetyl-galactosamine (Gal–GalNAc) on tumor cells, which accelerated tumor growth and metastasis [58, 59]. Rubinstein and colleagues proposed a two-hit model for colorectal cancer development. The first hit is provided by accumulated mutation, and the second hit is delivered by microbes (i.e., F. nucleatum) that accelerate tumor growth [60]. By this fact, the early identification of carcinogenic bacteria colonization would be beneficial for cancer treatment and prevention.
The impact of the intestinal flora on tumor development can be categorized as direct or indirect mechanisms [61]. For instance, Fusobacterium nucleatum directly contributes to colorectal tumorigenesis by binding Fusobacterium adhesin A (FadA) to E-cadherin, which leads to β-catenin activation and cellular proliferation [62, 63]. On the contrary, persistent stimulation of the immune system is one of the indirect mechanisms whereby microbiota affects carcinogenesis.

Microbial mechanisms of carcinogenesis and tumor progression

Oncogenic actions of microbiota through the induction of chronic inflammation

Inflammation is a double-edged sword that can be anti- and pro-tumorigenic [64]. The inflammatory mediators (cytokines and reactive oxygen and nitrogen species) produced elevated mutation rates and DNA damage in the tumor microenvironment. They reduced the expression and activity of DNA repair systems, resulting in the genetic instability of cancer cells. Indeed, the inflammatory microenvironment impacts diverse aspects of carcinogenesis, like tumor cell transformation, proliferation, invasion, metastasis, and angiogenesis, and could be regarded as the seventh hallmark of cancer [65, 66]. Microorganisms contribute to tumor initiation and progression by inducing tumor-promoting inflammation or translocating to the tumor site and persisting cancer-induced inflammation [67, 68]. Studies such as those conducted by Wei et al. have elucidated that inflammation is a crucial component between microbiota and patient survival or prognosis of colorectal cancer. The higher frequency of some microbial species in the worse prognosis group, such as Fusobacterium nucleatum, was correlated with the upregulation of TNF-α (tumor necrosis factor), β-catenin, and NF-κB (nuclear factor-kappa B). It also induces a shift ftom pro-inflammatory M1-phenotype to a tumor-promoting M2-phenotype. Conversely, Faecalibacterium prausnitzii was elevated in the survival group and was associated with less expression of NF-κB, β-catenin, and MMP9 (matrix metallopeptidase 9) [69].
The different components of the immune system, particularly innate immunity, are essential in the relationship between inflammation induced by commensal microbiota and carcinogenesis. The recognition of pathogen-associated molecular patterns (PAMPs) of commensal microflora by toll-like receptors (TLRs) plays a crucial role in maintaining intestinal homeostasis. At the same time, their dysregulated interaction may cause chronic inflammation [70]. According to research conducted by Fukata and coworkers, the TLR4 was upregulated in colon cancer samples from patients with chronic ulcerative colitis and animal model of colitis-associated cancer (CAC) and contributed to the colon carcinogenesis by activating the EGFR (epidermal growth factor receptor) signaling [71]. Moreover, the studies on the spontaneous intestinal tumor model confirmed the critical role of MyD88 (adaptor protein triggered by TLRs) in tumor development [72]. Related to this, the production of toxic products by the gut microbiota reduces the integrity of the mucosal surface that allowing foreign antigens to penetrate more easily and generating local inflammation [73]. It is pertinent to point out that the persistent activation of NF-kB transcription factors in response to chronic inflammation and dysregulation of the Wnt/β-catenin signaling pathway contributes to tumor development [7476].
The inflammasome is a cytosolic multiprotein complex consisting of NOD-like receptors (NLRs), adaptor protein ASC (Apoptosis-associated speck-like protein containing a CARD), and pro-caspase-1. Following activation of the inflammatory pathway by recognition of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) with the relevant receptors, inflammasome assembles and cleaves pro-caspase-1, which in turn cleaves pro-forms of the cytokines, such as pro-IL-1β and pro-IL-18, and converts them to the bioactive forms [77]. Functional activity of this complex protein is required for modulating the colonic microbial population, and deficits in any part of these constituents lead to the inflammation caused by altered gut microbiota [78]. Using the Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) model, Hu et al. illustrated that altered microbiota of Inflammasome deficient mice causes inflammation-induced colorectal cancer through the induction of CCL5 (CC-chemokine ligand 5) and activation of the IL-6 signaling pathway in intestinal epithelial cells [79, 80]. Likewise, based on the determinative role of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) in the regulation of intestinal microbiota composition, gut dysbiosis following NOD2 deficiency augmented the risk of colitis and colitis-associated colorectal cancer in mice [8183]. Interestingly, the carcinogenic phenotype associated with NOD2-mediated microbiota dysbiosis was transferable and could be transferred via fecal microbiota transplantation from NOD2 deficient mice to wild-type (WT) or germ-free mice with NOD2 sufficient expression [81]. As represented in Fig. 1, several factors are modified the microbial equilibrium leading to tumor induction and progression by generating inflammation.
In addition to the pivotal role of innate immunity in modulating gut microbiota composition to regulate inflammation and cancer development, members of the adaptive immune response, such as T-helper 17 and regulatory T cells, are also implicated in tumorigenesis. Disturbance of the microbiota balance (dysbiosis) and an increase in the abundance of Th17-inducing bacteria can cause chronic inflammation that leads to the onset and progression of cancer. Studies confirmed that tumoral inflammation driven by Th17 cells is often tumor-promoting and linked to a poor prognosis in colorectal cancer [84, 85].
Activating the IL-23 signaling pathway after Toll-like receptors sense translocated microbes or microbial products, and triggering the MyD88 adaptor activation, is critical for producing downstream cytokines, i.e., IL-17 [84]. Furthermore, the production of ATP by commensal microbiota has been proposed as the mediator for naturally occurring and/or pathogenic Th17 cell differentiation in lamina propria. As documented by Atarashi et al. the bacterially-driven ATP activates CD70high CD11clow cells to produce IL-6, IL-23, and TGF-β (Transforming growth factor beta), which subsequently promote Th17 differentiation [86].
Notably, multiple investigations have pointed to Colonization with the specific bacterial species that promote Th17 differentiation. For instance, segmented filamentous bacteria (SFB) produced serum amyloid A (SAA), which triggers Th17 cells differentiation by acting on dendritic cells in the lamina propria [87]. This Th17 response stimulated by some members of commensal microbiota contributes to infection-induced carcinogenesis. Colonization with enterotoxigenic Bacteroides fragilis, for illustration, promotes IL-17-producing cells-driven inflammation and the development of colon cancer [88, 89].
It is now well established that cyclophosphamide (CTX) treatment altered the composition of intestinal microflora and stimulated the gram-positive bacteria translocation to secondary lymphoid organs, leading to naive T cell polarization towards Th1 and Th17 cells [90, 91]. Interestingly, the CTX-stimulated pathogenic Th17 response mediated by dysbiotic microbiota is tumor suppressive and prevents the outgrowth of cancer cells. It’s worthwhile to point out that numerous studies documented the contradictory role of Th17 cells in cancer development [9294]. These cells have a pro-tumorigenic effect by inducing angiogenesis and genetic instability and activating the IL-6-oncogenic STAT-3 signaling pathway. On the other hand, they are involved in anti-tumor immunity by converting to Th1 cells (and producing IFN-) and eradicating tumor cells directly or promoting tumor-specific immune cell recruitment [93]. This dual function could be due to Th17 cells' plasticity and heterogeneity [95]. In addition, the type and stage of the tumor are also effective.
On the other hand, Regulatory T cells attenuate inflammation-induced carcinogenesis in an IL-10-dependent manner. In this regard, the adoptive transfer of regulatory T cells reduced the onset and progress of inflammatory bowel disease (IBD) and colon cancer induced by Helicobacter hepaticus colonization in aged Rag2 (Recombination activating gene 2 protein)-deficient mice [96, 97]. Similarly, the polysaccharide A (PSA) of nontoxigenic Bacteroides fragilis reduced IL-17 production and protected from H. hepaticus-driven colitis by inducing IL-10 production in CD4 T cells [98].

Carcinogenic action of microbiota through the production of toxins and metabolites

While the importance of the microbiome in carcinogenesis has been proven, further research is required to elucidate the precise mechanism whereby the microbial components contribute to cancer development and treatment. Aside from inflammation-driven by microbiota, which acts as an indirect mechanism for carcinogenesis, some bacterial metabolites directly contribute to the causation of cancer [99]. Bacterial toxins are one of these components that can interact with several signaling pathways that modulate cancer-related biological processes, including proliferation, cell cycle, differentiation, and apoptosis [100]. Table 2 lists some bacterial species that generated toxins with oncogenic potential. For instance, the cytotoxin-associated gene A (CagA) of Helicobacter pylori, a bacterial oncoprotein linked to the development of gastric cancer by promoting the genetic instability and interactions with host cell proteins like SHP2 (Src homology two phosphatases), E-cadherin, and PAR1 (Partitioning-defective 1) [101104]. Some consequences of this interaction include inhibition of apoptosis, increased survival and cell proliferation, loss of cellular polarity, and neoplastic transformation [105].
As another example, the enterotoxigenic strains of Bacteroides fragilis (ETBF) are a risk factor for colorectal cancer, and its metalloprotease toxin is implicated in the process of triggering mucosal inflammation [106108]. According to Goodwin et al. B. fragilis enterotoxin (BFT) promotes spermine oxidase enzyme (SMO) upregulation in intestinal epithelial cells, which leads to the production of reactive oxygen species (ROS) and DNA damage [109]. Additionally, BFT exposure causes morphologic changes, E-cadherin cleavage, and cell proliferation stimulation, which is at least in part mediated by E-cadherin cleavage followed by β-catenin nuclear translocation and upregulation of the proto-oncogene c-myc [110112].
The production of metabolites may also contribute to the oncogenic action of gut microbiota. Undigested food components are breakdown by the microbial community into several metabolites, some of which have been shown to have a protective and or harmful effect on cancer development (Table 3) [113]. Short-chain fatty acids (butyrate, propionate, and acetate) are one of the most critical products of carbohydrate fermentation, with anti-inflammatory, anti-proliferative, and apoptotic inducing effects [113, 114]. It also assists in maintaining intestinal homeostasis by elevating Foxp3 IL-10-producing Treg cells [115, 116]. Similarly, Lactobacillus acidophilus, Lactobacillus, linoleic acids (CLAs), Lactobacillus casei, Lactobacillus bulgaricus Lactobacillus plantarum, Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus thermophiles exhibited anti-neoplastic and pro-apoptotic impacts [117, 118]. It should be mentioned that some evidence, such as that published by Nakashima et al. has shown a link between GPR40 (G protein-coupled receptor 40) expression, as CLAs receptor, and colorectal cancer progression and worse prognosis [119, 120].
Table 3
Metabolites with cancer prevention effects
Dietary components
Metabolites
Microbes
Anti-cancer effect
References
Fiber
Short-chain fatty acids (such as butyrate, propionate, and acetate)
For instance: Holdemanella biformis, Faecalibaculum rodentium, Clostridium butyricum
Anti-inflammatory, anti-proliferative, apoptotic inducing effects, elevating Foxp3 IL-10-producing Treg cells
Smith et al. [115]
Li et al. [262]
Furusawa et al. [116]
Louis et al. [113]
Linoleic acids
Conjugated linoleic acids (CLAs)
Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus bulgaricus, Lactobacillus plantarum, Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus thermophiles
Anti-neoplastic, pro-apoptotic
Maggiora et al. [118]
Ewaschuk et al. [117]
Polyphenols (such as: phenolic acid, flavonoids, lignin, anthocyanin,)
Low-molecular-weight phenolic acids
For instance: Escherichia coli, Eubacterium sp., Lactobacillus sp., Bifidobacterium sp., Bacteroides sp.
Chemoprevention effect, reducing cell prolifration, increasing apoptosis, anti-inflammatory effect, modulating enzymes
Bultman [263]
Cardona et al. [264]
On the other side, microbial fermentation of a high-fat or high-protein diet generates NOCs (N-nitroso compounds), polyamines, ammonia, hydrogen sulfide, and secondary bile acids, which promote tumor development by triggering inflammation and DNA damage [113]. As reviewed by Bernstein and coworkers, short-term exposure of cells to bile acids resulted in the production of reactive oxygen and nitrogen species (ROS/RNS), which subsequently enhanced DNA damage, mutation rates, and apoptosis. Over a more extended period, mutant cells acquired growth advantages like apoptosis resistance, raising the risk of gastrointestinal tract cancer [121]. Moreover, secondary bile acid (especially deoxycholic acid) induces cancer cell proliferation and invasion by activating the β-catenin signaling pathway [122].
Overall, microbiome involvement in cancer initiation and progression can be mediated by targeting the tumor cells directly or indirectly by modulating the immune system. In this context, microbes can influence different components of innate and adaptive immunity (including dendritic cells, natural killer cells, myeloid cells, CD8 T cells, etc.) and cancer progression via direct (act as an antigen) and indirect mechanisms (by producing byproducts and cytokines). In the former, homology between microbial epitopes and tumor antigens induced cross-reactive T cells that can contribute to anti-tumor immunity [123]. As discussed in multiple studies, the molecular mimicry and presence of cross-reactive T CD8 and T CD4 cells may improve the efficacy of anti-cancer approaches [124, 125]. Besides, recognition of bacterial antigens by pattern recognition receptors (PRRs) (like TLRs and NLRs) leads to activation of downstream signaling cascades (NF-κB and STAT3 activation) and production of pro-and anti-inflammatory cytokines. PAMPs activated Dendritic cells (DCs) and other antigen-presenting cells leading to traveling to mesenteric lymph nodes where they activate T helper cells. Notably, microbial dysbiosis and over-activation of NF-κB, STAT3, and Wnt/β-catenin signaling pathways are contributed to cancer pathogenesis by regulating anti-tumor immune response, promoting inflammation, and inducing cancer cell proliferation and metastasis [126].

Other factors involved in intestinal cancer progression

In a bidirectional relationship, cancer cells and microbes can potentiate each other. For instance, the colibactin-producing Escherichia coli (E. coli) is more prevalent in colon tissue of patients with colorectal cancer than in diverticulosis patients [127]. The genotoxic compound colibactin promoted cellular senescence and growth factor production that subsequently stimulated cell proliferation and tumor growth [128, 129]. Moreover, increasing evidence indicates the bacterial involvement in metastasis progression of colorectal cancer. Cancer cells' detachment from original sites and their traveling to the new organ or tissue is called metastasis cascade. According to Seely et al. specific bacterial species like E. coli influences multiple steps of this process, including dissemination, circulation, colonization, and proliferation through the epithelial-mesenchymal transition (EMT), biofilm formation, paired migration, and altering the local microenvironment [130].
The production of flavonoids, anti-oxidants, SCFAs, and vitamins following carbohydrate-rich diet consumption increased the intestinal barrier integrity, reduced DNA damage and inflammation, and limited pathogen colonization. On the contrary, high fat or high protein diets that metabolized to carcinogenic products (such as N-nitroso compounds and secondary bile acids) enhanced cancer progression by promoting DNA damage, tumor proliferation, and inflammation [131]. It’s pertinent to point out that excess energy uptake and obesity increase cancer risk by altering microbial composition and metabolism.

Cancer-preventing properties of microbes

Unlike cancer-promoting microbiota, which are contributed to cancer development by inducing inflammation or producing carcinogenic compounds, some microbial species have beneficial effects on cancer prevention. In this context, probiotics effectively control gastrointestinal inflammatory disorders like inflammatory bowel disease, which have been associated with an increased risk of colorectal cancer [132]. Multiple in vitro and in vivo studies demonstrated various aspects of probiotics in cancer onset and progression, including their effects on cell proliferation reduction, apoptosis induction, and cell cycle arrest. Probiotics’ cancer-prevention effects could be attributed to a variety of mechanisms, including (1) maintaining colon homeostasis, for example, by pH regulation; (2) modulating intestinal microflora composition and their metabolic activity; (3) binding and inactivating carcinogens; (4) producing anti-carcinogenic metabolites such as SCFAs and conjugated linoleic acid; and (5) immunomodulatory effects like phagocytes activation, which results in the early eradication of cancer cells [133, 134]. Lactobacillus and Bifidobacterium are the two most common probiotics in the digestive system. Lactobacillus prevents cancer by producing antioxidants and anti-angiogenesis factors, reducing inflammation and DNA damage, and preventing polyamines and tumor-specific antigens expression [135].

Impacts of microbiota on anti-tumor immunity and therapy

Tumor development and intestinal microbiota impact each other in a reciprocal relationship. Any alteration in the composition of the gut microbes influences the tumor microbiota and the tumor microenvironment, thus affecting cancer progression. Given the dual role of the immune system in dampening or promoting cancer, the crosstalk between microbiota and tumor could be mediated by the immunomodulatory activity of microflora. It has been verified that gut flora or its metabolites (such as SCFAs) affects multiple aspects of host immune response.
Commensal microbes have a role in the development and maturation of the host immune system, so any alteration in the microbial community caused by antibiotic usage, diet, and other environmental factors could influence the cancer immune surveillance [136]. For instance, Fusobacterium nucleatum inhibited the tumor-killing activity of natural killer (NK) cells, and the higher level of it inversely correlated with a lower density of CD3 T cells in colorectal carcinoma tissue [137, 138]. Moreover, disrupting the gut microbiota and reducing intestinal SCFAs by using broad-spectrum antibiotics promoted macrophage hyper-activation and Th1 pro-inflammatory response [139]. Due to the study documented by Ma et al. modulating commensal microbiota controlled hepatic natural killer T (NKT) cell accumulation and liver tumor growth by modifying bile acids metabolism [140]. The number of monocytes/macrophages and conventional DCs in the ileum and spleens increased in gnotobiotic pigs after colonization with two strains of lactic acid bacteria [141]. Furthermore, peritoneal macrophages of germ-free mice have higher lysosomal activities and reduced C3b-receptor-mediated phagocytosis than control, which reached the normal level following cohousing with conventional mice [142]. Similarly, as reported by Ohkubo and coworkers, germ-free rats are neutropenic and have altered functions [143, 144]. Commensal microflora is involved in TCD4 + differentiation, so any alteration in their composition imbalanced the T helper and biased the immune response toward the specific subtypes [145]. For instance, some species of commensal bacteria like Bacteroides fragilis and segmented filamentous bacteria induce anti-inflammatory or pro-inflammatory responses through promoting T cell differentiation toward Treg or Th17 cells, respectively [146].
In addition, gut flora may influence systemic immunity and tumor development by producing metabolites (such as short-chain fatty acid and secondary bile acids), whole bacterial translocation, stimulating cytokine secretion, circulation of primed lymphocytes, and antigen cross-reactivity [30]. Although microbiota in all barriers contributes to the local immune response, the gut microflora is mainly responsible for the microbiota's systemic influence [147]. Also, due to the specific features of tumor tissue like hypoxia, abundant nutrients, immune evasion strategies served by cancer cells, and neoangiogenesis, the tumor microenvironment can be a supportive and immune-protected site for bacterial colonization, as proposed by Heymann et al. [148]. These intra-tumoral bacteria could influence the tumor infiltrated immune cells. For instance, Fusobacterium nucleatum within tumors reduces the anti-tumor activity of NK cells and other immune cells via its Fap2 protein interaction with TIGIT (T-cell immunoglobulin and ITIM domain) inhibitory receptors [138].
Parallel to the oncogenic action of microbiota, multiple studies pointed to its possible role in modulating the effectiveness of chemotherapy and immunotherapy approaches [149154]. As reviewed by Alexander and colleagues, the modulatory mechanisms of gut microbiota on the efficacy and toxicity of chemotherapy treatment can be categorized as follows: translocation, metabolism, diversity reduction, enzymatic degradation, and immunomodulation [150]. It means that chemotherapy agents altered the composition of gut microbiota and disrupted the integrity of the intestinal barrier that facilitated commensal bacteria translocation to the systemic milieu. Cyclophosphamide, for instance, alters the intestinal microbiota and promotes the translocation of gram-positive bacteria to secondary lymphoid organs, where they mediate Th1 and Th17 cells generation [90, 151]. Moreover, gut flora regulates the immune and inflammatory response induced by chemotherapy and also modifies pharmaceutical, leading to thepotentiating or attenuating the drug efficacy or enhacing its adverse effects [150, 152]. Using the mouse model, Iida and colleagues proved that microbiota affects the pro-inflammatory response required for oxaliplatin treatment [153].
Accordingly, there is a bidirectional relationship between the gut microbiota and anti-cancer treatment (especially chemotherapy). It means that changes in the gut microbiota affect the efficacy and toxicity of chemotherapy medications and that chemotherapy, in turn, can alter the microbial composition. In comparison to healthy controls, the overall number and diversity of microbial communities were reduced during chemotherapy treatment in patients with acute myeloid leukemia. This change is linked to a decrease in the number of anaerobic bacteria, which lowers pathogen colonization resistance and increases the frequency of pathogenic enterococci [155]. Similarly, cyclophosphamide administration enhanced pathogenic species like Pseudomonas, E. coli, enterococci, and Enterobacteriaceae [156]. Chemotherapy-induced gut microbiota dysbiosis has been associated with the colonization of pathogenic bacteria, intestinal damage, and the development of adverse effects in several other studies. Despite extensive research on the impact of chemotherapy on the microbiota, there are fewer reports of dysbiosis derived from other anti-cancer medications [31, 157]. In the study documented by Vetizou et al. treatment of ipilimumab [anti-CTLA-4 (Cytotoxic T-lymphocyte antigen 4)] was associated with elevated Clostridiales abundance and a decrease in Burkholderiales and Bacteroidales [125]. In addition, comparing the microflora of CRC patients before and after surgery revealed that total bacterial counts and the counts of some obligate anaerobes (including Clostridium coccoides, Bacteroides fragilis, Clostridium leptum, Atopobium, Bifidobacterium, and Prevotella) were reduced, whereas Pseudomonas, Enterobacteriaceae, Staphylococcus, and Enterococcus increased [158].
Immunotherapy strategies (e.g., immune checkpoint inhibition by anti–programmed death-1 (PD-1)/anti–PD-1 ligand 1 (PD-L1) and anti-CTLA-4 therapy, and adoptive cell transfer) could restore the impaired immune response against cancer cells, while their efficacy influenced by any factors that affect immune surveillance, such as the microbial community of the gastrointestinal tract [159161]. Besides, these interventions showed interpatient heterogeneity that may rely on genetic and environmental factors. Several studies highlighted the crucial role of gut microbiota in clinical response and or primary resistance to immunotherapy approaches. According to Sivan et al. the difference in the gut microbiota composition, particularly Bifidobacterium, influences anti-cancer immunity and the therapeutic efficacy of anti-PDL1 therapy by altering DC maturation and tumor-specific T cell response [162]. Fecal microbiota transplantation from immune checkpoint inhibitors (ICIs) responding and non-responding patients to germ-free or prescribed antibiotics mice confirmed the gut microbiota attribution in primary resistance to anti-PD1 blocked [163]. Analysis of patients’ fecal samples elucidated that Akkermansia muciniphila was correlated with clinical response to ICIs and enriched in ICIs responder patients [163]. As reported by Mager and colleagues, the ICB (Immune checkpoint blockade) therapies-promoting effects of specific bacterial species, including Bifidobacterium pseudolongum, Akkermansia muciniphila, and Lactobacillus johnsonii, are mediated by secretion and systemic translocation of inosine and hypoxanthine that affect T cell differentiation and activity via adenosine A2A receptor (A2AR) in a context-dependent manner [164].
Tanoue et al. proposed 11 strains that augmented the frequency of intestinal IFN-γ CD8 T cells and potentiated the response to immune checkpoint inhibitory therapy in the MC38 murine colon adenocarcinoma model [165]. Similarly, in melanoma patients undergoing anti-PD1 immunotherapy, the fecal microbiota analysis revealed higher diversity and Faecalibacterium enrichment in responder patients [166]. Tumor-infiltrated and systemic immune response assessments in patients enriched in the Faecalibacterium in the gut microbiome (Ruminococcaceae family, Clostridiales order) indicated TCD8 accumulation in tumor tissue and the higher frequency of effector T lymphocytes in the systemic circulation. Contrarily, Individuals with enrichment of Bacteroidales displayed a higher frequency of Treg and myeloid-derived suppressor cells (MDSCs) in their circulation [166]. Several other studies reported an association between gut microbiota and the effectiveness of anti-cancer approaches in various malignancies (Table 4). Results could be due to discrepancies in how patients were classified as responders or non-responders and differences in the analysis method [167].
Table 4
Association between commensal microbiome composition and clinical outcomes of immunotherapy
Therapy
Types of malignancy
Responder
Non-responder
References
Anti-PD1
NSCLC
Akkermansia muciniphila, Enterococcus hirae
 
Routy et al. [163]
Anti-PD1
Melanoma
Faecalibacterium
Bacteroidales
Gopalakrishnan et al. [166]
Anti-PD1
Metastatic melanoma
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium
Ruminococcus obeum, Roseburia intestinalis
Matson et al. [167]
Anti-CTLA4
Metastatic melanoma
Firmicutes phylum, e.g. Faecalibacterium
Chaput et al. [201]
Anti-CTLA4
Anti-PD1
Metastatic melanoma
Bacteroides caccae, Streptococcus parasanguinis
Frankel et al. [265]
Anti-CTLA4
Anti-PD1
Metastatic melanoma
Faecalibacterium prausnitzii, Holdemania filiformis, Bacteroides thetaiotamicron
Frankel et al. [265]
Pembrolizumab
Metastatic melanoma
Dorea formicigenerans
Frankel et al. [265]
Anti-PD1 anti-programmed cell death 1 protein, Anti-CTLA-4 anti- cytotoxic T-lymphocyte-associated protein 4
It is pertinent to point out that microbiota may reduce the responsiveness to immune checkpoint blockade; thus, microbial transplantation or TNF-α blockade could be beneficial in circumventing the resistance [168]. The abundances of various species of gut flora regulated the efficacy of these approaches through the secretion of pro-inflammatory cytokines (e.g., IL-12 and IFN-γ), elevating regulatory cells (e.g., MDSC and Treg), increasing/decreasing the maturation or function of DC, and enhancing the frequency of effector cells in circulation or tumor sites (e.g., cancer-specific TCD8 + and TCD4 +) [169].

Manipulating the microbiota for cancer therapy

Given the dual role of the bacteria in suppressing or supporting tumorigenesis, manipulating the bacterial community would be beneficial in cancer prevention and treatment. In this regard, multiple strategies have been proposed to alter gut microflora composition: (1) Oral administration of certain types of bacteria classified as probiotics, (2) Using prebiotics (non-digestible food components that are well fermented by beneficial bacteria but not pathogens) to stimulate the growth and activity of beneficial intestinal bacteria, (3) Applying the combination of probiotics microorganisms with prebiotic components to reap the benefits of both strategies (known as synbiotics), (4) Targeting cancer-associated bacteria with antibiotics and (5) Fecal microbiota transplantation (FMT) [157, 170, 171].
With respect to other approaches (applying probiotics and prebiotic components), fecal microbiota transplantation is worked quicker and is more effective in the reconstitution of the intestinal microflora [172]. Moreover, FMT showed more success in controlling Clostridium difficile infection because feces contain additional metabolites such as proteins, bacteriophages, and bile acids [173].
The gut microbiota composition affects both the effectiveness of anti-cancer therapies and the adverse effects (such as chemotherapy, radiotherapy, and immunotherapy). Thus, combining anti-cancer treatments with antibiotics or commercially available probiotic supplements, which provide beneficial bacterial species, may help to improve clinical efficacy and manage side effects [174]. Irinotecan (CPT-11) is a camptothecin derivative that acts as an anti-neoplastic medication by inhibiting topoisomerase I. The glucuronide hydrolysis from SN-38G (the inactive form of SN-38 detoxified in the liver) in the intestinal lumen by bacterial β-glucuronidase causes dose-limiting diarrhea [175]. Studies applied diverse tactics to reduce the incidence and severity of Irinotecan-induced-diarrhea, including administration of antibiotics or probiotics and selective inhibition of β-glucuronidase [175177]. Similarly, surveys such as that conducted by Chitapanarux and coworkers have shown that receiving live lactobacillus acidophilus with Bifidobacterium bifidum during pelvic radiotherapy lowers the severity and incidence of diarrhea [178]. Likewise, oral administration of Bifidobacterium probiotics attenuated colitis following Ipilimumab (anti-CTLA-4) without impairing its therapeutic efficiency in tumor control [179].
Given that F. nucleatum-colonized colorectal cancer suppressed the anti-cancer activity of infiltrated-T and NK cells and augmented cancer cell proliferation, tumor growth, and metastasis, targeting this anaerobe gram-negative bacteria (e.g., with antibiotics) could be valuable for Fusobacterium-enriched CRC treatment [180182]. It should be noted that the consumption of antibiotics may cause unwanted and non-specific depletion of bacterial species [157]. To reduce the undesirable effects of conventional antibiotics, it’s better to apply pathogen-specific antibiotics with a narrow range and preferential cytotoxicity for bacterial species [183, 184].
As another example, an elevated abundance of Bacteroides fragilis following anti-CTLA4 treatment in melanoma patients boosted the clinical response to ipilimumab [125]. Hence, oral administration of B. fragilis, transfer of T cells reactive to B. fragilis, and immunizing with polysaccharides of B. fragilis were all employed to restore the efficacy of anti-CTLA-4 in germ-free or antibiotic-treated mice [125]. Likewise, Cordyceps sinensis polysaccharides (CSP) usage in cyclophosphamide-treated mice affected T helper cells differentiation via upregulating TLR and NF-κB components, increasing SCFAs level, and modulating the composition and diversity of gut microbiota; thus, CSP was recommended as prebiotics to alleviate cyclophosphamide side effects [185].
Based on the difference observed in microbiome composition between immunotherapy-responder and non-responder patients in different types of malignancy (Table 4), multiple clinical trials are conducted to evaluate the efficacy of FMT from ICIs-responders to non-responders to overcome ICIs resistance [186]. Reconstitution of non-responder gut microbiota by fecal microbiota transplantation from responder patients was effective in reducing the ICIs resistance and enhancing the efficacy of immunotherapy approaches [187, 188].
According to the importance of bacterial metabolites in gut homeostasis and carcinogenesis, it could be considered a promising approach for cancer therapy. For instance, preventing polyamines production and uptake and applying short-chain fatty acids have therapeutic potential in cancer treatment [189191]. Karpiński et al. reviewed the number of bacterial bioactive compounds with anticancer properties [192]. Despite several studies on carcinogenic and/or potentially anti-cancer metabolites, most were performed in vitro, and the safe therapeutic dose for clinical usage has not been determined [193]. The intricate interaction between metabolites and the immune system or tumor microenvironment is another limitation in its clinical use [191]. The therapeutic efficacy of metabolites (such as short-chain fatty acids) is dependent on a variety of parameters, including concentration and tissue context. Given The impact of context on optimal concentration, the time of intervention and metabolites delivery to the appropriate site should be considered. On the other hand, since some metabolites are carcinogenic, inhibition of their production process is helpful, but the investigation tools for their pharmacological inhibition are limited [194].
In comparison between several types of conventional anti-cancer treatment (like immunotherapy and chemotherapy) and microbial therapy, it should be noted that the former strategies have multiple disadvantages, including normal tissue toxicity, penetration to solid tumors, and drug resistance [195]. Cytotoxic chemotherapy is the main anti-cancer regime in patients with metastatic CRC [196]. As reported by Jessup and colleagues, the use of adjuvant chemotherapy in stage III colon cancer enhanced patients’ survival; however, its clinical benefit is lower in black persons or patients with high-grade cancer [197]. Immunotherapy, particularly Immune checkpoint inhibitors, is still in the beginning phases of gastrointestinal cancer treatment compared to melanoma and non-small-cell lung cancer (NSCLC). According to Ganesh et al. pembrolizumab and nivolumab, anti-PD1 antibodies, exhibited clinical advantages in patients with dMMR–MSI-H metastatic CRC (mismatch-repair-deficient or have high microsatellite instability). Contrarily, they have limited efficacy in the pMMR–MSI-L group, which compose the majority of patients with metastatic CRC. These types of CRC have Low immune cell infiltration and lower mutational burden. Combining ICIs with chemotherapy and radiotherapy may enhance their clinical efficacy by increasing T cell infiltration [198]. Despite advances in chemotherapy and immunotherapy in the survival of CRC patients, they have been associated with adverse effects such as colitis, diarrhea, and other immune-related adverse effects. Immune evasion and low mutational rates are also two hurdles in immunotherapy to treat gastrointestinal (GI) cancer [199]. Of note, evidence has demonstrated the association between the microbiome and the therapeutic efficacy of cancer treatments. Furthermore, microbiome-based therapies have fewer side effects than traditional treatments; however, more clinical research is necessary. Bacillus Calmette–Guerin (BCG) is the only microbial-based treatment approved by U.S. Food and Drug Administration (FDA). Given the inability of microbial therapy to entirely eliminate tumors, it is helpful to combine it with other conventional treatments. Additionally, bacteria delivery to tumor tissue should be optimized to minimize the possibility of systemic infections [195].

Employing microbes or their metabolites as a predictable marker for clinical response or cancer progression

Immune checkpoint molecules were upregulated in several types of cancer to evade the anti-tumor immune response. So checkpoint inhibitors are applied to reinvigorate the anti-tumor immune response. Still, they could have also activated autoreactive T cells in various organs, such as the gastrointestinal tract, leading to immune-related colitis [200]. Determining the baseline composition of gut microbiota elucidated the association between Firmicutes enriched microbiota (e.g., Faecalibacterium) and clinical response or immune-related adverse events following ipilimumab treatment; thus, suggested as a marker for predicting clinical outcomes and colitis before ipilimumab therapy [201].
Furthermore, according to research conducted by Nomura et al. the concentration of fecal and plasma SCFAs is correlated with the effectiveness of anti-PD1 immunotherapy. The SCFAs concentration in responder and non-responder groups was higher in feces and plasma samples collected before anti-PD1 treatment (nivolumab or pembrolizumab). As a result, fecal SCFAs analysis was recommended as a non-invasive patient screening approach [202].
Given that bacterial genotoxins, including colibactin and Bacteroides fragilis toxin (BFT), play a role in colorectal cancer development, it may be beneficial to utilize as a marker for non-invasive screening of sporadic CRC in combination with a fecal occult blood test (FOBT) [203, 204].
Due to the association between microbiota-derived metabolites and CRC development, several reports highlighted the importance of metabolites as markers for CRC screening. For instance, stool metabolites analysis revealed greater levels of butyric acid and acetic acid in patients with colorectal adenomatous polyps (CAPs) (precancerous lesions of CRC) and higher t10,c12-CLA in healthy individuals [205]. As documented by Xi et al. microbial metabolite contents are varied throughout the different pathogenic sites of CRC [206]. Furthermore, Gas Chromatography–Mass Spectrometry (GC–MS) examination of fecal specimens from CRC patients and healthy people revealed higher concentrations of acetate and amino acids in CRC patients, as well as higher concentrations of butyrate and ursodeoxycholic acid in healthy individuals [207]. Another GC–MS-based metabolomics analysis discovered a higher level of polyamines and amino acids in CRC patients [208]. It's worth mentioning that the outcomes of some investigations were inconsistent. For example, there was no link between fecal SCFAs (acetate, butyrate, and propionate) concentration and tumor status in a study conducted by Sze and colleagues [209].
In addition to the predictive potential of microbial markers in the detection/prognosis of colorectal cancer, its usage is associated with limitations. (1) The complexity and diversity of microbiome between individuals and various populations complicated the detection of universal microbial markers. (2) Due to the variation of different studies in sample collection, metabolite and RNA extraction, and data analysis that impact the determination of microbial markers, standardization is essential to compare the outcomes of studies. (3) The presence of unrelated microbial species in the stool sample makes it difficult to detect biomarkers of the disease. (4) It is pertinent to point out that antibiotics usage alters the microbial community and the expression of markers. (5) The differences between mucosa-associated and fecal microbiota should be considered [210, 211].

Conclusion

Microorganisms (including bacteria, fungi, viruses, and protozoa) are inhabited on all body surfaces and affect various aspects of host physiology, such as metabolism and immune system development. They might act dual role in tumor treatment or progress by various mechanisms. In particular, they could inhibit or support tumor progress by deterring or promoting pro-tumor inflammation, respectively (Fig. 2).
Dysbiosis, or the alteration of the gut microbial community, is caused by environmental or host-related changes and influences the incidence and progression of diseases such as cancer. Indiscriminate antibiotics usage potentiated cancer initiation and progression by depleting health-promoting bacteria, promoting pathogen colonization, and reducing microbial diversity. Hence, restoring normal flora by taking probiotics supplements or other dietary interventions is beneficial for maintaining optimal microbiota composition. In addition, more pathogen-specific antibiotics with a narrow range and developing novel anti-bacterial strategies (like nano-medicine) aid in preserving eubiosis [183, 184].
The interaction between gastrointestinal microbiota and cancer progression is bidirectional, implying that tumor advancement impacts tumor/gut microbiota and vice versa. As a result, irrespective of whether the gut dysbiosis is the consequence of malignancy or the cause, it would be worthwhile to investigate the microbial community as a predictor of disease progression and response to treatment. Furthermore, since microflora may play a role in modifying the curative efficacy of anti-cancer therapy and alleviating their adverse effects, any changes in their diversity or population can affect the clinical outcomes of anti-cancer approaches. This study recapitulated the information that confirmed the link between gut microbiota and cancer. Despite extensive research in this area, only a few prospective studies have documented the causative role of microbiota in tumor initiation. Hence, further research is required to determine the mechanisms of microbial involvement in cancer occurrence to prevent carcinogenesis.
Despite huge advances in cancer treatment, not all individuals respond to treatment in the same way. At least in part, these discrepancies may be linked to microbial population diversity. Accordingly, identifying the bacteria involved and modulating the microbiome through dietary interventions, FMT, and antibiotics administration can improve response to therapy. Cancer bacteriotherapy (use of bacteria in cancer treatment, either alone or in combination with other therapies) can be utilized for the targeted delivery of therapeutic agents. Although the use of bacteria in cancer treatment has long been discussed, it has recently received more attention as a novel anti-cancer approach.

Acknowledgements

Not applicable

Declarations

Not applicable.
Not applicable.

Competing interests

There is no conflict of interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020;12(2):381.PubMedCentralCrossRef Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020;12(2):381.PubMedCentralCrossRef
3.
Zurück zum Zitat Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–5.PubMedPubMedCentralCrossRef Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–5.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralCrossRef Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99.PubMedPubMedCentralCrossRef Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.PubMedPubMedCentralCrossRef Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.PubMedPubMedCentralCrossRef Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.PubMedPubMedCentralCrossRef Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.PubMedPubMedCentralCrossRef Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRef Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32.PubMedCrossRef Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32.PubMedCrossRef
14.
Zurück zum Zitat Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.PubMedCrossRef Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.PubMedCrossRef
15.
Zurück zum Zitat Bostanciklioğlu M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J Appl Microbiol. 2019;127(4):954–67.PubMedCrossRef Bostanciklioğlu M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J Appl Microbiol. 2019;127(4):954–67.PubMedCrossRef
16.
Zurück zum Zitat Luca M, Di Mauro M, Di Mauro M, Luca A. Gut microbiota in alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Longev. 2019;2019:4730539.PubMedPubMedCentral Luca M, Di Mauro M, Di Mauro M, Luca A. Gut microbiota in alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxid Med Cell Longev. 2019;2019:4730539.PubMedPubMedCentral
17.
Zurück zum Zitat Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion. 2019;100(1):72–8.PubMedCrossRef Lin C, Cai X, Zhang J, Wang W, Sheng Q, Hua H, Zhou X. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion. 2019;100(1):72–8.PubMedCrossRef
18.
Zurück zum Zitat Pitocco D, Di Leo M, Tartaglione L, De Leva F, Petruzziello C, Saviano A, Pontecorvi A, Ojetti V. The role of gut microbiota in mediating obesity and diabetes mellitus. Eur Rev Med Pharmacol Sci. 2020;24(3):1548–62.PubMed Pitocco D, Di Leo M, Tartaglione L, De Leva F, Petruzziello C, Saviano A, Pontecorvi A, Ojetti V. The role of gut microbiota in mediating obesity and diabetes mellitus. Eur Rev Med Pharmacol Sci. 2020;24(3):1548–62.PubMed
20.
Zurück zum Zitat Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11:282.PubMedPubMedCentralCrossRef Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11:282.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85.PubMedCrossRef De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85.PubMedCrossRef
22.
Zurück zum Zitat Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9.CrossRef Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4(4):127–9.CrossRef
23.
Zurück zum Zitat García-Castillo V, Sanhueza E, McNerney E, Onate SA, García A. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016;65(12):1347–62.PubMedCrossRef García-Castillo V, Sanhueza E, McNerney E, Onate SA, García A. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016;65(12):1347–62.PubMedCrossRef
24.
Zurück zum Zitat Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front Cell Infect Microbiol. 2021;11: 559148.PubMedPubMedCentralCrossRef Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front Cell Infect Microbiol. 2021;11: 559148.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(6):1534-46.e3.PubMedCrossRef Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(6):1534-46.e3.PubMedCrossRef
26.
Zurück zum Zitat Sun D, Chen Y, Fang JY. Influence of the microbiota on epigenetics in colorectal cancer. Natl Sci Rev. 2019;6(6):1138–48.PubMedCrossRef Sun D, Chen Y, Fang JY. Influence of the microbiota on epigenetics in colorectal cancer. Natl Sci Rev. 2019;6(6):1138–48.PubMedCrossRef
27.
Zurück zum Zitat Rezasoltani S, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R, Zali MR. Gut microbiota, epigenetic modification and colorectal cancer. Iran J Microbiol. 2017;9(2):55–63.PubMedPubMedCentral Rezasoltani S, Asadzadeh-Aghdaei H, Nazemalhosseini-Mojarad E, Dabiri H, Ghanbari R, Zali MR. Gut microbiota, epigenetic modification and colorectal cancer. Iran J Microbiol. 2017;9(2):55–63.PubMedPubMedCentral
29.
Zurück zum Zitat Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y, Yang W, Li MS, Shin VY, Tong JH, et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res. 2015;75(4):754–65.PubMedCrossRef Shen J, Xiao Z, Wu WK, Wang MH, To KF, Chen Y, Yang W, Li MS, Shin VY, Tong JH, et al. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res. 2015;75(4):754–65.PubMedCrossRef
30.
Zurück zum Zitat Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology. 2021;160(2):600–13.PubMedCrossRef Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology. 2021;160(2):600–13.PubMedCrossRef
32.
Zurück zum Zitat Huët MAL, Lee CZ, Rahman S. A review on association of fungi with the development and progression of carcinogenesis in the human body. Curr Res Microb Sci. 2022;3: 100090.PubMed Huët MAL, Lee CZ, Rahman S. A review on association of fungi with the development and progression of carcinogenesis in the human body. Curr Res Microb Sci. 2022;3: 100090.PubMed
33.
Zurück zum Zitat Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 2015;5:7980.PubMedPubMedCentralCrossRef Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 2015;5:7980.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–62.PubMedCrossRef Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–62.PubMedCrossRef
35.
Zurück zum Zitat Gao R, Kong C, Li H, Huang L, Qu X, Qin N, Qin H. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017;36(12):2457–68.PubMedCrossRef Gao R, Kong C, Li H, Huang L, Qu X, Qin N, Qin H. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 2017;36(12):2457–68.PubMedCrossRef
36.
Zurück zum Zitat Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008;32(3):609–17.PubMed Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008;32(3):609–17.PubMed
37.
Zurück zum Zitat Mishra R, Rajsiglová L, Lukáč P, Tenti P, Šima P, Čaja F, Vannucci L. Spontaneous and induced tumors in germ-free animals: a general review. Medicina (Kaunas). 2021;57(3):260.PubMedPubMedCentralCrossRef Mishra R, Rajsiglová L, Lukáč P, Tenti P, Šima P, Čaja F, Vannucci L. Spontaneous and induced tumors in germ-free animals: a general review. Medicina (Kaunas). 2021;57(3):260.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Mizutani T, Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J Natl Cancer Inst. 1979;63(6):1365–70.PubMed Mizutani T, Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J Natl Cancer Inst. 1979;63(6):1365–70.PubMed
39.
Zurück zum Zitat Mizutani T, Yamamoto T, Ozaki A, Oowada T, Mitsuoka T. Spontaneous polyposis in the small intestine of germ-free and conventionalized BALB/c mice. Cancer Lett. 1984;25(1):19–23.PubMedCrossRef Mizutani T, Yamamoto T, Ozaki A, Oowada T, Mitsuoka T. Spontaneous polyposis in the small intestine of germ-free and conventionalized BALB/c mice. Cancer Lett. 1984;25(1):19–23.PubMedCrossRef
40.
Zurück zum Zitat Pilgrim HI, Labrecque AD. The incidence of mammary tumors in germ-free C3H mice. Cancer Res. 1967;27(3):584–6.PubMed Pilgrim HI, Labrecque AD. The incidence of mammary tumors in germ-free C3H mice. Cancer Res. 1967;27(3):584–6.PubMed
41.
Zurück zum Zitat Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975;35(2):287–90.PubMed Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975;35(2):287–90.PubMed
42.
Zurück zum Zitat Pollard M, Salomon JC. Oncogenic effect of methyl-cholanthrene in new-born germfree mice. Proc Soc Exp Biol Med. 1963;112:256–9.PubMedCrossRef Pollard M, Salomon JC. Oncogenic effect of methyl-cholanthrene in new-born germfree mice. Proc Soc Exp Biol Med. 1963;112:256–9.PubMedCrossRef
43.
Zurück zum Zitat Burstein NA, McIntire KR, Allison AC. Pulmonary tumors in germfree mice: induction with urethan. J Natl Cancer Inst. 1970;44(1):211–4.PubMed Burstein NA, McIntire KR, Allison AC. Pulmonary tumors in germfree mice: induction with urethan. J Natl Cancer Inst. 1970;44(1):211–4.PubMed
44.
Zurück zum Zitat Reddy BS, Narisawa T, Weisburger JH. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res. 1976;36(8):2874–6.PubMed Reddy BS, Narisawa T, Weisburger JH. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res. 1976;36(8):2874–6.PubMed
45.
Zurück zum Zitat Zhan Y, Chen PJ, Sadler WD, Wang F, Poe S, Núñez G, Eaton KA, Chen GY. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013;73(24):7199–210.PubMedCrossRef Zhan Y, Chen PJ, Sadler WD, Wang F, Poe S, Núñez G, Eaton KA, Chen GY. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013;73(24):7199–210.PubMedCrossRef
46.
Zurück zum Zitat Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med. 2020;9(17):6306–21.PubMedPubMedCentralCrossRef Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med. 2020;9(17):6306–21.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Mo S, Ru H, Huang M, Cheng L, Mo X, Yan L. Oral-intestinal microbiota in colorectal cancer: inflammation and immunosuppression. J Inflamm Res. 2022;15:747–59.PubMedPubMedCentralCrossRef Mo S, Ru H, Huang M, Cheng L, Mo X, Yan L. Oral-intestinal microbiota in colorectal cancer: inflammation and immunosuppression. J Inflamm Res. 2022;15:747–59.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.PubMedPubMedCentralCrossRef Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.PubMedPubMedCentralCrossRef Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Komiya Y, Shimomura Y, Higurashi T, Sugi Y, Arimoto J, Umezawa S, Uchiyama S, Matsumoto M, Nakajima A. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 2019;68(7):1335–7.PubMedCrossRef Komiya Y, Shimomura Y, Higurashi T, Sugi Y, Arimoto J, Umezawa S, Uchiyama S, Matsumoto M, Nakajima A. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 2019;68(7):1335–7.PubMedCrossRef
53.
Zurück zum Zitat Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O’Riordain M, Shanahan F, O’Toole PW. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454–63.PubMedCrossRef Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O’Riordain M, Shanahan F, O’Toole PW. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67(8):1454–63.PubMedCrossRef
55.
56.
57.
Zurück zum Zitat Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153(6):1621-33.e6.PubMedCrossRef Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153(6):1621-33.e6.PubMedCrossRef
58.
Zurück zum Zitat Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, Yajuk O, Isaacson B, Abed J, Maalouf N, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259.PubMedPubMedCentralCrossRef Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, Yajuk O, Isaacson B, Abed J, Maalouf N, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20(2):215–25.PubMedPubMedCentralCrossRef Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20(2):215–25.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Gagliani N, Hu B, Huber S, Elinav E, Flavell RA. The fire within: microbes inflame tumors. Cell. 2014;157(4):776–83.PubMedCrossRef Gagliani N, Hu B, Huber S, Elinav E, Flavell RA. The fire within: microbes inflame tumors. Cell. 2014;157(4):776–83.PubMedCrossRef
62.
Zurück zum Zitat Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.PubMedPubMedCentralCrossRef Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 2020;39(1):202.PubMedPubMedCentralCrossRef Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N, et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res. 2020;39(1):202.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.PubMedCrossRef Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.PubMedCrossRef
66.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
68.
Zurück zum Zitat Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.PubMedCrossRef Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.PubMedCrossRef
69.
Zurück zum Zitat Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, Li J, Zhang D, Zhou Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 2016;7(29):46158–72.PubMedPubMedCentralCrossRef Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, Li J, Zhang D, Zhou Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 2016;7(29):46158–72.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.PubMedCrossRef Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.PubMedCrossRef
71.
Zurück zum Zitat Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81.PubMedCrossRef Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133(6):1869–81.PubMedCrossRef
72.
Zurück zum Zitat Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317(5834):124–7.PubMedCrossRef Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317(5834):124–7.PubMedCrossRef
73.
Zurück zum Zitat Cianci R, Franza L, Schinzari G, Rossi E, Ianiro G, Tortora G, Gasbarrini A, Gambassi G, Cammarota G. The interplay between immunity and microbiota at intestinal immunological niche: the case of cancer. Int J Mol Sci. 2019;20(3):501.PubMedCentralCrossRef Cianci R, Franza L, Schinzari G, Rossi E, Ianiro G, Tortora G, Gasbarrini A, Gambassi G, Cammarota G. The interplay between immunity and microbiota at intestinal immunological niche: the case of cancer. Int J Mol Sci. 2019;20(3):501.PubMedCentralCrossRef
74.
Zurück zum Zitat Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.PubMedCrossRef Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.PubMedCrossRef
75.
Zurück zum Zitat Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301–10.PubMedCrossRef Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2(4):301–10.PubMedCrossRef
76.
Zurück zum Zitat Qu B, Liu BR, Du YJ, Chen J, Cheng YQ, Xu W, Wang XH. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett. 2014;7(4):1175–8.PubMedPubMedCentralCrossRef Qu B, Liu BR, Du YJ, Chen J, Cheng YQ, Xu W, Wang XH. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett. 2014;7(4):1175–8.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.PubMedPubMedCentralCrossRef Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207(5):1045–56.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.PubMedPubMedCentralCrossRef Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, Jin C, Wunderlich C, Wunderlich T, Eisenbarth SC, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA. 2013;110(24):9862–7.PubMedPubMedCentralCrossRef Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, Jin C, Wunderlich C, Wunderlich T, Eisenbarth SC, et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci USA. 2013;110(24):9862–7.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Hu B, Friedman G, Elinav E, Flavell RA. Transmissible inflammation-induced colorectal cancer in inflammasome-deficient mice. Oncoimmunology. 2019;8(10): e981995.PubMedCrossRef Hu B, Friedman G, Elinav E, Flavell RA. Transmissible inflammation-induced colorectal cancer in inflammasome-deficient mice. Oncoimmunology. 2019;8(10): e981995.PubMedCrossRef
81.
Zurück zum Zitat Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentral Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.PubMedPubMedCentral
82.
Zurück zum Zitat Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi KS. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA. 2009;106(37):15813–8.PubMedPubMedCentralCrossRef Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi KS. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA. 2009;106(37):15813–8.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Rehman A, Sina C, Gavrilova O, Häsler R, Ott S, Baines JF, Schreiber S, Rosenstiel P. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10):1354–62.PubMedCrossRef Rehman A, Sina C, Gavrilova O, Häsler R, Ott S, Baines JF, Schreiber S, Rosenstiel P. Nod2 is essential for temporal development of intestinal microbial communities. Gut. 2011;60(10):1354–62.PubMedCrossRef
84.
Zurück zum Zitat Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–8.PubMedPubMedCentralCrossRef Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–8.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71.PubMedCrossRef Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71.PubMedCrossRef
86.
Zurück zum Zitat Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455(7214):808–12.PubMedCrossRef Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455(7214):808–12.PubMedCrossRef
87.
Zurück zum Zitat Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedPubMedCentralCrossRef Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.PubMedPubMedCentralCrossRef Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, Smith KN, Tam A, Ganguly S, Wanyiri JW, et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res. 2016;76(8):2115–24.PubMedPubMedCentralCrossRef Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, Smith KN, Tam A, Ganguly S, Wanyiri JW, et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res. 2016;76(8):2115–24.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.PubMedPubMedCentralCrossRef Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, Soria JC, Marty V, Vielh P, Robert C, et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011;71(3):661–5.PubMedCrossRef Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, Soria JC, Marty V, Vielh P, Robert C, et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011;71(3):661–5.PubMedCrossRef
94.
Zurück zum Zitat Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSM, Dórea R, Dantas ACS, et al. Relationship between Th17 immune response and cancer. World J Clin Oncol. 2021;12(10):845–67.PubMedPubMedCentralCrossRef Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSM, Dórea R, Dantas ACS, et al. Relationship between Th17 immune response and cancer. World J Clin Oncol. 2021;12(10):845–67.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y, Tomczak M, Rogers AB, Horwitz BH, Fox JG. CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res. 2003;63(18):6042–50.PubMed Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y, Tomczak M, Rogers AB, Horwitz BH, Fox JG. CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res. 2003;63(18):6042–50.PubMed
97.
Zurück zum Zitat Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B, Horwitz BH, Fox JG. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003;162(2):691–702.PubMedPubMedCentralCrossRef Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B, Horwitz BH, Fox JG. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003;162(2):691–702.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedCrossRef Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedCrossRef
99.
Zurück zum Zitat Dejea C, Wick E, Sears CL. Bacterial oncogenesis in the colon. Future Microbiol. 2013;8(4):445–60.PubMedCrossRef Dejea C, Wick E, Sears CL. Bacterial oncogenesis in the colon. Future Microbiol. 2013;8(4):445–60.PubMedCrossRef
100.
Zurück zum Zitat Lax AJ. Opinion: bacterial toxins and cancer—a case to answer? Nat Rev Microbiol. 2005;3(4):343–9.PubMedCrossRef Lax AJ. Opinion: bacterial toxins and cancer—a case to answer? Nat Rev Microbiol. 2005;3(4):343–9.PubMedCrossRef
101.
Zurück zum Zitat Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(4):196–219.PubMedPubMedCentralCrossRef Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(4):196–219.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447(7142):330–3.PubMedCrossRef Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447(7142):330–3.PubMedCrossRef
104.
Zurück zum Zitat Ansari S, Yamaoka Y. Helicobacter pylori virulence factor cytotoxin-associated gene A (CagA)-mediated gastric pathogenicity. Int J Mol Sci. 2020;21(19):7430.PubMedCentralCrossRef Ansari S, Yamaoka Y. Helicobacter pylori virulence factor cytotoxin-associated gene A (CagA)-mediated gastric pathogenicity. Int J Mol Sci. 2020;21(19):7430.PubMedCentralCrossRef
105.
Zurück zum Zitat Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306–16.PubMedCrossRef Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe. 2014;15(3):306–16.PubMedCrossRef
106.
Zurück zum Zitat Kim JM, Cho SJ, Oh YK, Jung HY, Kim YJ, Kim N. Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Clin Exp Immunol. 2002;130(1):59–66.PubMedPubMedCentralCrossRef Kim JM, Cho SJ, Oh YK, Jung HY, Kim YJ, Kim N. Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Clin Exp Immunol. 2002;130(1):59–66.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Sanfilippo L, Li CK, Seth R, Balwin TJ, Menozzi MG, Mahida YR. Bacteroides fragilis enterotoxin induces the expression of IL-8 and transforming growth factor-beta (TGF-beta) by human colonic epithelial cells. Clin Exp Immunol. 2000;119(3):456–63.PubMedPubMedCentralCrossRef Sanfilippo L, Li CK, Seth R, Balwin TJ, Menozzi MG, Mahida YR. Bacteroides fragilis enterotoxin induces the expression of IL-8 and transforming growth factor-beta (TGF-beta) by human colonic epithelial cells. Clin Exp Immunol. 2000;119(3):456–63.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE. 2017;12(2): e0171602.PubMedPubMedCentralCrossRef Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE. 2017;12(2): e0171602.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108(37):15354–9.PubMedPubMedCentralCrossRef Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108(37):15354–9.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Weikel CS, Grieco FD, Reuben J, Myers LL, Sack RB. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992;60(2):321–7.PubMedPubMedCentralCrossRef Weikel CS, Grieco FD, Reuben J, Myers LL, Sack RB. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992;60(2):321–7.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA. 1998;95(25):14979–84.PubMedPubMedCentralCrossRef Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA. 1998;95(25):14979–84.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.PubMedCrossRef Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.PubMedCrossRef
113.
Zurück zum Zitat Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.PubMedCrossRef Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661–72.PubMedCrossRef
114.
Zurück zum Zitat Buda A, Qualtrough D, Jepson MA, Martines D, Paraskeva C, Pignatelli M. Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut. 2003;52(5):729–34.PubMedPubMedCentralCrossRef Buda A, Qualtrough D, Jepson MA, Martines D, Paraskeva C, Pignatelli M. Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut. 2003;52(5):729–34.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.PubMedCrossRef Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.PubMedCrossRef
116.
Zurück zum Zitat Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.PubMedCrossRef Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.PubMedCrossRef
117.
Zurück zum Zitat Ewaschuk JB, Walker JW, Diaz H, Madsen KL. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr. 2006;136(6):1483–7.PubMedCrossRef Ewaschuk JB, Walker JW, Diaz H, Madsen KL. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr. 2006;136(6):1483–7.PubMedCrossRef
118.
Zurück zum Zitat Maggiora M, Bologna M, Cerù MP, Possati L, Angelucci A, Cimini A, Miglietta A, Bozzo F, Margiotta C, Muzio G, et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer. 2004;112(6):909–19.PubMedCrossRef Maggiora M, Bologna M, Cerù MP, Possati L, Angelucci A, Cimini A, Miglietta A, Bozzo F, Margiotta C, Muzio G, et al. An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer. 2004;112(6):909–19.PubMedCrossRef
119.
Zurück zum Zitat Nakashima C, Shingo K, Fujiwara-Tani R, Luo Y, Kawahara I, Goto K, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Expression of long-chain fatty acid receptor GPR40 is associated with cancer progression in colorectal cancer: a retrospective study. Oncol Lett. 2018;15(6):8641–6.PubMedPubMedCentral Nakashima C, Shingo K, Fujiwara-Tani R, Luo Y, Kawahara I, Goto K, Sasaki T, Fujii K, Ohmori H, Kuniyasu H. Expression of long-chain fatty acid receptor GPR40 is associated with cancer progression in colorectal cancer: a retrospective study. Oncol Lett. 2018;15(6):8641–6.PubMedPubMedCentral
120.
Zurück zum Zitat Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310(4): 151425.PubMedCrossRef Tsvetikova SA, Koshel EI. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 2020;310(4): 151425.PubMedCrossRef
121.
Zurück zum Zitat Bernstein H, Bernstein C, Payne CM, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009;15(27):3329–40.PubMedPubMedCentralCrossRef Bernstein H, Bernstein C, Payne CM, Dvorak K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 2009;15(27):3329–40.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 2004;15(5):2156–63.PubMedPubMedCentralCrossRef Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 2004;15(5):2156–63.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol. 2021;12: 622064.PubMedPubMedCentralCrossRef Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol. 2021;12: 622064.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science. 2020;369(6506):936–42.PubMedCrossRef Fluckiger A, Daillère R, Sassi M, Sixt BS, Liu P, Loos F, Richard C, Rabu C, Alou MT, Goubet AG, et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science. 2020;369(6506):936–42.PubMedCrossRef
125.
Zurück zum Zitat Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.PubMedPubMedCentralCrossRef Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Shao Y, Zeng X. Molecular mechanisms of gut microbiota-associated colorectal carcinogenesis. Infect Microbes Dis. 2020;2(3):96–106. Shao Y, Zeng X. Molecular mechanisms of gut microbiota-associated colorectal carcinogenesis. Infect Microbes Dis. 2020;2(3):96–106.
127.
Zurück zum Zitat Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE. 2013;8(2): e56964.PubMedPubMedCentralCrossRef Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE. 2013;8(2): e56964.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5(5):675–80.PubMedPubMedCentralCrossRef Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5(5):675–80.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–42.PubMedCrossRef Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–42.PubMedCrossRef
130.
Zurück zum Zitat Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial involvement in progression and metastasis of colorectal neoplasia. Cancers (Basel). 2022;14(4):1019.PubMedPubMedCentralCrossRef Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial involvement in progression and metastasis of colorectal neoplasia. Cancers (Basel). 2022;14(4):1019.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Whisner CM, Athena AC. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep. 2019;8(1):42–51.PubMedPubMedCentralCrossRef Whisner CM, Athena AC. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep. 2019;8(1):42–51.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Kich DM, Vincenzi A, Majolo F, Volken de Souza CF, Goettert MI. Probiotic: effectiveness nutrition in cancer treatment and prevention. Nutr Hosp. 2016;33(6):1430–7.PubMedCrossRef Kich DM, Vincenzi A, Majolo F, Volken de Souza CF, Goettert MI. Probiotic: effectiveness nutrition in cancer treatment and prevention. Nutr Hosp. 2016;33(6):1430–7.PubMedCrossRef
133.
Zurück zum Zitat Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol. 2019;76(8):939–49.PubMedPubMedCentralCrossRef Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol. 2019;76(8):939–49.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Peluzio MD. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 2017;37:1–19.PubMedCrossRef Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Peluzio MD. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 2017;37:1–19.PubMedCrossRef
135.
Zurück zum Zitat Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019;234(10):17127–43.PubMedCrossRef Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 2019;234(10):17127–43.PubMedCrossRef
137.
Zurück zum Zitat Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, Kim SA, Masuda A, Nowak JA, Nosho K, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.PubMedPubMedCentralCrossRef Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, Kim SA, Masuda A, Nowak JA, Nosho K, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55.PubMedPubMedCentralCrossRef Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Zhang W, Wen K, Azevedo MS, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121(3–4):222–31.PubMedCrossRef Zhang W, Wen K, Azevedo MS, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121(3–4):222–31.PubMedCrossRef
142.
Zurück zum Zitat Mørland B, Midtvedt T. Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice. Infect Immun. 1984;44(3):750–2.PubMedPubMedCentralCrossRef Mørland B, Midtvedt T. Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice. Infect Immun. 1984;44(3):750–2.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Ohkubo T, Tsuda M, Tamura M, Yamamura M. Impaired superoxide production in peripheral blood neutrophils of germ-free rats. Scand J Immunol. 1990;32(6):727–9.PubMedCrossRef Ohkubo T, Tsuda M, Tamura M, Yamamura M. Impaired superoxide production in peripheral blood neutrophils of germ-free rats. Scand J Immunol. 1990;32(6):727–9.PubMedCrossRef
144.
Zurück zum Zitat Ohkubo T, Tsuda M, Suzuki S, El Borai N, Yamamura M. Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment. Scand J Immunol. 1999;49(1):73–7.PubMedCrossRef Ohkubo T, Tsuda M, Suzuki S, El Borai N, Yamamura M. Peripheral blood neutrophils of germ-free rats modified by in vivo granulocyte-colony-stimulating factor and exposure to natural environment. Scand J Immunol. 1999;49(1):73–7.PubMedCrossRef
145.
Zurück zum Zitat He X, Dong Y, Wu CW, Zhao Z, Ng SSM, Chan FKL, Sung JJY, Yu J. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med (Cambridge, Mass). 2012;18(1):1491–8.CrossRef He X, Dong Y, Wu CW, Zhao Z, Ng SSM, Chan FKL, Sung JJY, Yu J. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med (Cambridge, Mass). 2012;18(1):1491–8.CrossRef
146.
Zurück zum Zitat Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol. 2015;45(1):17–31.PubMedCrossRef Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol. 2015;45(1):17–31.PubMedCrossRef
147.
Zurück zum Zitat Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354–9.PubMedPubMedCentralCrossRef Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354–9.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Heymann CJF, Bard JM, Heymann MF, Heymann D, Bobin-Dubigeon C. The intratumoral microbiome: characterization methods and functional impact. Cancer Lett. 2021;522:63–79.PubMedCrossRef Heymann CJF, Bard JM, Heymann MF, Heymann D, Bobin-Dubigeon C. The intratumoral microbiome: characterization methods and functional impact. Cancer Lett. 2021;522:63–79.PubMedCrossRef
149.
Zurück zum Zitat Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, Palmer DC, Boni A, Muranski P, Yu Z, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest. 2007;117(8):2197–204.PubMedPubMedCentralCrossRef Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, Palmer DC, Boni A, Muranski P, Yu Z, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest. 2007;117(8):2197–204.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65.PubMedCrossRef Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65.PubMedCrossRef
151.
Zurück zum Zitat Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–43.PubMedCrossRef Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–43.PubMedCrossRef
152.
Zurück zum Zitat Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22.PubMedCrossRef Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res. 2017;179:204–22.PubMedCrossRef
153.
Zurück zum Zitat Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.PubMedPubMedCentralCrossRef Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A, Arcaro G. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139–47.PubMedCrossRef Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A, Arcaro G. Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139–47.PubMedCrossRef
155.
Zurück zum Zitat van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, Harmsen HJ. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49(2):262–70.PubMedCrossRef van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, Harmsen HJ. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49(2):262–70.PubMedCrossRef
156.
Zurück zum Zitat Yang J, Liu KX, Qu JM, Wang XD. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol. 2013;714(1–3):120–4.PubMedCrossRef Yang J, Liu KX, Qu JM, Wang XD. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol. 2013;714(1–3):120–4.PubMedCrossRef
157.
Zurück zum Zitat Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):92.PubMedPubMedCentralCrossRef Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):92.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Ohigashi S, Sudo K, Kobayashi D, Takahashi T, Nomoto K, Onodera H. Significant changes in the intestinal environment after surgery in patients with colorectal cancer. J Gastrointest Surg. 2013;17(9):1657–64.PubMedCrossRef Ohigashi S, Sudo K, Kobayashi D, Takahashi T, Nomoto K, Onodera H. Significant changes in the intestinal environment after surgery in patients with colorectal cancer. J Gastrointest Surg. 2013;17(9):1657–64.PubMedCrossRef
159.
162.
Zurück zum Zitat Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.PubMedPubMedCentralCrossRef Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.PubMedCrossRef Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.PubMedCrossRef
164.
Zurück zum Zitat Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369(6510):1481–9.PubMedCrossRef Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369(6510):1481–9.PubMedCrossRef
165.
Zurück zum Zitat Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600–5.PubMedCrossRef Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600–5.PubMedCrossRef
166.
Zurück zum Zitat Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.PubMedCrossRef Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.PubMedCrossRef
167.
Zurück zum Zitat Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.PubMedPubMedCentralCrossRef Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integr Cancer Ther. 2019;18:1534735419876351.PubMedPubMedCentralCrossRef Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integr Cancer Ther. 2019;18:1534735419876351.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.PubMedCentralCrossRef Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.PubMedCentralCrossRef
171.
Zurück zum Zitat Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers (Basel). 2020;13(1):20.PubMedCentralCrossRef Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers (Basel). 2020;13(1):20.PubMedCentralCrossRef
172.
Zurück zum Zitat BouZerdan M, Niforatos S, Nasr S, Nasr D, Ombada M, John S, Dutta D, Lim SH. Fecal microbiota transplant for hematologic and oncologic diseases: principle and practice. Cancers (Basel). 2022;14(3):691.CrossRef BouZerdan M, Niforatos S, Nasr S, Nasr D, Ombada M, John S, Dutta D, Lim SH. Fecal microbiota transplant for hematologic and oncologic diseases: principle and practice. Cancers (Basel). 2022;14(3):691.CrossRef
173.
Zurück zum Zitat van Nood E, Speelman P, Nieuwdorp M, Keller J. Fecal microbiota transplantation: facts and controversies. Curr Opin Gastroenterol. 2014;30(1):34–9.PubMedCrossRef van Nood E, Speelman P, Nieuwdorp M, Keller J. Fecal microbiota transplantation: facts and controversies. Curr Opin Gastroenterol. 2014;30(1):34–9.PubMedCrossRef
174.
Zurück zum Zitat Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85.PubMedCrossRef Roy S, Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17(5):271–85.PubMedCrossRef
175.
Zurück zum Zitat Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 1996;56(16):3752–7.PubMed Takasuna K, Hagiwara T, Hirohashi M, Kato M, Nomura M, Nagai E, Yokoi T, Kamataki T. Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 1996;56(16):3752–7.PubMed
176.
Zurück zum Zitat Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–5.PubMedPubMedCentralCrossRef Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science. 2010;330(6005):831–5.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, Reckova M, Miskovska V, Bystricky B, Beniak J, Medvecova L, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med. 2015;23(3):356–62.PubMedCrossRef Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, Reckova M, Miskovska V, Bystricky B, Beniak J, Medvecova L, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med. 2015;23(3):356–62.PubMedCrossRef
178.
Zurück zum Zitat Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010;5:31.PubMedPubMedCentralCrossRef Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010;5:31.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Wang F, Yin Q, Chen L, Davis MM. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc Natl Acad Sci USA. 2018;115(1):157–61.PubMedCrossRef Wang F, Yin Q, Chen L, Davis MM. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc Natl Acad Sci USA. 2018;115(1):157–61.PubMedCrossRef
180.
Zurück zum Zitat Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8.PubMedPubMedCentralCrossRef Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358(6369):1443–8.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Chen Y, Chen Y, Zhang J, Cao P, Su W, Deng Y, Zhan N, Fu X, Huang Y, Dong W. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics. 2020;10(1):323–39.PubMedPubMedCentralCrossRef Chen Y, Chen Y, Zhang J, Cao P, Su W, Deng Y, Zhan N, Fu X, Huang Y, Dong W. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics. 2020;10(1):323–39.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Gur C, Maalouf N, Shhadeh A, Berhani O, Singer BB, Bachrach G, Mandelboim O. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology. 2019;8(6): e1581531.PubMedPubMedCentralCrossRef Gur C, Maalouf N, Shhadeh A, Berhani O, Singer BB, Bachrach G, Mandelboim O. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology. 2019;8(6): e1581531.PubMedPubMedCentralCrossRef
183.
184.
Zurück zum Zitat Chaurasia AK, Thorat ND, Tandon A, Kim JH, Park SH, Kim KK. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep. 2016;6:33662.PubMedPubMedCentralCrossRef Chaurasia AK, Thorat ND, Tandon A, Kim JH, Park SH, Kim KK. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep. 2016;6:33662.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, Nie S, Xie M. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym. 2020;235: 115957.PubMedCrossRef Ying M, Yu Q, Zheng B, Wang H, Wang J, Chen S, Nie S, Xie M. Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym. 2020;235: 115957.PubMedCrossRef
186.
Zurück zum Zitat Bae J, Park K, Kim YM. Commensal microbiota and cancer immunotherapy: harnessing commensal bacteria for cancer therapy. Immune Netw. 2022;22(1): e3.PubMedPubMedCentralCrossRef Bae J, Park K, Kim YM. Commensal microbiota and cancer immunotherapy: harnessing commensal bacteria for cancer therapy. Immune Netw. 2022;22(1): e3.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602.PubMedPubMedCentralCrossRef Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9.PubMedCrossRef Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9.PubMedCrossRef
190.
Zurück zum Zitat Quemener V, Blanchard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux JP. Polyamine deprivation: a new tool in cancer treatment. Anticancer Res. 1994;14(2a):443–8.PubMed Quemener V, Blanchard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux JP. Polyamine deprivation: a new tool in cancer treatment. Anticancer Res. 1994;14(2a):443–8.PubMed
191.
Zurück zum Zitat Tian T, Zhao Y, Yang Y, Wang T, Jin S, Guo J, Liu Z. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. Am J Cancer Res. 2020;10(11):3508–31.PubMedPubMedCentral Tian T, Zhao Y, Yang Y, Wang T, Jin S, Guo J, Liu Z. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. Am J Cancer Res. 2020;10(11):3508–31.PubMedPubMedCentral
192.
193.
Zurück zum Zitat Jaye K, Li CG, Chang D, Bhuyan DJ. The role of key gut microbial metabolites in the development and treatment of cancer. Gut Microbes. 2022;14(1):2038865.PubMedPubMedCentralCrossRef Jaye K, Li CG, Chang D, Bhuyan DJ. The role of key gut microbial metabolites in the development and treatment of cancer. Gut Microbes. 2022;14(1):2038865.PubMedPubMedCentralCrossRef
194.
195.
Zurück zum Zitat Sieow BF, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer. 2021;7(5):447–64.PubMedCrossRef Sieow BF, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer. 2021;7(5):447–64.PubMedCrossRef
197.
Zurück zum Zitat Jessup JM, Stewart A, Greene FL, Minsky BD. Adjuvant chemotherapy for stage III colon cancer: implications of race/ethnicity, age, and differentiation. JAMA. 2005;294(21):2703–11.PubMedCrossRef Jessup JM, Stewart A, Greene FL, Minsky BD. Adjuvant chemotherapy for stage III colon cancer: implications of race/ethnicity, age, and differentiation. JAMA. 2005;294(21):2703–11.PubMedCrossRef
198.
Zurück zum Zitat Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–75.PubMedPubMedCentralCrossRef Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–75.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Newsome RC, Yang Y, Jobin C. The microbiome, gastrointestinal cancer, and immunotherapy. J Gastroenterol Hepatol. 2022;37(2):263–72.PubMedCrossRef Newsome RC, Yang Y, Jobin C. The microbiome, gastrointestinal cancer, and immunotherapy. J Gastroenterol Hepatol. 2022;37(2):263–72.PubMedCrossRef
200.
Zurück zum Zitat Som A, Mandaliya R, Alsaadi D, Farshidpour M, Charabaty A, Malhotra N, Mattar MC. Immune checkpoint inhibitor-induced colitis: a comprehensive review. World J Clin Cases. 2019;7(4):405–18.PubMedPubMedCentralCrossRef Som A, Mandaliya R, Alsaadi D, Farshidpour M, Charabaty A, Malhotra N, Mattar MC. Immune checkpoint inhibitor-induced colitis: a comprehensive review. World J Clin Cases. 2019;7(4):405–18.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79.PubMedCrossRef Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79.PubMedCrossRef
202.
Zurück zum Zitat Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K, Muto M. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4): e202895.PubMedPubMedCentralCrossRef Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K, Muto M. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4): e202895.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Veziant J, Villéger R, Barnich N, Bonnet M. Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: focus on colibactin-producing Escherichia coli in colorectal cancer. Cancers (Basel). 2021;13(9):2215.PubMedPubMedCentralCrossRef Veziant J, Villéger R, Barnich N, Bonnet M. Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: focus on colibactin-producing Escherichia coli in colorectal cancer. Cancers (Basel). 2021;13(9):2215.PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Chen C, Niu M, Pan J, Du N, Liu S, Li H, He Q, Mao J, Duan Y, Du Y. Bacteroides, butyric acid and t10, c12-CLA changes in colorectal adenomatous polyp patients. Gut Pathog. 2021;13(1):1.PubMedPubMedCentralCrossRef Chen C, Niu M, Pan J, Du N, Liu S, Li H, He Q, Mao J, Duan Y, Du Y. Bacteroides, butyric acid and t10, c12-CLA changes in colorectal adenomatous polyp patients. Gut Pathog. 2021;13(1):1.PubMedPubMedCentralCrossRef
206.
Zurück zum Zitat Xi Y, Yuefen P, Wei W, Quan Q, Jing Z, Jiamin X, Shuwen H. Analysis of prognosis, genome, microbiome, and microbial metabolome in different sites of colorectal cancer. J Transl Med. 2019;17(1):353.PubMedPubMedCentralCrossRef Xi Y, Yuefen P, Wei W, Quan Q, Jing Z, Jiamin X, Shuwen H. Analysis of prognosis, genome, microbiome, and microbial metabolome in different sites of colorectal cancer. J Transl Med. 2019;17(1):353.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE. 2013;8(8): e70803.PubMedPubMedCentralCrossRef Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE. 2013;8(8): e70803.PubMedPubMedCentralCrossRef
208.
Zurück zum Zitat Yang Y, Misra BB, Liang L, Bi D, Weng W, Wu W, Cai S, Qin H, Goel A, Li X, et al. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics. 2019;9(14):4101–14.PubMedPubMedCentralCrossRef Yang Y, Misra BB, Liang L, Bi D, Weng W, Wu W, Cai S, Qin H, Goel A, Li X, et al. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics. 2019;9(14):4101–14.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, Boucher D, Bonnet M. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24(22):2327–47.PubMedPubMedCentralCrossRef Villéger R, Lopès A, Veziant J, Gagnière J, Barnich N, Billard E, Boucher D, Bonnet M. Microbial markers in colorectal cancer detection and/or prognosis. World J Gastroenterol. 2018;24(22):2327–47.PubMedPubMedCentralCrossRef
211.
212.
Zurück zum Zitat Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm producing Salmonella Typhi: chronic colonization and development of gallbladder cancer. Int J Mol Sci. 2017;18(9):1887.PubMedCentralCrossRef Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm producing Salmonella Typhi: chronic colonization and development of gallbladder cancer. Int J Mol Sci. 2017;18(9):1887.PubMedCentralCrossRef
213.
Zurück zum Zitat Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345(2):196–202.PubMedCrossRef Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345(2):196–202.PubMedCrossRef
214.
Zurück zum Zitat Elkahwaji JE, Hauke RJ, Brawner CM. Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br J Cancer. 2009;101(10):1740–8.PubMedPubMedCentralCrossRef Elkahwaji JE, Hauke RJ, Brawner CM. Chronic bacterial inflammation induces prostatic intraepithelial neoplasia in mouse prostate. Br J Cancer. 2009;101(10):1740–8.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol. 2015;235(3):478–89.PubMedPubMedCentralCrossRef Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol. 2015;235(3):478–89.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat El-Mosalamy H, Salman TM, Ashmawey AM, Osama N. Role of chronic E. coli infection in the process of bladder cancer—an experimental study. Infect Agent Cancer. 2012;7(1):19.PubMedPubMedCentralCrossRef El-Mosalamy H, Salman TM, Ashmawey AM, Osama N. Role of chronic E. coli infection in the process of bladder cancer—an experimental study. Infect Agent Cancer. 2012;7(1):19.PubMedPubMedCentralCrossRef
217.
Zurück zum Zitat Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7.PubMedCrossRef Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7.PubMedCrossRef
218.
Zurück zum Zitat Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer. 2019;19(1):879.PubMedPubMedCentralCrossRef Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer. 2019;19(1):879.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol. 2019;9:449.PubMedCrossRef Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol. 2019;9:449.PubMedCrossRef
220.
Zurück zum Zitat Chen S, Su T, Zhang Y, Lee A, He J, Ge Q, Wang L, Si J, Zhuo W, Wang L. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes. 2020;11(3):511–25.PubMedPubMedCentralCrossRef Chen S, Su T, Zhang Y, Lee A, He J, Ge Q, Wang L, Si J, Zhuo W, Wang L. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes. 2020;11(3):511–25.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Chang C, Geng F, Shi X, Li Y, Zhang X, Zhao X, Pan Y. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Appl Microbiol Biotechnol. 2019;103(3):1393–404.PubMedCrossRef Chang C, Geng F, Shi X, Li Y, Zhang X, Zhao X, Pan Y. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Appl Microbiol Biotechnol. 2019;103(3):1393–404.PubMedCrossRef
222.
Zurück zum Zitat Youssef O, Lahti L, Kokkola A, Karla T, Tikkanen M, Ehsan H, Carpelan-Holmström M, Koskensalo S, Böhling T, Rautelin H, et al. Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms. Dig Dis Sci. 2018;63(11):2950–8.PubMedPubMedCentralCrossRef Youssef O, Lahti L, Kokkola A, Karla T, Tikkanen M, Ehsan H, Carpelan-Holmström M, Koskensalo S, Böhling T, Rautelin H, et al. Stool microbiota composition differs in patients with stomach, colon, and rectal neoplasms. Dig Dis Sci. 2018;63(11):2950–8.PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Yan X, Yang M, Liu J, Gao R, Hu J, Li J, Zhang L, Shi Y, Guo H, Cheng J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015;5(10):3111–22.PubMedPubMedCentral Yan X, Yang M, Liu J, Gao R, Hu J, Li J, Zhang L, Shi Y, Guo H, Cheng J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015;5(10):3111–22.PubMedPubMedCentral
224.
Zurück zum Zitat Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105(3):1003–8.PubMedPubMedCentralCrossRef Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105(3):1003–8.PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295(5555):683–6.PubMedCrossRef Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002;295(5555):683–6.PubMedCrossRef
226.
Zurück zum Zitat Buti L, Ruiz-Puig C, Sangberg D, Leissing TM, Brewer RC, Owen RP, Sgromo B, Royer C, Ebner D, Lu X. CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci USA. 2020;117(5):2645–55.PubMedPubMedCentralCrossRef Buti L, Ruiz-Puig C, Sangberg D, Leissing TM, Brewer RC, Owen RP, Sgromo B, Royer C, Ebner D, Lu X. CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci USA. 2020;117(5):2645–55.PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Chang YJ, Wu MS, Lin JT, Pestell RG, Blaser MJ, Chen CC. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell Microbiol. 2006;8(11):1740–52.PubMedCrossRef Chang YJ, Wu MS, Lin JT, Pestell RG, Blaser MJ, Chen CC. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell Microbiol. 2006;8(11):1740–52.PubMedCrossRef
228.
Zurück zum Zitat Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell. 2002;10(4):745–55.PubMedCrossRef Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell. 2002;10(4):745–55.PubMedCrossRef
229.
Zurück zum Zitat Costa AM, Ferreira RM, Pinto-Ribeiro I, Sougleri IS, Oliveira MJ, Carreto L, Santos MA, Sgouras DN, Carneiro F, Leite M, et al. Helicobacter pylori activates matrix metalloproteinase 10 in gastric epithelial cells via EGFR and ERK-mediated pathways. J Infect Dis. 2016;213(11):1767–76.PubMedCrossRef Costa AM, Ferreira RM, Pinto-Ribeiro I, Sougleri IS, Oliveira MJ, Carreto L, Santos MA, Sgouras DN, Carneiro F, Leite M, et al. Helicobacter pylori activates matrix metalloproteinase 10 in gastric epithelial cells via EGFR and ERK-mediated pathways. J Infect Dis. 2016;213(11):1767–76.PubMedCrossRef
230.
Zurück zum Zitat Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB, Wilson KT, Peek RM Jr, Zaika AI. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells. J Clin Invest. 2020;130(5):2422–34.PubMedPubMedCentralCrossRef Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB, Wilson KT, Peek RM Jr, Zaika AI. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells. J Clin Invest. 2020;130(5):2422–34.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Liu B, Li X, Sun F, Tong X, Bai Y, Jin K, Liu L, Dai F, Li N. HP-CagA+ regulates the expression of CDK4/CyclinD1 via reg3 to change cell cycle and promote cell proliferation. Int J Mol Sci. 2019;21(1):224.PubMedCentralCrossRef Liu B, Li X, Sun F, Tong X, Bai Y, Jin K, Liu L, Dai F, Li N. HP-CagA+ regulates the expression of CDK4/CyclinD1 via reg3 to change cell cycle and promote cell proliferation. Int J Mol Sci. 2019;21(1):224.PubMedCentralCrossRef
232.
Zurück zum Zitat Kuck D, Kolmerer B, Iking-Konert C, Krammer PH, Stremmel W, Rudi J. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun. 2001;69(8):5080–7.PubMedPubMedCentralCrossRef Kuck D, Kolmerer B, Iking-Konert C, Krammer PH, Stremmel W, Rudi J. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect Immun. 2001;69(8):5080–7.PubMedPubMedCentralCrossRef
233.
Zurück zum Zitat Seto K, Hayashi-Kuwabara Y, Yoneta T, Suda H, Tamaki H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 1998;431(3):347–50.PubMedCrossRef Seto K, Hayashi-Kuwabara Y, Yoneta T, Suda H, Tamaki H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 1998;431(3):347–50.PubMedCrossRef
234.
Zurück zum Zitat McClain MS, Beckett AC, Cover TL. Helicobacter pylori vacuolating toxin and gastric cancer. Toxins (Basel). 2017;9(10):316.PubMedCentralCrossRef McClain MS, Beckett AC, Cover TL. Helicobacter pylori vacuolating toxin and gastric cancer. Toxins (Basel). 2017;9(10):316.PubMedCentralCrossRef
235.
Zurück zum Zitat Wang F, Xia P, Wu F, Wang D, Wang W, Ward T, Liu Y, Aikhionbare F, Guo Z, Powell M, et al. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells. J Biol Chem. 2008;283(39):26714–25.PubMedPubMedCentralCrossRef Wang F, Xia P, Wu F, Wang D, Wang W, Ward T, Liu Y, Aikhionbare F, Guo Z, Powell M, et al. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells. J Biol Chem. 2008;283(39):26714–25.PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Kobayashi H, Kamiya S, Suzuki T, Kohda K, Muramatsu S, Kurumada T, Ohta U, Miyazawa M, Kimura N, Mutoh N, et al. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from a guinea pig. Association with production of vacuolating toxin by H. pylori. Scand J Gastroenterol. 1996;31(5):428–33.PubMedCrossRef Kobayashi H, Kamiya S, Suzuki T, Kohda K, Muramatsu S, Kurumada T, Ohta U, Miyazawa M, Kimura N, Mutoh N, et al. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from a guinea pig. Association with production of vacuolating toxin by H. pylori. Scand J Gastroenterol. 1996;31(5):428–33.PubMedCrossRef
237.
Zurück zum Zitat Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science. 2003;301(5636):1099–102.PubMedCrossRef Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science. 2003;301(5636):1099–102.PubMedCrossRef
238.
Zurück zum Zitat Montecucco C, de Bernard M. Immunosuppressive and proinflammatory activities of the VacA toxin of Helicobacter pylori. J Exp Med. 2003;198(12):1767–71.PubMedPubMedCentralCrossRef Montecucco C, de Bernard M. Immunosuppressive and proinflammatory activities of the VacA toxin of Helicobacter pylori. J Exp Med. 2003;198(12):1767–71.PubMedPubMedCentralCrossRef
239.
Zurück zum Zitat Radin JN, González-Rivera C, Ivie SE, McClain MS, Cover TL. Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect Immun. 2011;79(7):2535–43.PubMedPubMedCentralCrossRef Radin JN, González-Rivera C, Ivie SE, McClain MS, Cover TL. Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect Immun. 2011;79(7):2535–43.PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Cover TL, Krishna US, Israel DA, Peek RM Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 2003;63(5):951–7.PubMed Cover TL, Krishna US, Israel DA, Peek RM Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 2003;63(5):951–7.PubMed
241.
Zurück zum Zitat Radin JN, González-Rivera C, Frick-Cheng AE, Sheng J, Gaddy JA, Rubin DH, Algood HM, McClain MS, Cover TL. Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect Immun. 2014;82(1):423–32.PubMedPubMedCentralCrossRef Radin JN, González-Rivera C, Frick-Cheng AE, Sheng J, Gaddy JA, Rubin DH, Algood HM, McClain MS, Cover TL. Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect Immun. 2014;82(1):423–32.PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D’Elios MM, Telford JL, Baldari CT. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med. 2003;198(12):1887–97.PubMedPubMedCentralCrossRef Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D’Elios MM, Telford JL, Baldari CT. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med. 2003;198(12):1887–97.PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat Seo B, Choy EW, Maudsley S, Miller WE, Wilson BA, Luttrell LM. Pasteurella multocida toxin stimulates mitogen-activated protein kinase via Gq/11-dependent transactivation of the epidermal growth factor receptor. J Biol Chem. 2000;275(3):2239–45.PubMedCrossRef Seo B, Choy EW, Maudsley S, Miller WE, Wilson BA, Luttrell LM. Pasteurella multocida toxin stimulates mitogen-activated protein kinase via Gq/11-dependent transactivation of the epidermal growth factor receptor. J Biol Chem. 2000;275(3):2239–45.PubMedCrossRef
244.
Zurück zum Zitat Rozengurt E, Higgins T, Chanter N, Lax AJ, Staddon JM. Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc Natl Acad Sci USA. 1990;87(1):123–7.PubMedPubMedCentralCrossRef Rozengurt E, Higgins T, Chanter N, Lax AJ, Staddon JM. Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc Natl Acad Sci USA. 1990;87(1):123–7.PubMedPubMedCentralCrossRef
245.
Zurück zum Zitat Preuss I, Hildebrand D, Orth JH, Aktories K, Kubatzky KF. Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cell Microbiol. 2010;12(8):1174–85.PubMedCrossRef Preuss I, Hildebrand D, Orth JH, Aktories K, Kubatzky KF. Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cell Microbiol. 2010;12(8):1174–85.PubMedCrossRef
246.
Zurück zum Zitat Orth JH, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem. 2007;282(5):3050–7.PubMedCrossRef Orth JH, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem. 2007;282(5):3050–7.PubMedCrossRef
247.
Zurück zum Zitat Carlini F, Maroccia Z, Fiorentini C, Travaglione S, Fabbri A. Effects of the Escherichia coli bacterial toxin cytotoxic necrotizing factor 1 on different human and animal cells: a systematic review. Int J Mol Sci. 2021;22(22):12610.PubMedPubMedCentralCrossRef Carlini F, Maroccia Z, Fiorentini C, Travaglione S, Fabbri A. Effects of the Escherichia coli bacterial toxin cytotoxic necrotizing factor 1 on different human and animal cells: a systematic review. Int J Mol Sci. 2021;22(22):12610.PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Travaglione S, Fabbri A, Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect Agent Cancer. 2008;3:4.PubMedPubMedCentralCrossRef Travaglione S, Fabbri A, Fiorentini C. The Rho-activating CNF1 toxin from pathogenic E. coli: a risk factor for human cancer development? Infect Agent Cancer. 2008;3:4.PubMedPubMedCentralCrossRef
249.
Zurück zum Zitat Zhang Z, Aung KM, Uhlin BE, Wai SN. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep. 2018;8(1):17780.PubMedPubMedCentralCrossRef Zhang Z, Aung KM, Uhlin BE, Wai SN. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep. 2018;8(1):17780.PubMedPubMedCentralCrossRef
250.
Zurück zum Zitat Guo Y, Wang J, Zhou K, Lv J, Wang L, Gao S, Keller ET, Zhang ZS, Wang Q, Yao Z. Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. Faseb J. 2020;34(6):7927–40.PubMedCrossRef Guo Y, Wang J, Zhou K, Lv J, Wang L, Gao S, Keller ET, Zhang ZS, Wang Q, Yao Z. Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. Faseb J. 2020;34(6):7927–40.PubMedCrossRef
251.
Zurück zum Zitat Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Keller ET, Yao Z, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J Pathol. 2017;243(2):208–19.PubMedCrossRef Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, Keller ET, Yao Z, Wang Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J Pathol. 2017;243(2):208–19.PubMedCrossRef
252.
Zurück zum Zitat Fabbri A, Travaglione S, Rosadi F, Ballan G, Maroccia Z, Giambenedetti M, Guidotti M, Ødum N, Krejsgaard T, Fiorentini C. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell Microbiol. 2020;22(2): e13138.PubMedCrossRef Fabbri A, Travaglione S, Rosadi F, Ballan G, Maroccia Z, Giambenedetti M, Guidotti M, Ødum N, Krejsgaard T, Fiorentini C. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell Microbiol. 2020;22(2): e13138.PubMedCrossRef
253.
Zurück zum Zitat Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 2010;107(25):11537–42.PubMedPubMedCentralCrossRef Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 2010;107(25):11537–42.PubMedPubMedCentralCrossRef
254.
Zurück zum Zitat Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Katainen R, Cajuso T, Crosetto N, Orozco M, Aaltonen LA, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26(7):1063–9.PubMedCrossRef Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Katainen R, Cajuso T, Crosetto N, Orozco M, Aaltonen LA, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26(7):1063–9.PubMedCrossRef
255.
Zurück zum Zitat Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, et al. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer. 2020;146(11):3147–59.PubMedCrossRef Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, et al. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer. 2020;146(11):3147–59.PubMedCrossRef
256.
257.
Zurück zum Zitat Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782–6.PubMedCrossRef Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006;12(8):782–6.PubMedCrossRef
258.
Zurück zum Zitat Obiso RJ Jr, Azghani AO, Wilkins TD. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect Immun. 1997;65(4):1431–9.PubMedPubMedCentralCrossRef Obiso RJ Jr, Azghani AO, Wilkins TD. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect Immun. 1997;65(4):1431–9.PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E, Sears CL. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun. 2004;72(10):5832–9.PubMedPubMedCentralCrossRef Wu S, Powell J, Mathioudakis N, Kane S, Fernandez E, Sears CL. Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun. 2004;72(10):5832–9.PubMedPubMedCentralCrossRef
261.
Zurück zum Zitat Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23(2):203-14.e5.PubMedPubMedCentralCrossRef Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23(2):203-14.e5.PubMedPubMedCentralCrossRef
262.
Zurück zum Zitat Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects. Front Oncol. 2022;12:841552.PubMedPubMedCentralCrossRef Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects. Front Oncol. 2022;12:841552.PubMedPubMedCentralCrossRef
263.
Zurück zum Zitat Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. 2016;43(1):97–106.PubMedCrossRef Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. 2016;43(1):97–106.PubMedCrossRef
264.
Zurück zum Zitat Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24(8):1415–22.PubMedCrossRef Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013;24(8):1415–22.PubMedCrossRef
265.
Zurück zum Zitat Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, Koh AY. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19(10):848–55.PubMedPubMedCentralCrossRef Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, Koh AY. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017;19(10):848–55.PubMedPubMedCentralCrossRef
Metadaten
Titel
Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora
verfasst von
Hourieh Sadrekarimi
Zhanna R. Gardanova
Morteza Bakhshesh
Farnoosh Ebrahimzadeh
Amirhossein Fakhre Yaseri
Lakshmi Thangavelu
Zahra Hasanpoor
Firoozeh Abolhasani Zadeh
Mohammad Saeed Kahrizi
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03492-7

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.