Skip to main content
Erschienen in: BMC Medicine 1/2011

Open Access 01.12.2011 | Minireview

Emerging therapies for severe asthma

verfasst von: Neil C Thomson, Rekha Chaudhuri, Mark Spears

Erschienen in: BMC Medicine | Ausgabe 1/2011

Abstract

Many patients with asthma have poorly controlled symptoms, and particularly for those with severe disease, there is a clear need for improved treatments. Two recent therapies licensed for use in asthma are omalizumab, a humanized monoclonal antibody that binds circulating IgE antibody, and bronchial thermoplasty, which involves the delivery of radio frequency energy to the airways to reduce airway smooth muscle mass. In addition, there are new therapies under development for asthma that have good potential to reach the clinic in the next five years. These include biological agents targeting pro-inflammatory cytokines such as interleukin-5 and interleukin-13, inhaled ultra long-acting β2-agonists and once daily inhaled corticosteroids. In addition, drugs that block components of the arachidonic acid pathway that targets neutrophilic asthma and CRTH2 receptor antagonists that inhibit the proinflammatory actions of prostaglandin D2 may become available. We review the recent progress made in developing viable therapies for severe asthma and briefly discuss the idea that development of novel therapies for asthma is likely to increasingly involve the assessment of genotypic and/or phenotypic factors.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1741-7015-9-102) contains supplementary material, which is available to authorized users.

Competing interests

NCT received industry-sponsored grant funding from Aerovance, Asthmatx, Glaxo Smithkline, MedImmune Ltd, Novartis, Centocor and Synairgen for participating in clinical trials.

Authors' contributions

NCT conceived the article and prepared the initial draft of the manuscript. All authors drafted further versions of the manuscript and approved the final version.
Abkürzungen
AIR trial
Asthma Intervention Research trial
AQLQ
asthma quality of life questionnaire
CRTH2
chemoattractant receptor-homologous molecule expressed on Th2 cells
FDA
U.S. Food & Drug Administration
FLAP
lipoxygenase-activating protein
IL-
interleukin
LAMAs
long-acting antimuscarinic agents
LO
lipoxygenase
LTs
leukotrienes
MAPK
mitogen-activated protein kinase
PPAR
proliferator-activated receptor
PDE
phosphodiesterase
TNF
tumor necrosis factor
Ultra-LABAs
ultra long-acting β2-agonists.

Introduction

Asthma is a chronic inflammatory disease of the airways that affects over 300 million individuals worldwide [1]. The majority of adults with asthma have mild or moderate disease that can be controlled by inhaled corticosteroids either alone or in combination with inhaled long-acting ß2 agonist bronchodilators [13]. Questionnaire surveys however indicate that a considerable proportion of these patients [4], as well as most with severe asthma [5], or who are cigarette smokers [6, 7] have poorly controlled asthma. Systematic evaluation can help identify patients with severe asthma from those with difficult-to-treat asthma due to poor adherence, untreated co-morbidities, dysfunctional breathing or psychological problems [8, 9]. For patients with severe asthma, which accounts for 5% to 10% of cases [10], there is a need for improved therapies [1012]. This mini-review focuses on biological agents, new inhaled long-acting bronchodilators and corticosteroids, arachidonic acid pathway blockers, bronchial thermoplasty plus a range of other anti-inflammatory agents that have been recently licensed or are at an advanced stage of development for patients with severe asthma (Figure 1). In addition, we briefly discuss the idea that the development of novel therapies for asthma is likely increasingly to involve the assessment of genotypic and/or phenotypic factors.

Biological agents

The first and as yet only biological agent licensed for the treatment of asthma is omalizumab, a humanized monoclonal antibody that binds circulating IgE antibody, preventing it from binding to its specific high-affinity receptor on mast cells and basophils [13]. In patients with allergic asthma, omalizumab treatment improves symptoms and reduces exacerbations [14, 15]. Clinical trials are also underway to assess the efficacy of omalizumab in non-allergic asthma and in combination with specific allergen immunotherapy, with the aim of reducing systemic allergic reactions [16]. The adverse effect profile of omalizumab is generally good [17] although preliminary data from a five-year safety study has raised concerns about a trend for increased cardiovascular events and further confirmation is awaited [18, 19].
A number of biological agents have been developed to target cytokines thought to play an important role in asthma pathogenesis [20, 21], including monoclonal antibody blockers of TNF-α, IL-5, IL-4 and IL-13. Unfortunately despite some promise shown in early small clinical studies with the soluble TNF-α receptor blocker, etanercept, in severe asthma [22, 23], larger studies with golimumab [24] and etanercept [25] have not confirmed a consistent effect. Overall, when combined with concerns over increased risk of severe infections and malignancies with treatment [24] it is unlikely that TNF-α receptor blockers will be developed further for the treatment of asthma.
Two recent exploratory studies have examined anti-IL5 monoclonal antibody (mepolizumab) treatment in patients with severe asthma [26, 27]. In 61 patients with refractory eosinophilic asthma and a history of recurrent severe exacerbations mepolizumab treatment reduced severe exacerbations [27] (Figure 2) and in 20 patients with severe oral corticosteroid dependent asthma an oral corticosteroid sparing effect was observed [26]. Phase 3 trials are now underway. The relevance of this approach to clinical practice has been debated [28] as possibly only a small proportion of patients with persistent sputum eosinophilia are also concordant with inhaled or oral corticosteroid treatment [29].
A number of clinical trials employing monoclonal antibodies targeting IL-4 and/or IL-13 in asthma are underway [30, 31]. Both cytokines exert their actions through the IL-4Rα/IL-13Rα1 receptor complex. Blocking IL-13 binding to the IL-4 receptor α with IMA-638 reduces allergen-induced bronchoconstriction [32]. Pitrakinra, a recombinant protein that binds to IL-4Rα, reduces allergen-induced late responses with few adverse events [33] and is undergoing development as an inhaled medication. A clearer picture of the role of IL-4 and IL-13 blockers in the treatment of severe asthma is likely to emerge over the next few years.
Daclizumab is a humanized monoclonal antibody that binds specifically to the CD25 subunit of the high-affinity IL-2R, and inhibits IL-2 binding and T-cell activation. A pilot study of daclizumab in patients with moderate to severe asthma reported minor improvements in lung function and asthma control [34].
Patients with asthma may be more susceptible to respiratory viruses due to impaired Th1 immunity [35] and immunological augmentation with inhaled interferon β to aid anti-viral responses at the time of the exacerbation is currently under assessment.

New inhaled long-acting bronchodilators and corticosteroids

In addition to the development of novel therapies, refinements in the pharmacological properties of drugs currently used to treat asthma, such as long-acting β2-agonists and inhaled corticosteroids is a major focus of the pharmaceutical industry. Inhaled ultra long-acting β2-agonists (ultra-LABAs) such as indacaterol, currently licensed for COPD, have a longer half-life than current LABAs and are suitable for once daily administration [36, 37]. Fixed combinations of ultra-LABAs with once daily inhaled corticosteroids as well as once daily inhaled corticosteroids alone are at an advanced stage of development for the treatment of asthma. Once daily administration should be more convenient for patients and may improve adherence. New inhaled long-acting antimuscarinic agents (LAMAs) agents such as aclidinium, may also have a role in the treatment of severe asthma associated with persistent airflow obstruction [38, 39]. Non-steroidal selective glucocorticoid receptor modulators are in development with the aim of improving the therapeutic ratio of corticosteroids by dissociating transactivation, which is associated with the adverse effects of corticosteroids, from the beneficial effect of transrepression [4043].

Arachidonic acid pathway blockers

Pro-inflammatory cysteinyl leukotrienes (LTs) are synthesized from arachidonic acid by 5-lipoxygenase (LO) and 5-lipoxygenase-activating protein (FLAP) in inflammatory airway cells. In addition to inhibiting the production of the cysteinyl LTs, 5-LO and FLAP inhibitors such as GSK-2190915 [44] prevent the formation of LTB4, which may be of value in neutrophilic asthma. Prostaglandin (PG)D2 is released from mast cells and other inflammatory cells and elevated bronchoalveolar lavage concentrations of PGD2 are reported in severe asthma [45]. PGD2 activates the CRTH2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells) resulting in inflammation and a number of antagonists of the CRTH2 receptor are being assessed for the treatment of asthma [46].

Bronchial thermoplasty

Bronchial thermoplasty involves the delivery of radio frequency energy to the airways by flexible bronchoscopy with the aim of reducing airway smooth muscle mass and responsiveness in asthma [4750]. Initial clinical studies including the Asthma Intervention Research (AIR)1 trial found that bronchial thermoplasty reduces exacerbations and improves morning peak expiratory flow and symptoms in patients with severe asthma [5153]. The AIR2 trial reported the results of a comparison with sham bronchial thermoplasty in 288 adult subjects with severe asthma [54]. Bronchial thermoplasty resulted in improvements from baseline in Asthma Quality of Life Questionnaire (AQLQ) scores compared with sham (bronchial thermoplasty, 1.35 versus sham, 1.16), with 79% of bronchial thermoplasty and 64% of sham subjects achieving changes in AQLQ of 0.5 or greater (Figure 3). It is of interest that the sham bronchial thermoplasty was associated with a large increase in AQLQ scores. In the post-treatment period, the bronchial thermoplasty group also experienced fewer severe exacerbations and emergency department visits. However bronchial thermoplasty was associated with a short-term increase in asthma-related morbidity. Long-term five-year safety data for patients recruited to the AIR1 trial [52] reported absence of clinical complications and maintenance of stable lung function [55]. In 2010 bronchial thermoplasty was approved by the United States Food & Drug Administration (FDA) for the treatment of severe persistent asthma. Future research needs to identify factors that best predict a therapeutic response to bronchial thermoplasty.

Other anti-inflammatory drugs

A number of novel drugs under development may prove to have a role in the management of asthma. Phosphodiesterase (PDE)4 inhibitors have immunomodulatory effects over a number of inflammatory cells potentially relevant to the treatment of severe asthma [56]. High doses of phosphodiesterase (PDE)4 inhibitors may be necessary to treat severe asthma, and gastro-intestinal side effects may limit their use [5658], although inhaled PDE4 inhibitors may improve their therapeutic index [59, 60]. Inhibition of protein kinases such as p38 mitogen-activated protein kinase (MAPK) and other tyrosine kinases involved in cellular signalling of pro-inflammatory cytokines may have a role in the treatment of severe asthma [6163]. For example, a phase 3 study evaluating a tyrosine kinase inhibitor of the c-KIT receptor masitinib commenced recently.
Several drugs licensed for treating other conditions may also have a role in the management of asthma. In a randomized controlled trial of 58 patients with severe asthma with fungal sensitization (SAFS) [64] the oral anti-fungal drug itraconazole administered for 32 weeks resulted in improvement in AQLQ scores [65]. However the risk of adrenal suppression with long-term treatment with itraconazole in patients also receiving inhaled corticosteroids has led to some caution in adopting this management strategy [66, 67]. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists exert anti-inflammatory effects on eosinophilic and neutrophilic infiltration of the lungs of experimental animals [68]. A proof of concept study using the PPARγ agonist rosiglitazone, demonstrated bronchodilator effects in mild to moderate smokers with asthma [69] and further clinical trials of oral PPARγ agonists are underway in severe asthma. Statins have pleiotropic anti-inflammatory effects potentially relevant to the treatment of asthma [7076]. Short-term treatment of patients with mild to moderate asthma with statins does not improve symptoms or lung function [7780], although AQLQ scores improve in asthmatic smokers [80]. The small peptide endothelin causes bronchoconstriction and may contribute to airway remodelling in asthma [81, 82]. A 12-month clinical trial of the endothelin receptor antagonist sitaxsentan is underway in patients with severe asthma.

Factors influencing the response to novel therapies

Genotypic and phenotypic factors can influence the response to drug treatment for asthma [23, 26, 27, 83]. For example, adrenergic β2-receptor polymorphisms, particularly variants at position 16 (Gly16Arg) and 27 (Gln27Glu), have been associated with impaired bronchodilator response to short and long-acting β2-receptor agonists and naturally occurring mutations in the promoter of 5-lipoxygenase gene (ALOX5) may influence the clinical response to drugs modifying the 5-lipoxygenase pathway [8486]. Several inflammatory phenotypes, which have been identified mainly on the basis of induced sputum cell profiles, influence the response to drug treatment [87, 88]. For example, sputum eosinophilia predicts corticosteroid responsiveness [8993] and the response to the anti-IL-5 blocker mepolizumab in severe asthma [26, 27]. Non-eosinophilic asthma, a term used to describe an absence of raised numbers of inflammatory cells (also known as paucigranulocytic inflammation) or neutrophilic inflammation, responds less well to inhaled corticosteroids [9193]. Macrolides may be effective in neutrophilic asthma [94]. Th2-high asthma, as defined by gene expression analyses of airway cells, predicts an improvement in lung function with inhaled corticosteroids in patients with mild to moderate disease, whereas patients with Th2-low asthma respond poorly to inhaled corticosteroids [95]. The development of novel therapies for severe asthma in the future is likely to involve genotypic and/or phenotypic assessment to identify patients who will gain the most from a specific intervention.

Conclusions and future directions

Omalizumab, a humanized monoclonal antibody that binds circulating IgE antibody, and bronchial thermoplasty, where radio frequency energy is delivered to the airways to reduce airway smooth muscle mass are valuable additional therapies for the management of severe asthma. There is a need to identify new therapies that are effective and safe and target sub-phenotypes of asthma. Of therapies currently under development, biological agents directed at blocking pro-inflammatory cytokines such as interleukin-5 and interleukin-13, ultra long-acting β2-agonists and once daily inhaled corticosteroids as well as drugs blocking components of the arachidonic acid pathway such as FLAP inhibitors and CRTH2 receptor antagonists have the greatest potential to reach the clinic. In the future, both genotypic and phenotypic factors are likely to guide the choice of intervention in each individual with severe asthma.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

NCT received industry-sponsored grant funding from Aerovance, Asthmatx, Glaxo Smithkline, MedImmune Ltd, Novartis, Centocor and Synairgen for participating in clinical trials.

Authors' contributions

NCT conceived the article and prepared the initial draft of the manuscript. All authors drafted further versions of the manuscript and approved the final version.
Anhänge

Authors’ original submitted files for images

Literatur
2.
Zurück zum Zitat British Thoracic Society Scottish Intercollegiate Guidelines Network: Thorax. 2008, 63: iv1-iv121.CrossRef British Thoracic Society Scottish Intercollegiate Guidelines Network: Thorax. 2008, 63: iv1-iv121.CrossRef
3.
Zurück zum Zitat Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007, 120: S94-S138. Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007, 120: S94-S138.
4.
Zurück zum Zitat Partridge M, van der Molen T, Myrseth S-E, Busse W: Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulm Med. 2006, 6: 13.CrossRefPubMedPubMedCentral Partridge M, van der Molen T, Myrseth S-E, Busse W: Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulm Med. 2006, 6: 13.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Dockrell M, Partridge M, Valovirta E: The limitations of severe asthma: the results of a European survey. Allergy. 2007, 62: 134-141.CrossRefPubMed Dockrell M, Partridge M, Valovirta E: The limitations of severe asthma: the results of a European survey. Allergy. 2007, 62: 134-141.CrossRefPubMed
6.
Zurück zum Zitat Spears M, Cameron E, Chaudhuri R, Thomson NC: Challenges of treating asthma in people who smoke. Expert Rev Clin Immunol. 2010, 6: 257-268.CrossRefPubMed Spears M, Cameron E, Chaudhuri R, Thomson NC: Challenges of treating asthma in people who smoke. Expert Rev Clin Immunol. 2010, 6: 257-268.CrossRefPubMed
7.
Zurück zum Zitat Chaudhuri R, McSharry C, McCoard A, Livingston E, Hothersall E, Spears M, Lafferty J, Thomson NC: Role of symptoms and lung function in determining asthma control in smokers with asthma. Allergy. 2008, 63: 132-135.CrossRefPubMed Chaudhuri R, McSharry C, McCoard A, Livingston E, Hothersall E, Spears M, Lafferty J, Thomson NC: Role of symptoms and lung function in determining asthma control in smokers with asthma. Allergy. 2008, 63: 132-135.CrossRefPubMed
8.
Zurück zum Zitat Heaney LG, Brightling CE, Menzies-Gow A, Stevenson M, Niven RM, British Thoracic Society Difficult Asthma Network: Refractory asthma in the UK: cross-sectional findings from a UK multicentre registry. Thorax. 2010, 65: 787-794.CrossRefPubMedPubMedCentral Heaney LG, Brightling CE, Menzies-Gow A, Stevenson M, Niven RM, British Thoracic Society Difficult Asthma Network: Refractory asthma in the UK: cross-sectional findings from a UK multicentre registry. Thorax. 2010, 65: 787-794.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Bel E, Sousa A, Fleming L, Bush A, Chung K, Versnel J, Wagener A, Wagers S, Sterk P, Compton C, the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome (U-BIOPRED) Consortium, Consensus Generation: Diagnosis and definition of severe refractory asthma: an international consensus statement from the Innovative Medicine Initiative (IMI). Thorax. 2011, 153643 Published Online First: 23 November 2010 Bel E, Sousa A, Fleming L, Bush A, Chung K, Versnel J, Wagener A, Wagers S, Sterk P, Compton C, the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome (U-BIOPRED) Consortium, Consensus Generation: Diagnosis and definition of severe refractory asthma: an international consensus statement from the Innovative Medicine Initiative (IMI). Thorax. 2011, 153643 Published Online First: 23 November 2010
10.
Zurück zum Zitat Holgate ST, Polosa R: The mechanisms, diagnosis, and management of severe asthma in adults. The Lancet. 2006, 368: 780-793.CrossRef Holgate ST, Polosa R: The mechanisms, diagnosis, and management of severe asthma in adults. The Lancet. 2006, 368: 780-793.CrossRef
11.
Zurück zum Zitat Adcock IM, Caramori G, Chung KF: New targets for drug development in asthma. Lancet. 2008, 372: 1073-1087.CrossRefPubMed Adcock IM, Caramori G, Chung KF: New targets for drug development in asthma. Lancet. 2008, 372: 1073-1087.CrossRefPubMed
12.
Zurück zum Zitat Barnes PJ: New therapies for asthma: is there any progress?. Trends Pharmacolog Sci. 2010, 31: 335-343.CrossRef Barnes PJ: New therapies for asthma: is there any progress?. Trends Pharmacolog Sci. 2010, 31: 335-343.CrossRef
13.
Zurück zum Zitat Hamelmann E: The rationale for treating allergic asthma with anti-IgE. Eur Respir Rev. 2007, 16: 61-66.CrossRef Hamelmann E: The rationale for treating allergic asthma with anti-IgE. Eur Respir Rev. 2007, 16: 61-66.CrossRef
14.
Zurück zum Zitat Walker S, Monteil M, Phelan K, Lasserson T, Walters E: Anti-IgE for chronic asthma in adults and children. Cochrane Database of Systematic Reviews. 2006 Walker S, Monteil M, Phelan K, Lasserson T, Walters E: Anti-IgE for chronic asthma in adults and children. Cochrane Database of Systematic Reviews. 2006
15.
Zurück zum Zitat Rodrigo GJ, Neffen H, Castro-Rodriguez JA: Efficacy and Safety of Subcutaneous Omalizumab vs Placebo as Add-on Therapy to Corticosteroids for Children and Adults With Asthma. Chest. 2011, 139: 28-35.CrossRefPubMed Rodrigo GJ, Neffen H, Castro-Rodriguez JA: Efficacy and Safety of Subcutaneous Omalizumab vs Placebo as Add-on Therapy to Corticosteroids for Children and Adults With Asthma. Chest. 2011, 139: 28-35.CrossRefPubMed
16.
Zurück zum Zitat Casale TB, Stokes JR: Future forms of immunotherapy. J Allergy Clin Immunol. 2011, 127: 8-15.CrossRefPubMed Casale TB, Stokes JR: Future forms of immunotherapy. J Allergy Clin Immunol. 2011, 127: 8-15.CrossRefPubMed
17.
Zurück zum Zitat Corren J, Casale TB, Lanier B, Buhl R, Holgate S, Jimenez P: Safety and tolerability of omalizumab. Clin Exp Allergy. 2009, 39: 788-797.CrossRefPubMed Corren J, Casale TB, Lanier B, Buhl R, Holgate S, Jimenez P: Safety and tolerability of omalizumab. Clin Exp Allergy. 2009, 39: 788-797.CrossRefPubMed
18.
Zurück zum Zitat Aidan AL, James EF, Abdelkader R, Mary KM, Mary SB, Hassan NT, Anthony ND, Stephen AT, Stanley JS: Baseline characteristics of patients enrolled in EXCELS: a cohort study. Ann Allergy Asthma Immunol. 2009, 103: 212-219.CrossRef Aidan AL, James EF, Abdelkader R, Mary KM, Mary SB, Hassan NT, Anthony ND, Stephen AT, Stanley JS: Baseline characteristics of patients enrolled in EXCELS: a cohort study. Ann Allergy Asthma Immunol. 2009, 103: 212-219.CrossRef
19.
Zurück zum Zitat Omalizumab: potential risk of arterial thrombotic events. Drug Safety Update. 2011, 4: A4. Omalizumab: potential risk of arterial thrombotic events. Drug Safety Update. 2011, 4: A4.
20.
Zurück zum Zitat Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE: A new look at the pathogenesis of asthma. Clin Sci. 2010, 118: 439-450.CrossRef Holgate ST, Arshad HS, Roberts GC, Howarth PH, Thurner P, Davies DE: A new look at the pathogenesis of asthma. Clin Sci. 2010, 118: 439-450.CrossRef
21.
Zurück zum Zitat Levine S, Wenzel S: Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med. 2010, 152: 232-237.CrossRefPubMedPubMedCentral Levine S, Wenzel S: Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med. 2010, 152: 232-237.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, Reynolds A, Davies DE, Holgate ST: Tumour necrosis factor (TNF{alpha}) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005, 60: 1012-1018.CrossRefPubMedPubMedCentral Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, Beckett P, Al Ali M, Chauhan A, Wilson SJ, Reynolds A, Davies DE, Holgate ST: Tumour necrosis factor (TNF{alpha}) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005, 60: 1012-1018.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Berry M, Hargadon B, Shelley M, Parker D, Shaw D, Green R, Bradding P, Brightling C, Wardlaw A, Pavord I: Inhibition of Tumor Necrosis Factor α for Refractory Asthma. N Eng J Med. 2006, 354: 754-758.CrossRef Berry M, Hargadon B, Shelley M, Parker D, Shaw D, Green R, Bradding P, Brightling C, Wardlaw A, Pavord I: Inhibition of Tumor Necrosis Factor α for Refractory Asthma. N Eng J Med. 2006, 354: 754-758.CrossRef
24.
Zurück zum Zitat Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen S-E, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, T03 Asthma Investigators: A Randomized, Double-blind, Placebo-controlled Study of Tumor Necrosis Factor-{alpha} Blockade in Severe Persistent Asthma. Am J Respir Crit Care Med. 2009, 179: 549-558.CrossRefPubMed Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen S-E, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH, Watt R, Barnathan ES, Chanez P, T03 Asthma Investigators: A Randomized, Double-blind, Placebo-controlled Study of Tumor Necrosis Factor-{alpha} Blockade in Severe Persistent Asthma. Am J Respir Crit Care Med. 2009, 179: 549-558.CrossRefPubMed
25.
Zurück zum Zitat Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, Hakulinen A, Paolozzi L, Wajdula J, Zang C, Nelson H, Raible D: Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J. 2011, 37: 1352-1359.CrossRefPubMed Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, Hakulinen A, Paolozzi L, Wajdula J, Zang C, Nelson H, Raible D: Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J. 2011, 37: 1352-1359.CrossRefPubMed
26.
Zurück zum Zitat Nair P, Pizzichini MMM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O'Byrne PM: Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. N Engl J Med. 2009, 360: 985-993.CrossRefPubMed Nair P, Pizzichini MMM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave FE, O'Byrne PM: Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. N Engl J Med. 2009, 360: 985-993.CrossRefPubMed
27.
Zurück zum Zitat Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. N Engl J Med. 2009, 360: 973-984.CrossRefPubMedPubMedCentral Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. N Engl J Med. 2009, 360: 973-984.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Wenzel SE: Eosinophils in Asthma-Closing the Loop or Opening the Door?. N Engl J Med. 2009, 360: 1026-1028.CrossRefPubMed Wenzel SE: Eosinophils in Asthma-Closing the Loop or Opening the Door?. N Engl J Med. 2009, 360: 1026-1028.CrossRefPubMed
29.
Zurück zum Zitat Gamble J, Stevenson M, McClean E, Heaney LG: The Prevalence of Nonadherence in Difficult Asthma. Am J Respir Crit Care Med. 2009, 180: 817-822.CrossRefPubMed Gamble J, Stevenson M, McClean E, Heaney LG: The Prevalence of Nonadherence in Difficult Asthma. Am J Respir Crit Care Med. 2009, 180: 817-822.CrossRefPubMed
30.
Zurück zum Zitat Corren J: Cytokine inhibition in severe asthma: Current knowledge and future directions. Curr Opin Pulm Med. 2011, 17: 29-33.CrossRefPubMed Corren J: Cytokine inhibition in severe asthma: Current knowledge and future directions. Curr Opin Pulm Med. 2011, 17: 29-33.CrossRefPubMed
31.
Zurück zum Zitat Elias JA, Lee CG: IL-13 in Asthma: The Successful Integration of Lessons from Mice and Humans. Am J Respir Crit Care Med. 2011, 183: 957-958.CrossRefPubMed Elias JA, Lee CG: IL-13 in Asthma: The Successful Integration of Lessons from Mice and Humans. Am J Respir Crit Care Med. 2011, 183: 957-958.CrossRefPubMed
32.
Zurück zum Zitat Gauvreau GM, Boulet L-P, Cockcroft DW, FitzGerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Kasaian MT, Killian KJ, Strinich TX, Watson RM, Y N, Zhou S, Raible D, O'Byrne PM: The Effects of IL-13 Blockade on Allergen-Induced Airway Responses in Mild Atopic Asthma. Am J Respir Crit Care Med. 2011, 183: 1007-1014.CrossRefPubMed Gauvreau GM, Boulet L-P, Cockcroft DW, FitzGerald JM, Carlsten C, Davis BE, Deschesnes F, Duong M, Durn BL, Howie KJ, Hui L, Kasaian MT, Killian KJ, Strinich TX, Watson RM, Y N, Zhou S, Raible D, O'Byrne PM: The Effects of IL-13 Blockade on Allergen-Induced Airway Responses in Mild Atopic Asthma. Am J Respir Crit Care Med. 2011, 183: 1007-1014.CrossRefPubMed
33.
Zurück zum Zitat Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M: Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. The Lancet. 2007, 370: 1422-1431.CrossRef Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M: Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. The Lancet. 2007, 370: 1422-1431.CrossRef
34.
Zurück zum Zitat Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY, Vexler V, Shames RS, the Daclizumab Asthma Study Goup: Daclizumab Improves Asthma Control in Patients with Moderate to Severe Persistent Asthma: A Randomized, Controlled Trial. Am J Respir Crit Care Med. 2008, 178: 1002-1008.CrossRefPubMed Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY, Vexler V, Shames RS, the Daclizumab Asthma Study Goup: Daclizumab Improves Asthma Control in Patients with Moderate to Severe Persistent Asthma: A Randomized, Controlled Trial. Am J Respir Crit Care Med. 2008, 178: 1002-1008.CrossRefPubMed
35.
Zurück zum Zitat Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, Contoli M, Sanderson G, Kon OM, Papi A, Jeffery PK, Stanciu LA, Johnston SL: Rhinovirus induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Nat Acad Sci USA. 2008, 105: 13562-13567.CrossRefPubMedPubMedCentral Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, Contoli M, Sanderson G, Kon OM, Papi A, Jeffery PK, Stanciu LA, Johnston SL: Rhinovirus induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Nat Acad Sci USA. 2008, 105: 13562-13567.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Cazzola M, Segreti A, Matera M: Novel bronchodilators in asthma. Curr Opin Pulm Med. 2010, 16: 6-12.CrossRefPubMed Cazzola M, Segreti A, Matera M: Novel bronchodilators in asthma. Curr Opin Pulm Med. 2010, 16: 6-12.CrossRefPubMed
38.
Zurück zum Zitat Thomson NC, Spears M: The role of cigarette smoking on persistent airflow obstruction in asthma. Annals Resp Med. 2011. Thomson NC, Spears M: The role of cigarette smoking on persistent airflow obstruction in asthma. Annals Resp Med. 2011.
39.
Zurück zum Zitat Park HW, Yang MS, Park CS, Kim TB, Moon HB, Min KU, Kim YY, Cho SH: Additive role of tiotropium in severe asthmatics and Arg16Gly in ADRB2 as a potential marker to predict response. Allergy. 2009, 64: 778-783.CrossRefPubMed Park HW, Yang MS, Park CS, Kim TB, Moon HB, Min KU, Kim YY, Cho SH: Additive role of tiotropium in severe asthmatics and Arg16Gly in ADRB2 as a potential marker to predict response. Allergy. 2009, 64: 778-783.CrossRefPubMed
40.
Zurück zum Zitat De Bosscher K, Haegeman G, Elewaut D: Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010, 10: 497-504.CrossRefPubMed De Bosscher K, Haegeman G, Elewaut D: Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol. 2010, 10: 497-504.CrossRefPubMed
41.
Zurück zum Zitat Schacke H, Schottelius A, Docke W-D, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K: Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA. 2004, 101: 227-232.CrossRefPubMed Schacke H, Schottelius A, Docke W-D, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K: Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA. 2004, 101: 227-232.CrossRefPubMed
42.
Zurück zum Zitat Schäcke H, Zollner TM, Döcke WD, Rehwinkel H, Jaroch S, Skuballa W, Neuhaus R, May E, Zügel U, Asadullah K: Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of inflammatory skin diseases. Br J Pharmacol. 2009, 158: 1088-1103.CrossRefPubMedPubMedCentral Schäcke H, Zollner TM, Döcke WD, Rehwinkel H, Jaroch S, Skuballa W, Neuhaus R, May E, Zügel U, Asadullah K: Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of inflammatory skin diseases. Br J Pharmacol. 2009, 158: 1088-1103.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Zhang J, Cavet M, VanderMeid K, Salvador-Silva M, López F, Ward K: BOL-303242-X, a novel selective glucocorticoid receptor agonist, with full anti-inflammatory properties in human ocular cells. Mol Vis. 2009, 15: 2606-2616.PubMedPubMedCentral Zhang J, Cavet M, VanderMeid K, Salvador-Silva M, López F, Ward K: BOL-303242-X, a novel selective glucocorticoid receptor agonist, with full anti-inflammatory properties in human ocular cells. Mol Vis. 2009, 15: 2606-2616.PubMedPubMedCentral
44.
Zurück zum Zitat Evans JF, Ferguson AD, Mosley RT, Hutchinson JH: What's all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sc. 2008, 29: 72-78.CrossRef Evans JF, Ferguson AD, Mosley RT, Hutchinson JH: What's all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sc. 2008, 29: 72-78.CrossRef
45.
Zurück zum Zitat Balzar S, Fajt ML, Comhair SAA, Erzurum SC, Bleecker E, Busse WW, Castro M, Gaston B, Israel E, Schwartz LB, Curran-Everett D, Moore CG, Wenzel SE: Mast Cell Phenotype, Location, and Activation in Severe Asthma: Data from the Severe Asthma Research Program. Am J Respir Crit Care Med. 2011, 183: 299-309.CrossRefPubMed Balzar S, Fajt ML, Comhair SAA, Erzurum SC, Bleecker E, Busse WW, Castro M, Gaston B, Israel E, Schwartz LB, Curran-Everett D, Moore CG, Wenzel SE: Mast Cell Phenotype, Location, and Activation in Severe Asthma: Data from the Severe Asthma Research Program. Am J Respir Crit Care Med. 2011, 183: 299-309.CrossRefPubMed
46.
Zurück zum Zitat Schuligoi R, Sturm E, Luschnig P, Konya V, Philipose S, Sedej M, Waldhoer M, Peskar BA, Heinemann A: CRTH2 and D-Type Prostanoid Receptor Antagonists as Novel Therapeutic Agents for Inflammatory Diseases. Pharmacology. 2010, 85: 372-382.CrossRefPubMed Schuligoi R, Sturm E, Luschnig P, Konya V, Philipose S, Sedej M, Waldhoer M, Peskar BA, Heinemann A: CRTH2 and D-Type Prostanoid Receptor Antagonists as Novel Therapeutic Agents for Inflammatory Diseases. Pharmacology. 2010, 85: 372-382.CrossRefPubMed
47.
Zurück zum Zitat Cox PG, Miller J, Mitzner W, Leff AR: Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations. Eur Respir J. 2004, 24: 659-663.CrossRefPubMed Cox PG, Miller J, Mitzner W, Leff AR: Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations. Eur Respir J. 2004, 24: 659-663.CrossRefPubMed
48.
Zurück zum Zitat Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, Leff AR: Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol. 2004, 97: 1946-1953.CrossRefPubMed Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, Leff AR: Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol. 2004, 97: 1946-1953.CrossRefPubMed
49.
Zurück zum Zitat Brown RH, Wizeman W, Danek C, Mitzner W: In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography. J Appl Physiol. 2005, 98: 1603-1606.CrossRefPubMed Brown RH, Wizeman W, Danek C, Mitzner W: In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography. J Appl Physiol. 2005, 98: 1603-1606.CrossRefPubMed
50.
Zurück zum Zitat Brown RH, Wizeman W, Danek C, Mitzner W: Effect of bronchial thermoplasty on airway distensibility. Eur Respir J. 2005, 26: 277-282.CrossRefPubMed Brown RH, Wizeman W, Danek C, Mitzner W: Effect of bronchial thermoplasty on airway distensibility. Eur Respir J. 2005, 26: 277-282.CrossRefPubMed
51.
Zurück zum Zitat Cox G, Miller JD, McWilliams A, FitzGerald JM, Lam S: Bronchial Thermoplasty for Asthma. Am J Respir Crit Care Med. 2006, 173: 965-969.CrossRefPubMed Cox G, Miller JD, McWilliams A, FitzGerald JM, Lam S: Bronchial Thermoplasty for Asthma. Am J Respir Crit Care Med. 2006, 173: 965-969.CrossRefPubMed
52.
Zurück zum Zitat Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, Miller JD, Laviolette M, AIR Trial Study Group: Asthma Control during the Year after Bronchial Thermoplasty. N Eng J Med. 2007, 356: 1327-1337.CrossRef Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, McCormack D, Chaudhuri R, Miller JD, Laviolette M, AIR Trial Study Group: Asthma Control during the Year after Bronchial Thermoplasty. N Eng J Med. 2007, 356: 1327-1337.CrossRef
53.
Zurück zum Zitat Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, Chung KF, Laviolette M, the RISA Trial Study Group: Safety and Efficacy of Bronchial Thermoplasty in Symptomatic, Severe Asthma. Am J Respir Crit Care Med. 2007, 176: 1185-1191.CrossRefPubMed Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, Chung KF, Laviolette M, the RISA Trial Study Group: Safety and Efficacy of Bronchial Thermoplasty in Symptomatic, Severe Asthma. Am J Respir Crit Care Med. 2007, 176: 1185-1191.CrossRefPubMed
54.
Zurück zum Zitat Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, Fiss E, Olivenstein R, Thomson NC, Niven RM, Pavord ID, Simoff M, Duhamel DR, McEvoy C, Barbers R, Ten Hacken NH, Wechsler ME, Holmes M, Phillips MJ, Erzurum S, Lunn W, Israel E, Jarjour N, Kraft M, Shargill NS, Quiring J, Berry SM, Cox G, AIR2 Trial Study Group: Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: A Multicenter, Randomized, Double-Blind, Sham-Controlled Clinical Trial. Am J Respir Crit Care Med. 2010, 181: 116-124.CrossRefPubMedPubMedCentral Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, Fiss E, Olivenstein R, Thomson NC, Niven RM, Pavord ID, Simoff M, Duhamel DR, McEvoy C, Barbers R, Ten Hacken NH, Wechsler ME, Holmes M, Phillips MJ, Erzurum S, Lunn W, Israel E, Jarjour N, Kraft M, Shargill NS, Quiring J, Berry SM, Cox G, AIR2 Trial Study Group: Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: A Multicenter, Randomized, Double-Blind, Sham-Controlled Clinical Trial. Am J Respir Crit Care Med. 2010, 181: 116-124.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Thomson N, Rubin A, Niven R, Corris P, Siersted H, Olivenstein R, Pavord I, McCormick D, Laviolette M, Shargill N, Cox G, AIR Trial Study Group: Long term (5 Year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med. 2011, 11: 8.CrossRefPubMedPubMedCentral Thomson N, Rubin A, Niven R, Corris P, Siersted H, Olivenstein R, Pavord I, McCormick D, Laviolette M, Shargill N, Cox G, AIR Trial Study Group: Long term (5 Year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med. 2011, 11: 8.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Lipworth BJ: Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. The Lancet. 2005, 365: 167-175.CrossRef Lipworth BJ: Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. The Lancet. 2005, 365: 167-175.CrossRef
57.
Zurück zum Zitat Bateman ED, Izquierdo JL, Harnest U, Hofbauer P, Magyar P, Schmid-Wirlitsch C, Leichtl S, Bredenbroker D: Efficacy and safety of roflumilast in the treatment of asthma. Ann Allergy Asthma & Immunol. 2006, 96: 679-686.CrossRef Bateman ED, Izquierdo JL, Harnest U, Hofbauer P, Magyar P, Schmid-Wirlitsch C, Leichtl S, Bredenbroker D: Efficacy and safety of roflumilast in the treatment of asthma. Ann Allergy Asthma & Immunol. 2006, 96: 679-686.CrossRef
58.
Zurück zum Zitat Bousquet J, Aubier M, Sastre J, Izquierdo JL, Adler LM, Hofbauer P, Rost KD, Harnest U, Kroemer B, Albrecht A, Bredenbröker D: Comparison of roflumilast, an oral anti-inflammatory, with beclomethasone dipropionate in the treatment of persistent asthma. Allergy. 2006, 61: 72-78.CrossRefPubMed Bousquet J, Aubier M, Sastre J, Izquierdo JL, Adler LM, Hofbauer P, Rost KD, Harnest U, Kroemer B, Albrecht A, Bredenbröker D: Comparison of roflumilast, an oral anti-inflammatory, with beclomethasone dipropionate in the treatment of persistent asthma. Allergy. 2006, 61: 72-78.CrossRefPubMed
59.
Zurück zum Zitat Chapman RW, House A, Richard J, Prelusky D, Lamca J, Wang P, Lundell D, Wu P, Ting PC, Lee JF, Aslanian R, Phillips JE: Pharmacology of a potent and selective inhibitor of PDE4 for inhaled administration. Eur J Pharmacol. 2010, 643: 274-281.CrossRefPubMed Chapman RW, House A, Richard J, Prelusky D, Lamca J, Wang P, Lundell D, Wu P, Ting PC, Lee JF, Aslanian R, Phillips JE: Pharmacology of a potent and selective inhibitor of PDE4 for inhaled administration. Eur J Pharmacol. 2010, 643: 274-281.CrossRefPubMed
60.
Zurück zum Zitat Singh D, Petavy F, Macdonald A, Lazaar A, O'Connor B: The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Resp Res. 2010, 11: 26.CrossRef Singh D, Petavy F, Macdonald A, Lazaar A, O'Connor B: The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma. Resp Res. 2010, 11: 26.CrossRef
61.
Zurück zum Zitat Cohen S, Fleischmann R: Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol. 2010, 22: 330-335.CrossRefPubMed Cohen S, Fleischmann R: Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol. 2010, 22: 330-335.CrossRefPubMed
63.
Zurück zum Zitat Bhavsar P, Khorasani N, Hew M, Johnson M, Chung KF: Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J. 2010, 35: 750-756.CrossRefPubMed Bhavsar P, Khorasani N, Hew M, Johnson M, Chung KF: Effect of p38 MAPK inhibition on corticosteroid suppression of cytokine release in severe asthma. Eur Respir J. 2010, 35: 750-756.CrossRefPubMed
64.
Zurück zum Zitat Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM: The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 2006, 27: 615-626.CrossRefPubMed Denning DW, O'Driscoll BR, Hogaboam CM, Bowyer P, Niven RM: The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 2006, 27: 615-626.CrossRefPubMed
65.
Zurück zum Zitat Denning DW, O'Driscoll BR, Powell G, Chew F, Atherton GT, Vyas A, Miles J, Morris J, Niven RM: Randomized Controlled Trial of Oral Antifungal Treatment for Severe Asthma with Fungal Sensitization: The Fungal Asthma Sensitization Trial (FAST) Study. Am J Respir Crit Care Med. 2009, 179: 11-18.CrossRefPubMed Denning DW, O'Driscoll BR, Powell G, Chew F, Atherton GT, Vyas A, Miles J, Morris J, Niven RM: Randomized Controlled Trial of Oral Antifungal Treatment for Severe Asthma with Fungal Sensitization: The Fungal Asthma Sensitization Trial (FAST) Study. Am J Respir Crit Care Med. 2009, 179: 11-18.CrossRefPubMed
66.
Zurück zum Zitat Parma J, Howell T, Kelly J, Bilton D: Profound adrenal suppression secondary to treatment with low dose inhaled steroids and itraconazole in allergic bronchopulmonary aspergillosis in cystic fibrosis. Thorax. 2002, 57: 749-750.CrossRef Parma J, Howell T, Kelly J, Bilton D: Profound adrenal suppression secondary to treatment with low dose inhaled steroids and itraconazole in allergic bronchopulmonary aspergillosis in cystic fibrosis. Thorax. 2002, 57: 749-750.CrossRef
67.
Zurück zum Zitat Skov M, Main K, Sillesen I, Müller J, Koch C, Lanng S: Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide. Eur Respir J. 2002, 20: 127-133.CrossRefPubMed Skov M, Main K, Sillesen I, Müller J, Koch C, Lanng S: Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide. Eur Respir J. 2002, 20: 127-133.CrossRefPubMed
68.
Zurück zum Zitat Spears M, McSharry C, Thomson NC: Peroxisome proliferator-activated receptor-gamma agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy. 2006, 36: 1494-1504.CrossRefPubMed Spears M, McSharry C, Thomson NC: Peroxisome proliferator-activated receptor-gamma agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy. 2006, 36: 1494-1504.CrossRefPubMed
69.
Zurück zum Zitat Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, Lafferty J, Chaudhuri R, Braganza G, Bareille P, Sweeney L, Adcock IM, Barnes PJ, Wood S, Thomson NC: Bronchodilatory Effect of the PPAR-[gamma] Agonist Rosiglitazone in Smokers With Asthma. Clin Pharmacol Ther. 2009, 86: 49-53.CrossRefPubMed Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, Lafferty J, Chaudhuri R, Braganza G, Bareille P, Sweeney L, Adcock IM, Barnes PJ, Wood S, Thomson NC: Bronchodilatory Effect of the PPAR-[gamma] Agonist Rosiglitazone in Smokers With Asthma. Clin Pharmacol Ther. 2009, 86: 49-53.CrossRefPubMed
71.
Zurück zum Zitat Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol. 2007, 557: 76-86.CrossRefPubMed Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol. 2007, 557: 76-86.CrossRefPubMed
72.
Zurück zum Zitat Chiba Y, Sato S, Misawa M: Inhibition of antigen-induced bronchial smooth muscle hyperresponsiveness by lovastatin in mice. J Smooth Muscle Res. 2008, 44: 123-128.CrossRefPubMed Chiba Y, Sato S, Misawa M: Inhibition of antigen-induced bronchial smooth muscle hyperresponsiveness by lovastatin in mice. J Smooth Muscle Res. 2008, 44: 123-128.CrossRefPubMed
73.
Zurück zum Zitat Imamura M, Okunishi K, Ohtsu H, Nakagome K, Harada H, Tanaka R, Yamamoto K, Dohi M: Pravastatin attenuates allergic airway inflammation by suppressing antigen sensitisation, interleukin 17 production and antigen presentation in the lung. Thorax. 2009, 64: 44-49.CrossRefPubMed Imamura M, Okunishi K, Ohtsu H, Nakagome K, Harada H, Tanaka R, Yamamoto K, Dohi M: Pravastatin attenuates allergic airway inflammation by suppressing antigen sensitisation, interleukin 17 production and antigen presentation in the lung. Thorax. 2009, 64: 44-49.CrossRefPubMed
74.
Zurück zum Zitat Chiba Y, Arima J, Sakai H, Misawa M: Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L705-713.CrossRefPubMed Chiba Y, Arima J, Sakai H, Misawa M: Lovastatin inhibits bronchial hyperresponsiveness by reducing RhoA signaling in rat allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2008, 294: L705-713.CrossRefPubMed
75.
Zurück zum Zitat McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY: A Novel Anti-Inflammatory Role of Simvastatin in a Murine Model of Allergic Asthma. J Immunol. 2004, 172: 2903-2908.CrossRefPubMed McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY: A Novel Anti-Inflammatory Role of Simvastatin in a Murine Model of Allergic Asthma. J Immunol. 2004, 172: 2903-2908.CrossRefPubMed
76.
Zurück zum Zitat Zeki AA, Franzi L, Last J, Kenyon NJ: Simvastatin Inhibits Airway Hyperreactivity: Implications for the Mevalonate Pathway and Beyond. Am J Respir Crit Care Med. 2009, 180: 731-740.CrossRefPubMedPubMedCentral Zeki AA, Franzi L, Last J, Kenyon NJ: Simvastatin Inhibits Airway Hyperreactivity: Implications for the Mevalonate Pathway and Beyond. Am J Respir Crit Care Med. 2009, 180: 731-740.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Menzies D, Nair A, Meldrum KT, Fleming D, Barnes M, Lipworth BJ: Simvastatin does not exhibit therapeutic anti-inflammatory effects in asthma. J Allergy Clin Immunol. 2007, 119: 328-335.CrossRefPubMed Menzies D, Nair A, Meldrum KT, Fleming D, Barnes M, Lipworth BJ: Simvastatin does not exhibit therapeutic anti-inflammatory effects in asthma. J Allergy Clin Immunol. 2007, 119: 328-335.CrossRefPubMed
78.
Zurück zum Zitat Hothersall EJ, Chaudhuri R, McSharry C, Donnelly I, Lafferty J, McMahon AD, Weir CJ, Meiklejohn J, Sattar N, McInnes I, Wood S, Thomson NC: Effects of atorvastatin added to inhaled corticosteroids on lung function and sputum cell counts in atopic asthma. Thorax. 2008, 63: 1070-1075.CrossRefPubMed Hothersall EJ, Chaudhuri R, McSharry C, Donnelly I, Lafferty J, McMahon AD, Weir CJ, Meiklejohn J, Sattar N, McInnes I, Wood S, Thomson NC: Effects of atorvastatin added to inhaled corticosteroids on lung function and sputum cell counts in atopic asthma. Thorax. 2008, 63: 1070-1075.CrossRefPubMed
79.
Zurück zum Zitat Cowan DC, Cowan JO, Palmay R, Williamson A, Taylor DR: Simvastatin in the treatment of asthma: lack of steroid-sparing effect. Thorax. 2010, 65: 891-896.CrossRefPubMed Cowan DC, Cowan JO, Palmay R, Williamson A, Taylor DR: Simvastatin in the treatment of asthma: lack of steroid-sparing effect. Thorax. 2010, 65: 891-896.CrossRefPubMed
80.
Zurück zum Zitat Braganza G, Chaudhuri R, McSharry C, Weir CJ, Donnelly I, Jolly L, Lafferty J, Lloyd SM, Spears M, Mair F, Thomson NC: Effects of short-term treatment with atorvastatin in smokers with asthma-a randomized controlled trial. BMC Pulm Med. 2011, 11: 16.CrossRefPubMedPubMedCentral Braganza G, Chaudhuri R, McSharry C, Weir CJ, Donnelly I, Jolly L, Lafferty J, Lloyd SM, Spears M, Mair F, Thomson NC: Effects of short-term treatment with atorvastatin in smokers with asthma-a randomized controlled trial. BMC Pulm Med. 2011, 11: 16.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Pégorier S, Arouche N, Dombret M-C, Aubier M, Pretolani M: Augmented epithelial endothelin-1 expression in refractory asthma. J Allergy Clin Immunol. 2007, 120: 1301-1307.CrossRefPubMed Pégorier S, Arouche N, Dombret M-C, Aubier M, Pretolani M: Augmented epithelial endothelin-1 expression in refractory asthma. J Allergy Clin Immunol. 2007, 120: 1301-1307.CrossRefPubMed
82.
Zurück zum Zitat McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR: Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007, 292: L278-L286.CrossRefPubMed McWhinnie R, Pechkovsky DV, Zhou D, Lane D, Halayko AJ, Knight DA, Bai TR: Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007, 292: L278-L286.CrossRefPubMed
83.
Zurück zum Zitat Wenzel SE: Asthma: defining of the persistent adult phenotypes. The Lancet. 2006, 368: 804-813.CrossRef Wenzel SE: Asthma: defining of the persistent adult phenotypes. The Lancet. 2006, 368: 804-813.CrossRef
84.
Zurück zum Zitat Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A, Israel E, Schork N, Silverman ES, Katz DA, Drajesk J: Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet. 1999, 22: 168-170.CrossRefPubMed Drazen JM, Yandava CN, Dube L, Szczerback N, Hippensteel R, Pillari A, Israel E, Schork N, Silverman ES, Katz DA, Drajesk J: Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet. 1999, 22: 168-170.CrossRefPubMed
85.
Zurück zum Zitat Lima JJ, Zhang S, Grant A, Shao L, Tantisira KG, Allayee H, Wang J, Sylvester J, Holbrook J, Wise R, Weiss ST, Barnes K: Influence of Leukotriene Pathway Polymorphisms on Response to Montelukast in Asthma. Am J Repir Crit Care Med. 2006, 173: 379-385.CrossRef Lima JJ, Zhang S, Grant A, Shao L, Tantisira KG, Allayee H, Wang J, Sylvester J, Holbrook J, Wise R, Weiss ST, Barnes K: Influence of Leukotriene Pathway Polymorphisms on Response to Montelukast in Asthma. Am J Repir Crit Care Med. 2006, 173: 379-385.CrossRef
86.
Zurück zum Zitat Klotsman M, York T, Pillai S, Vargas-Irwin C, Sharma S, van den Oord E, Anderson W: Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics. 2007, 17: 189-196.CrossRefPubMed Klotsman M, York T, Pillai S, Vargas-Irwin C, Sharma S, van den Oord E, Anderson W: Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet Genomics. 2007, 17: 189-196.CrossRefPubMed
87.
Zurück zum Zitat Haldar P, Pavord ID: Noneosinophilic asthma: A distinct clinical and pathologic phenotype. J Allergy Clin Immunol. 2007, 119: 1043-1052.CrossRefPubMed Haldar P, Pavord ID: Noneosinophilic asthma: A distinct clinical and pathologic phenotype. J Allergy Clin Immunol. 2007, 119: 1043-1052.CrossRefPubMed
88.
Zurück zum Zitat Simpson J, Scott R, Boyle M, Gibson P: Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology. 2006, 11: 54-61.CrossRefPubMed Simpson J, Scott R, Boyle M, Gibson P: Inflammatory subtypes in asthma: Assessment and identification using induced sputum. Respirology. 2006, 11: 54-61.CrossRefPubMed
89.
Zurück zum Zitat Pavord I, Brightling C, Woltmann G, Wardlaw A: Non-eosinophilic corticosteroid unresponsive asthma. Lancet. 1999, 353: 2213-2214.CrossRefPubMed Pavord I, Brightling C, Woltmann G, Wardlaw A: Non-eosinophilic corticosteroid unresponsive asthma. Lancet. 1999, 353: 2213-2214.CrossRefPubMed
90.
Zurück zum Zitat Little S, Chalmers G, MacLeod K, McSharry C, Thomson N: Non-invasive markers of airway inflammation as predictors of oral steroid responsiveness in asthma. Thorax. 2000, 53: 232-234.CrossRef Little S, Chalmers G, MacLeod K, McSharry C, Thomson N: Non-invasive markers of airway inflammation as predictors of oral steroid responsiveness in asthma. Thorax. 2000, 53: 232-234.CrossRef
91.
Zurück zum Zitat Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID: Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. The Lancet. 2002, 360: 1715-1721.CrossRef Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID: Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. The Lancet. 2002, 360: 1715-1721.CrossRef
92.
Zurück zum Zitat Bacci E, Cianchetti S, Bartoli M, Dente FL, Di Franco A, Vagaggini B, Paggiaro P: Low Sputum Eosinophils Predict the Lack of Response to Beclomethasone in Symptomatic Asthmatic Patients. Chest. 2006, 129: 565-572.CrossRefPubMed Bacci E, Cianchetti S, Bartoli M, Dente FL, Di Franco A, Vagaggini B, Paggiaro P: Low Sputum Eosinophils Predict the Lack of Response to Beclomethasone in Symptomatic Asthmatic Patients. Chest. 2006, 129: 565-572.CrossRefPubMed
93.
Zurück zum Zitat Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, Bradding P, Wardlaw AJ, Pavord ID: Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007, 62: 1043-1049.CrossRefPubMedPubMedCentral Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, Bradding P, Wardlaw AJ, Pavord ID: Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007, 62: 1043-1049.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG: Clarithromycin Targets Neutrophilic Airway Inflammation in Refractory Asthma. Am J Respir Crit Care Med. 2008, 177: 148-155.CrossRefPubMed Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG: Clarithromycin Targets Neutrophilic Airway Inflammation in Refractory Asthma. Am J Respir Crit Care Med. 2008, 177: 148-155.CrossRefPubMed
95.
Zurück zum Zitat Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Arron JR, Koth LL, Fahy JV: T-helper Type 2-driven Inflammation Defines Major Subphenotypes of Asthma. Am J Respir Crit Care Med. 2009, 180: 388-395.CrossRefPubMedPubMedCentral Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Arron JR, Koth LL, Fahy JV: T-helper Type 2-driven Inflammation Defines Major Subphenotypes of Asthma. Am J Respir Crit Care Med. 2009, 180: 388-395.CrossRefPubMedPubMedCentral
Metadaten
Titel
Emerging therapies for severe asthma
verfasst von
Neil C Thomson
Rekha Chaudhuri
Mark Spears
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2011
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-9-102

Weitere Artikel der Ausgabe 1/2011

BMC Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Neu im Fachgebiet Allgemeinmedizin

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.