Skip to main content
Erschienen in: Cellular Oncology 6/2018

27.09.2018 | Review

Emerging ways to treat breast cancer: will promises be met?

verfasst von: Pouria Samadi, Sahar Saki, Fatemeh Karimi Dermani, Mona Pourjafar, Massoud Saidijam

Erschienen in: Cellular Oncology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC.

Conclusions

Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.
Literatur
1.
Zurück zum Zitat N.F. Boyd, L.J. Martin, M. Bronskill, M.J. Yaffe, N. Duric, S. Minkin, Breast tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 102, 1224–1237 (2010)PubMedPubMedCentral N.F. Boyd, L.J. Martin, M. Bronskill, M.J. Yaffe, N. Duric, S. Minkin, Breast tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 102, 1224–1237 (2010)PubMedPubMedCentral
2.
Zurück zum Zitat G.N. Sharma, R. Dave, J. Sanadya, P. Sharma, K. Sharma, Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 1, 109 (2010)PubMedPubMedCentral G.N. Sharma, R. Dave, J. Sanadya, P. Sharma, K. Sharma, Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 1, 109 (2010)PubMedPubMedCentral
3.
Zurück zum Zitat R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell. Oncol. 39, 397–410 (2016) R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell. Oncol. 39, 397–410 (2016)
4.
Zurück zum Zitat R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017) R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)
5.
Zurück zum Zitat R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)PubMed R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)PubMed
6.
Zurück zum Zitat L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015)PubMed L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015)PubMed
7.
Zurück zum Zitat C.E. DeSantis, J. Ma, A. Goding Sauer, L.A. Newman, A. Jemal, Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 67, 439–448 (2017)PubMed C.E. DeSantis, J. Ma, A. Goding Sauer, L.A. Newman, A. Jemal, Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin. 67, 439–448 (2017)PubMed
8.
Zurück zum Zitat P. Apostolou, F. Fostira, Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013, 747318 (2013)PubMedPubMedCentral P. Apostolou, F. Fostira, Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013, 747318 (2013)PubMedPubMedCentral
9.
Zurück zum Zitat A.L. Siu, Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 164, 279–296 (2016)PubMed A.L. Siu, Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 164, 279–296 (2016)PubMed
10.
Zurück zum Zitat K.H. Allison, L.A. Abraham, D.L. Weaver, A.N. Tosteson, H.D. Nelson, T. Onega, B.M. Geller, K. Kerlikowske, P.A. Carney, L.E. Ichikawa, Trends in breast biopsy pathology diagnoses among women undergoing mammography in the United States: a report from the Breast Cancer Surveillance Consortium. Cancer 121, 1369–1378 (2015)PubMed K.H. Allison, L.A. Abraham, D.L. Weaver, A.N. Tosteson, H.D. Nelson, T. Onega, B.M. Geller, K. Kerlikowske, P.A. Carney, L.E. Ichikawa, Trends in breast biopsy pathology diagnoses among women undergoing mammography in the United States: a report from the Breast Cancer Surveillance Consortium. Cancer 121, 1369–1378 (2015)PubMed
12.
Zurück zum Zitat V. Mandilaras, N. Bouganim, J. Spayne, R. Dent, A. Arnaout, J. Boileau, M. Brackstone, S. Meterissian, M. Clemons, Concurrent chemoradiotherapy for locally advanced breast cancer—time for a new paradigm? Curr. Oncol. 22, 25 (2015)PubMedPubMedCentral V. Mandilaras, N. Bouganim, J. Spayne, R. Dent, A. Arnaout, J. Boileau, M. Brackstone, S. Meterissian, M. Clemons, Concurrent chemoradiotherapy for locally advanced breast cancer—time for a new paradigm? Curr. Oncol. 22, 25 (2015)PubMedPubMedCentral
13.
Zurück zum Zitat G. Viale, The current state of breast cancer classification. Ann. Oncol. 23, 207–210 (2012) G. Viale, The current state of breast cancer classification. Ann. Oncol. 23, 207–210 (2012)
14.
Zurück zum Zitat X. Dai, T. Li, Z. Bai, Y. Yang, X. Liu, J. Zhan, B. Shi, Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5, 2929 (2015)PubMedPubMedCentral X. Dai, T. Li, Z. Bai, Y. Yang, X. Liu, J. Zhan, B. Shi, Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5, 2929 (2015)PubMedPubMedCentral
15.
Zurück zum Zitat O. Yersal, S. Barutca, WJCO. World 5, 412–424 (2014) O. Yersal, S. Barutca, WJCO. World 5, 412–424 (2014)
16.
Zurück zum Zitat P. Alluri, L.A. Newman, Basal-like and triple-negative breast cancers. searching for positives among many negatives. Surg. Oncol. Clin. N. Am. 23, 567–577 (2014)PubMed P. Alluri, L.A. Newman, Basal-like and triple-negative breast cancers. searching for positives among many negatives. Surg. Oncol. Clin. N. Am. 23, 567–577 (2014)PubMed
17.
Zurück zum Zitat J.I. Herschkowitz, K. Simin, V.J. Weigman, I. Mikaelian, J. Usary, Z. Hu, K.E. Rasmussen, L.P. Jones, S. Assefnia, S. Chandrasekharan, Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007)PubMedPubMedCentral J.I. Herschkowitz, K. Simin, V.J. Weigman, I. Mikaelian, J. Usary, Z. Hu, K.E. Rasmussen, L.P. Jones, S. Assefnia, S. Chandrasekharan, Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007)PubMedPubMedCentral
18.
Zurück zum Zitat K. Dias, A. Dvorkin-Gheva, R.M. Hallett, Y. Wu, J. Hassell, G.R. Pond, M. Levine, T. Whelan, A.L. Bane, Claudin-low breast cancer; clinical & pathological characteristics. PLoS One 12, e0168669 (2017)PubMedPubMedCentral K. Dias, A. Dvorkin-Gheva, R.M. Hallett, Y. Wu, J. Hassell, G.R. Pond, M. Levine, T. Whelan, A.L. Bane, Claudin-low breast cancer; clinical & pathological characteristics. PLoS One 12, e0168669 (2017)PubMedPubMedCentral
19.
Zurück zum Zitat C. Hack, P. Voiß, S. Lange, A. Paul, S. Conrad, G. Dobos, M. Beckmann, S. Kümmel, Local and Systemic therapies for breast cancer patients: Reducing short-term symptoms with the methods of integrative medicine. Geburtshilfe Frauenheilkd. 75, 675–682 (2015)PubMedPubMedCentral C. Hack, P. Voiß, S. Lange, A. Paul, S. Conrad, G. Dobos, M. Beckmann, S. Kümmel, Local and Systemic therapies for breast cancer patients: Reducing short-term symptoms with the methods of integrative medicine. Geburtshilfe Frauenheilkd. 75, 675–682 (2015)PubMedPubMedCentral
20.
Zurück zum Zitat T.A. Buchholz, Radiotherapy and survival in breast cancer. The Lancet 378, 1680–1682 (2011) T.A. Buchholz, Radiotherapy and survival in breast cancer. The Lancet 378, 1680–1682 (2011)
21.
Zurück zum Zitat E.A. Perez, Carboplatin in combination therapy for metastatic breast cancer. Oncologist. 9, 518–527 (2004)PubMed E.A. Perez, Carboplatin in combination therapy for metastatic breast cancer. Oncologist. 9, 518–527 (2004)PubMed
22.
Zurück zum Zitat L. Huang, Q. Liu, S. Chen, Z. Shao, Cisplatin versus carboplatin in combination with paclitaxel as neoadjuvant regimen for triple negative breast cancer. Onco Targets Ther. 10, 5739 (2017)PubMedPubMedCentral L. Huang, Q. Liu, S. Chen, Z. Shao, Cisplatin versus carboplatin in combination with paclitaxel as neoadjuvant regimen for triple negative breast cancer. Onco Targets Ther. 10, 5739 (2017)PubMedPubMedCentral
23.
Zurück zum Zitat D. Cameron, H. Gabra, R. Leonard, Continuous 5-fluorouracil in the treatment of breast cancer. Br. J. Cancer 70, 120 (1994)PubMedPubMedCentral D. Cameron, H. Gabra, R. Leonard, Continuous 5-fluorouracil in the treatment of breast cancer. Br. J. Cancer 70, 120 (1994)PubMedPubMedCentral
24.
Zurück zum Zitat O. Kucuk, K.J. Pandya, R.T. Skeel, H. Hochster, M.D. Abeloff, Phase II study of cisplatin and 5-fluorouracil in previously treated metastatic breast cancer: an Eastern Cooperative Oncology Group study (PA 185). Breast Cancer Res. Treat. 57, 201–206 (1999)PubMed O. Kucuk, K.J. Pandya, R.T. Skeel, H. Hochster, M.D. Abeloff, Phase II study of cisplatin and 5-fluorouracil in previously treated metastatic breast cancer: an Eastern Cooperative Oncology Group study (PA 185). Breast Cancer Res. Treat. 57, 201–206 (1999)PubMed
25.
Zurück zum Zitat A.Y. Michaels, A.R. Keraliya, S.H. Tirumani, A.B. Shinagare, N.H. Ramaiya, Systemic treatment in breast cancer: a primer for radiologists. Insights Imaging. 7, 131–144 (2016)PubMed A.Y. Michaels, A.R. Keraliya, S.H. Tirumani, A.B. Shinagare, N.H. Ramaiya, Systemic treatment in breast cancer: a primer for radiologists. Insights Imaging. 7, 131–144 (2016)PubMed
26.
Zurück zum Zitat G. Schiavon, I.E. Smith, Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res. 16, 1 (2014) G. Schiavon, I.E. Smith, Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res. 16, 1 (2014)
27.
Zurück zum Zitat E.B.C.T.C, Group .Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. The Lancet 386, 1341–1352 (2015) E.B.C.T.C, Group .Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. The Lancet 386, 1341–1352 (2015)
28.
Zurück zum Zitat E.B.C.T.C, Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 365, 1687–1717 (2005) E.B.C.T.C, Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 365, 1687–1717 (2005)
30.
Zurück zum Zitat D. Liu, D.T. Auguste, Cancer targeted therapeutics: from molecules to drug delivery vehicles. J. Control. Release 219, 632–643 (2015)PubMedPubMedCentral D. Liu, D.T. Auguste, Cancer targeted therapeutics: from molecules to drug delivery vehicles. J. Control. Release 219, 632–643 (2015)PubMedPubMedCentral
31.
Zurück zum Zitat N. Elster, D.M. Collins, S. Toomey, J. Crown, A.J. Eustace, B.T. Hennessy, HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res. Treat. 149, 5–15 (2015)PubMed N. Elster, D.M. Collins, S. Toomey, J. Crown, A.J. Eustace, B.T. Hennessy, HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res. Treat. 149, 5–15 (2015)PubMed
32.
Zurück zum Zitat M. Yamamoto-Ibusuki, M. Arnedos, F. André, Targeted therapies for ER+/HER2-metastatic breast cancer. BMC Med. 13, 1 (2015) M. Yamamoto-Ibusuki, M. Arnedos, F. André, Targeted therapies for ER+/HER2-metastatic breast cancer. BMC Med. 13, 1 (2015)
33.
Zurück zum Zitat D. Cameron, M.J. Piccart-Gebhart, R.D. Gelber, M. Procter, A. Goldhirsch, E. de Azambuja, G. Castro Jr., M. Untch, I. Smith, L. Gianni, 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. The Lancet 389, 1195–1205 (2017) D. Cameron, M.J. Piccart-Gebhart, R.D. Gelber, M. Procter, A. Goldhirsch, E. de Azambuja, G. Castro Jr., M. Untch, I. Smith, L. Gianni, 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. The Lancet 389, 1195–1205 (2017)
34.
Zurück zum Zitat S.H. Lee, D. Jeong, Y.-S. Han, M.J. Baek, Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 89, 1–8 (2015)PubMedPubMedCentral S.H. Lee, D. Jeong, Y.-S. Han, M.J. Baek, Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 89, 1–8 (2015)PubMedPubMedCentral
35.
Zurück zum Zitat L. Cao, G.-y. Yao, M.-f. Liu, L.-j. Chen, X.-l. Hu, C.-s. Ye, Neoadjuvant bevacizumab plus chemotherapy versus chemotherapy alone to treat non-metastatic breast cancer: a meta-analysis of randomised controlled trials. PloS one 10, e0145442 (2015)PubMedPubMedCentral L. Cao, G.-y. Yao, M.-f. Liu, L.-j. Chen, X.-l. Hu, C.-s. Ye, Neoadjuvant bevacizumab plus chemotherapy versus chemotherapy alone to treat non-metastatic breast cancer: a meta-analysis of randomised controlled trials. PloS one 10, e0145442 (2015)PubMedPubMedCentral
36.
Zurück zum Zitat A. Bramati, S. Girelli, V. Torri, G. Farina, E. Galfrascoli, S. Piva, A. Moretti, M.C. Dazzani, P. Sburlati, N.M. La Verde, Efficacy of biological agents in metastatic triple-negative breast cancer. Cancer Treat. Rev. 40, 605–613 (2014)PubMed A. Bramati, S. Girelli, V. Torri, G. Farina, E. Galfrascoli, S. Piva, A. Moretti, M.C. Dazzani, P. Sburlati, N.M. La Verde, Efficacy of biological agents in metastatic triple-negative breast cancer. Cancer Treat. Rev. 40, 605–613 (2014)PubMed
37.
Zurück zum Zitat M. Pourjafar, M. Saidijam, K. Mansouri, S. Malih, T. Ranjbar Nejad, N. Shabab, R. Najafi, Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin. Exp. Pharmacol. Physiol. 43, 769–776 (2016)PubMed M. Pourjafar, M. Saidijam, K. Mansouri, S. Malih, T. Ranjbar Nejad, N. Shabab, R. Najafi, Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin. Exp. Pharmacol. Physiol. 43, 769–776 (2016)PubMed
38.
Zurück zum Zitat V. Tesori, A.C. Piscaglia, D. Samengo, M. Barba, C. Bernardini, R. Scatena, A. Pontoglio, L. Castellini, J.N. Spelbrink, G. Maulucci, The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Sci. Rep. 5, 9149 (2015)PubMedPubMedCentral V. Tesori, A.C. Piscaglia, D. Samengo, M. Barba, C. Bernardini, R. Scatena, A. Pontoglio, L. Castellini, J.N. Spelbrink, G. Maulucci, The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing. Sci. Rep. 5, 9149 (2015)PubMedPubMedCentral
39.
Zurück zum Zitat Z. Wang, M. Wang, F. Yang, W. Nie, F. Chen, J. Xu, X. Guan, Multitargeted antiangiogenic tyrosine kinase inhibitors combined to chemotherapy in metastatic breast cancer: a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 70, 531–538 (2014)PubMed Z. Wang, M. Wang, F. Yang, W. Nie, F. Chen, J. Xu, X. Guan, Multitargeted antiangiogenic tyrosine kinase inhibitors combined to chemotherapy in metastatic breast cancer: a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 70, 531–538 (2014)PubMed
40.
Zurück zum Zitat J.M. Giltnane, J.M. Balko, Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov. Med. 17, 275–283 (2014)PubMed J.M. Giltnane, J.M. Balko, Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov. Med. 17, 275–283 (2014)PubMed
41.
Zurück zum Zitat K.N. Thompson, R.A. Whipple, J.R. Yoon, M. Lipsky, M.S. Charpentier, A.E. Boggs, K.R. Chakrabarti, L. Bhandary, L.K. Hessler, S.S. Martin, The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence. Oncotarget 6, 35231 (2015)PubMedPubMedCentral K.N. Thompson, R.A. Whipple, J.R. Yoon, M. Lipsky, M.S. Charpentier, A.E. Boggs, K.R. Chakrabarti, L. Bhandary, L.K. Hessler, S.S. Martin, The combinatorial activation of the PI3K and Ras/MAPK pathways is sufficient for aggressive tumor formation, while individual pathway activation supports cell persistence. Oncotarget 6, 35231 (2015)PubMedPubMedCentral
42.
Zurück zum Zitat S.R. Johnston, V.F. Semiglazov, G.M. Manikhas, D. Spaeth, G. Romieu, D.J. Dodwell, A.M. Wardley, P. Neven, A. Bessems, Y.C. Park, P.M. De Porre, J.J. Perez Ruixo, A.J. Howes, A phase II, randomized, blinded study of the farnesyltransferase inhibitor tipifarnib combined with letrozole in the treatment of advanced breast cancer after antiestrogen therapy. Breast Cancer Res. Treat. 110, 327–335 (2008)PubMed S.R. Johnston, V.F. Semiglazov, G.M. Manikhas, D. Spaeth, G. Romieu, D.J. Dodwell, A.M. Wardley, P. Neven, A. Bessems, Y.C. Park, P.M. De Porre, J.J. Perez Ruixo, A.J. Howes, A phase II, randomized, blinded study of the farnesyltransferase inhibitor tipifarnib combined with letrozole in the treatment of advanced breast cancer after antiestrogen therapy. Breast Cancer Res. Treat. 110, 327–335 (2008)PubMed
43.
Zurück zum Zitat N.S.H.N. Moorthy, S.F. Sousa, M.J. Ramos, P.A. Fernandes, Farnesyltransferase inhibitors: a comprehensive review based on quantitative structural analysis. Curr. Med. Chem. 20, 4888–4923 (2013)PubMed N.S.H.N. Moorthy, S.F. Sousa, M.J. Ramos, P.A. Fernandes, Farnesyltransferase inhibitors: a comprehensive review based on quantitative structural analysis. Curr. Med. Chem. 20, 4888–4923 (2013)PubMed
44.
Zurück zum Zitat E. Jokinen, J. Koivunen, MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Ther. Adv. Med. Oncol. 7, 170–180 (2015)PubMedPubMedCentral E. Jokinen, J. Koivunen, MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Ther. Adv. Med. Oncol. 7, 170–180 (2015)PubMedPubMedCentral
45.
Zurück zum Zitat K. Zaman, R. Winterhalder, C. Mamot, U. Hasler-Strub, C. Rochlitz, A. Mueller, C. Berset, H. Wiliders, L. Perey, C.B. Rudolf, H. Hawle, S. Rondeau, P. Neven, Fulvestrant with or without selumetinib, a MEK 1/2 inhibitor, in breast cancer progressing after aromatase inhibitor therapy: a multicentre randomised placebo-controlled double-blind phase II trial, SAKK 21/08. Eur. J. Cancer 51, 1212–1220 (2015)PubMed K. Zaman, R. Winterhalder, C. Mamot, U. Hasler-Strub, C. Rochlitz, A. Mueller, C. Berset, H. Wiliders, L. Perey, C.B. Rudolf, H. Hawle, S. Rondeau, P. Neven, Fulvestrant with or without selumetinib, a MEK 1/2 inhibitor, in breast cancer progressing after aromatase inhibitor therapy: a multicentre randomised placebo-controlled double-blind phase II trial, SAKK 21/08. Eur. J. Cancer 51, 1212–1220 (2015)PubMed
46.
47.
Zurück zum Zitat J. Lauring, B.H. Park, A.C. Wolff, The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J. Natl. Compr. Canc. Netw. 11, 670–678 (2013)PubMedPubMedCentral J. Lauring, B.H. Park, A.C. Wolff, The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J. Natl. Compr. Canc. Netw. 11, 670–678 (2013)PubMedPubMedCentral
48.
Zurück zum Zitat C.X. Ma, J. Luo, M. Naughton, F. Ademuyiwa, R. Suresh, M. Griffith, O.L. Griffith, Z.L. Skidmore, N.C. Spies, A. Ramu, L. Trani, T. Pluard, G. Nagaraj, S. Thomas, Z. Guo, J. Hoog, J. Han, E. Mardis, C. Lockhart, M.J. Ellis, A phase I trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clin. Cancer Res. 22, 1583–1591 (2016)PubMed C.X. Ma, J. Luo, M. Naughton, F. Ademuyiwa, R. Suresh, M. Griffith, O.L. Griffith, Z.L. Skidmore, N.C. Spies, A. Ramu, L. Trani, T. Pluard, G. Nagaraj, S. Thomas, Z. Guo, J. Hoog, J. Han, E. Mardis, C. Lockhart, M.J. Ellis, A phase I trial of BKM120 (Buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clin. Cancer Res. 22, 1583–1591 (2016)PubMed
49.
Zurück zum Zitat A. Di Leo, S. Johnston, K.S. Lee, E. Ciruelos, P.E. Lonning, W. Janni, R. O'Regan, M.A. Mouret-Reynier, D. Kalev, D. Egle, T. Csoszi, R. Bordonaro, T. Decker, V.C.G. Tjan-Heijnen, S. Blau, A. Schirone, D. Weber, M. El-Hashimy, B. Dharan, D. Sellami, T. Bachelot, Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 19, 87–100 (2018)PubMed A. Di Leo, S. Johnston, K.S. Lee, E. Ciruelos, P.E. Lonning, W. Janni, R. O'Regan, M.A. Mouret-Reynier, D. Kalev, D. Egle, T. Csoszi, R. Bordonaro, T. Decker, V.C.G. Tjan-Heijnen, S. Blau, A. Schirone, D. Weber, M. El-Hashimy, B. Dharan, D. Sellami, T. Bachelot, Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 19, 87–100 (2018)PubMed
50.
Zurück zum Zitat M.S. Rotundo, T. Galeano, P. Tassone, P. Tagliaferri, mTOR inhibitors, a new era for metastatic luminal HER2-negative breast cancer? A systematic review and a meta-analysis of randomized trials. Oncotarget 7, 27055 (2016)PubMedPubMedCentral M.S. Rotundo, T. Galeano, P. Tassone, P. Tagliaferri, mTOR inhibitors, a new era for metastatic luminal HER2-negative breast cancer? A systematic review and a meta-analysis of randomized trials. Oncotarget 7, 27055 (2016)PubMedPubMedCentral
51.
52.
Zurück zum Zitat G.M. Nitulescu, D. Margina, P. Juzenas, Q. Peng, O.T. Olaru, E. Saloustros, C. Fenga, D.Α. Spandidos, M. Libra, A.M. Tsatsakis, Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol. 48, 869–885 (2016)PubMed G.M. Nitulescu, D. Margina, P. Juzenas, Q. Peng, O.T. Olaru, E. Saloustros, C. Fenga, D.Α. Spandidos, M. Libra, A.M. Tsatsakis, Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol. 48, 869–885 (2016)PubMed
53.
Zurück zum Zitat R.S. Wong, Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 1 (2011) R.S. Wong, Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 1 (2011)
54.
Zurück zum Zitat M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral
55.
Zurück zum Zitat D. Merino, S. Lok, J. Visvader, G. Lindeman, Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 35, 1877–1887 (2016)PubMed D. Merino, S. Lok, J. Visvader, G. Lindeman, Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene 35, 1877–1887 (2016)PubMed
56.
Zurück zum Zitat S. Thomas, B.A. Quinn, S.K. Das, R. Dash, L. Emdad, S. Dasgupta, X.-Y. Wang, P. Dent, J.C. Reed, M. Pellecchia, Targeting the Bcl-2 family for cancer therapy. Expert Opin. Ther. Targets 17, 61–75 (2013)PubMed S. Thomas, B.A. Quinn, S.K. Das, R. Dash, L. Emdad, S. Dasgupta, X.-Y. Wang, P. Dent, J.C. Reed, M. Pellecchia, Targeting the Bcl-2 family for cancer therapy. Expert Opin. Ther. Targets 17, 61–75 (2013)PubMed
57.
Zurück zum Zitat J. Pflaum, S. Schlosser, M. Muller, p53 family and cellular stress responses in cancer. Front. Oncol. 4, 285 (2014)PubMedPubMedCentral J. Pflaum, S. Schlosser, M. Muller, p53 family and cellular stress responses in cancer. Front. Oncol. 4, 285 (2014)PubMedPubMedCentral
58.
59.
Zurück zum Zitat X. Yu, S. Narayanan, A. Vazquez, D.R. Carpizo, Small molecule compounds targeting the p53 pathway: are we finally making progress? Apoptosis 19, 1055–1068 (2014)PubMedPubMedCentral X. Yu, S. Narayanan, A. Vazquez, D.R. Carpizo, Small molecule compounds targeting the p53 pathway: are we finally making progress? Apoptosis 19, 1055–1068 (2014)PubMedPubMedCentral
60.
Zurück zum Zitat E.M. Rosen, M.J. Pishvaian, Targeting the BRCA1/2 tumor suppressors. Curr. Drug Targets 15, 17–31 (2014)PubMed E.M. Rosen, M.J. Pishvaian, Targeting the BRCA1/2 tumor suppressors. Curr. Drug Targets 15, 17–31 (2014)PubMed
61.
Zurück zum Zitat K. El Bairi, A.H. Kandhro, A. Gouri, W. Mahfoud, N. Louanjli, B. Saadani, S. Afqir, M. Amrani, Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell. Oncol. 40, 105–118 (2017) K. El Bairi, A.H. Kandhro, A. Gouri, W. Mahfoud, N. Louanjli, B. Saadani, S. Afqir, M. Amrani, Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell. Oncol. 40, 105–118 (2017)
62.
Zurück zum Zitat L. Livraghi, J.E. Garber, PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 13, 1 (2015) L. Livraghi, J.E. Garber, PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 13, 1 (2015)
63.
Zurück zum Zitat N. Ye, B. Wang, Z.-F. Quan, S.-J. Cao, X.-T. Wen, Y. Huang, X.-B. Huang, R. Wu, X.-P. Ma, Q.-G. Yan, Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15, 5993–5997 (2014)PubMed N. Ye, B. Wang, Z.-F. Quan, S.-J. Cao, X.-T. Wen, Y. Huang, X.-B. Huang, R. Wu, X.-P. Ma, Q.-G. Yan, Functional roles of long non-coding RNA in human breast cancer. Asian Pac. J. Cancer Prev. 15, 5993–5997 (2014)PubMed
64.
Zurück zum Zitat Y. Fang, M.J. Fullwood, Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14, 42–54 (2016)PubMedPubMedCentral Y. Fang, M.J. Fullwood, Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14, 42–54 (2016)PubMedPubMedCentral
65.
Zurück zum Zitat A. Ferraro, Altered primary chromatin structures and their implications in cancer development. Cell. Oncol. 39, 195–210 (2016) A. Ferraro, Altered primary chromatin structures and their implications in cancer development. Cell. Oncol. 39, 195–210 (2016)
66.
Zurück zum Zitat K. Kashi, L. Henderson, A. Bonetti, P. Carninci, Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim. Biophys. Acta. 1859, 3–15 (2016)PubMed K. Kashi, L. Henderson, A. Bonetti, P. Carninci, Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim. Biophys. Acta. 1859, 3–15 (2016)PubMed
67.
Zurück zum Zitat X. Si, R. Zang, E. Zhang, Y. Liu, X. Shi, E. Zhang, L. Shao, A. Li, N. Yang, X. Han, LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7, 81452 (2016)PubMedPubMedCentral X. Si, R. Zang, E. Zhang, Y. Liu, X. Shi, E. Zhang, L. Shao, A. Li, N. Yang, X. Han, LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7, 81452 (2016)PubMedPubMedCentral
68.
Zurück zum Zitat X. Xue, Y.A. Yang, A. Zhang, K. Fong, J. Kim, B. Song, S. Li, J.C. Zhao, J. Yu, LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35, 2746 (2016)PubMed X. Xue, Y.A. Yang, A. Zhang, K. Fong, J. Kim, B. Song, S. Li, J.C. Zhao, J. Yu, LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene 35, 2746 (2016)PubMed
69.
Zurück zum Zitat P.C. Schouten, M.A. Vollebergh, M. Opdam, M. Jonkers, M. Loden, J. Wesseling, M. Hauptmann, S.C. Linn, High XIST and low 53BP1 expression predict poor outcome after high-dose alkylating chemotherapy in patients with a BRCA1-like breast cancer. Mol. Cancer Ther. 15, 190–198 (2016)PubMed P.C. Schouten, M.A. Vollebergh, M. Opdam, M. Jonkers, M. Loden, J. Wesseling, M. Hauptmann, S.C. Linn, High XIST and low 53BP1 expression predict poor outcome after high-dose alkylating chemotherapy in patients with a BRCA1-like breast cancer. Mol. Cancer Ther. 15, 190–198 (2016)PubMed
70.
Zurück zum Zitat S. Malih, M. Saidijam, N. Malih, A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumour Biol. 37, 1479–1485 (2016)PubMed S. Malih, M. Saidijam, N. Malih, A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy. Tumour Biol. 37, 1479–1485 (2016)PubMed
71.
Zurück zum Zitat W. Li, L. Zhai, H. Wang, C. Liu, J. Zhang, W. Chen, Q. Wei, Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7, 27778 (2016)PubMedPubMedCentral W. Li, L. Zhai, H. Wang, C. Liu, J. Zhang, W. Chen, Q. Wei, Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7, 27778 (2016)PubMedPubMedCentral
72.
Zurück zum Zitat S.-J. Shi, L.-J. Wang, B. Yu, Y.-H. Li, Y. Jin, X.-Z. Bai, LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 6, 11652 (2015)PubMedPubMedCentral S.-J. Shi, L.-J. Wang, B. Yu, Y.-H. Li, Y. Jin, X.-Z. Bai, LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 6, 11652 (2015)PubMedPubMedCentral
73.
Zurück zum Zitat S. Xu, S. Sui, J. Zhang, N. Bai, Q. Shi, G. Zhang, S. Gao, Z. You, C. Zhan, F. Liu, D. Pang, Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int. J. Clin. Exp. Pathol. 8, 4881–4891 (2015)PubMedPubMedCentral S. Xu, S. Sui, J. Zhang, N. Bai, Q. Shi, G. Zhang, S. Gao, Z. You, C. Zhan, F. Liu, D. Pang, Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. Int. J. Clin. Exp. Pathol. 8, 4881–4891 (2015)PubMedPubMedCentral
74.
Zurück zum Zitat Y.S. Niknafs, S. Han, T. Ma, C. Speers, C. Zhang, K. Wilder-Romans, M.K. Iyer, S. Pitchiaya, R. Malik, Y. Hosono, J.R. Prensner, A. Poliakov, U. Singhal, L. Xiao, S. Kregel, R.F. Siebenaler, S.G. Zhao, M. Uhl, A. Gawronski, D.F. Hayes, L.J. Pierce, X. Cao, C. Collins, R. Backofen, C.S. Sahinalp, J.M. Rae, A.M. Chinnaiyan, F.Y. Feng, The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat. Commun. 7, 12791 (2016)PubMedPubMedCentral Y.S. Niknafs, S. Han, T. Ma, C. Speers, C. Zhang, K. Wilder-Romans, M.K. Iyer, S. Pitchiaya, R. Malik, Y. Hosono, J.R. Prensner, A. Poliakov, U. Singhal, L. Xiao, S. Kregel, R.F. Siebenaler, S.G. Zhao, M. Uhl, A. Gawronski, D.F. Hayes, L.J. Pierce, X. Cao, C. Collins, R. Backofen, C.S. Sahinalp, J.M. Rae, A.M. Chinnaiyan, F.Y. Feng, The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat. Commun. 7, 12791 (2016)PubMedPubMedCentral
75.
Zurück zum Zitat J.T. Mendell, Targeting a long noncoding RNA in breast cancer. N. Engl. J. Med. 374, 2287–2289 (2016)PubMed J.T. Mendell, Targeting a long noncoding RNA in breast cancer. N. Engl. J. Med. 374, 2287–2289 (2016)PubMed
76.
Zurück zum Zitat R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.-C. Tsai, T. Hung, P. Argani, J.L. Rinn, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071 (2010)PubMedPubMedCentral R.A. Gupta, N. Shah, K.C. Wang, J. Kim, H.M. Horlings, D.J. Wong, M.-C. Tsai, T. Hung, P. Argani, J.L. Rinn, Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071 (2010)PubMedPubMedCentral
77.
Zurück zum Zitat C.H. Li, Y. Chen, Targeting long non-coding RNAs in cancers: progress and prospects. Int. J. Biochem. Cell. Biol. 45, 1895–1910 (2013)PubMed C.H. Li, Y. Chen, Targeting long non-coding RNAs in cancers: progress and prospects. Int. J. Biochem. Cell. Biol. 45, 1895–1910 (2013)PubMed
78.
Zurück zum Zitat M. Fayda, U.J.T.C.R. Gezer, GAS5 oligonucleotides as therapeutic agents in breast cancer. Transl. Cancer Res. 3, S567–S568 (2016) M. Fayda, U.J.T.C.R. Gezer, GAS5 oligonucleotides as therapeutic agents in breast cancer. Transl. Cancer Res. 3, S567–S568 (2016)
79.
Zurück zum Zitat Y. Xia, X. Xiao, X. Deng, F. Zhang, X. Zhang, Q. Hu, W. Sheng, Targeting long non-coding RNA ASBEL with oligonucleotide antagonist for breast cancer therapy. Biochem. Biophys. Res. Commun. 489, 386–392 (2017)PubMed Y. Xia, X. Xiao, X. Deng, F. Zhang, X. Zhang, Q. Hu, W. Sheng, Targeting long non-coding RNA ASBEL with oligonucleotide antagonist for breast cancer therapy. Biochem. Biophys. Res. Commun. 489, 386–392 (2017)PubMed
80.
Zurück zum Zitat C. Wahlestedt, Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013)PubMed C. Wahlestedt, Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013)PubMed
81.
Zurück zum Zitat V. Ambros, The functions of animal microRNAs. Nature 431, 350–355 (2004)PubMed V. Ambros, The functions of animal microRNAs. Nature 431, 350–355 (2004)PubMed
82.
Zurück zum Zitat D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMed D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)PubMed
83.
Zurück zum Zitat G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017) G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)
84.
Zurück zum Zitat M. Mondanizadeh, E. Arefian, G. Mosayebi, M. Saidijam, B. Khansarinejad, S.M. Hashemi, MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J. Cell. Biochem. 116, 943–953 (2015)PubMed M. Mondanizadeh, E. Arefian, G. Mosayebi, M. Saidijam, B. Khansarinejad, S.M. Hashemi, MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J. Cell. Biochem. 116, 943–953 (2015)PubMed
85.
Zurück zum Zitat D.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)PubMed D.D. Taylor, C. Gercel-Taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008)PubMed
86.
Zurück zum Zitat S. Karimi, A. Mohamadnia, S.A. Nadji, R. Yadegarazari, A. Khosravi, N. Bahrami, M. Saidijam, Expression of two basic mRNA biomarkers in peripheral blood of patients with non-small cell lung cancer detected by real-time rt-PCR, individually and simultaneously. Iran. Biomed. J. 19, 17 (2015)PubMedPubMedCentral S. Karimi, A. Mohamadnia, S.A. Nadji, R. Yadegarazari, A. Khosravi, N. Bahrami, M. Saidijam, Expression of two basic mRNA biomarkers in peripheral blood of patients with non-small cell lung cancer detected by real-time rt-PCR, individually and simultaneously. Iran. Biomed. J. 19, 17 (2015)PubMedPubMedCentral
87.
Zurück zum Zitat V. Sundararajan, F.H. Sarkar, T.S. Ramasamy, The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications. Cell. Oncol. 41, 223–252 (2018) V. Sundararajan, F.H. Sarkar, T.S. Ramasamy, The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications. Cell. Oncol. 41, 223–252 (2018)
88.
89.
Zurück zum Zitat S.F. Tavazoie, C. Alarcón, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J. Massagué, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147 (2008)PubMedPubMedCentral S.F. Tavazoie, C. Alarcón, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J. Massagué, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147 (2008)PubMedPubMedCentral
90.
Zurück zum Zitat P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008)PubMed P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008)PubMed
91.
Zurück zum Zitat A. Ahmad, A. Aboukameel, D. Kong, Z. Wang, S. Sethi, W. Chen, F.H. Sarkar, A. Raz, Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 71, 3400–3409 (2011)PubMedPubMedCentral A. Ahmad, A. Aboukameel, D. Kong, Z. Wang, S. Sethi, W. Chen, F.H. Sarkar, A. Raz, Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 71, 3400–3409 (2011)PubMedPubMedCentral
92.
Zurück zum Zitat G. Eades, Y. Yao, M. Yang, Y. Zhang, S. Chumsri, Q. Zhou, miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem. 286, 25992–26002 (2011)PubMedPubMedCentral G. Eades, Y. Yao, M. Yang, Y. Zhang, S. Chumsri, Q. Zhou, miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem. 286, 25992–26002 (2011)PubMedPubMedCentral
93.
Zurück zum Zitat M. Korpal, B.J. Ell, F.M. Buffa, T. Ibrahim, M.A. Blanco, T. Celià-Terrassa, L. Mercatali, Z. Khan, H. Goodarzi, Y. Hua, Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011)PubMedPubMedCentral M. Korpal, B.J. Ell, F.M. Buffa, T. Ibrahim, M.A. Blanco, T. Celià-Terrassa, L. Mercatali, Z. Khan, H. Goodarzi, Y. Hua, Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011)PubMedPubMedCentral
94.
Zurück zum Zitat X. Li, S. Roslan, C. Johnstone, J. Wright, C. Bracken, M. Anderson, A. Bert, L. Selth, R. Anderson, G. Goodall, MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 33, 4077 (2014)PubMed X. Li, S. Roslan, C. Johnstone, J. Wright, C. Bracken, M. Anderson, A. Bert, L. Selth, R. Anderson, G. Goodall, MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene 33, 4077 (2014)PubMed
95.
Zurück zum Zitat Y.-Y. Lim, J.A. Wright, J.L. Attema, P.A. Gregory, A.G. Bert, E. Smith, D. Thomas, A.F. Lopez, P.A. Drew, Y. Khew-Goodall, Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J. Cell Sci. 126, 2256–2266 (2013)PubMed Y.-Y. Lim, J.A. Wright, J.L. Attema, P.A. Gregory, A.G. Bert, E. Smith, D. Thomas, A.F. Lopez, P.A. Drew, Y. Khew-Goodall, Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J. Cell Sci. 126, 2256–2266 (2013)PubMed
96.
Zurück zum Zitat F. Yu, H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. Lieberman, let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007)PubMed F. Yu, H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. Lieberman, let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007)PubMed
97.
98.
Zurück zum Zitat R.A. Nimmo, F.J. Slack, An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118, 405–418 (2009)PubMedPubMedCentral R.A. Nimmo, F.J. Slack, An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118, 405–418 (2009)PubMedPubMedCentral
99.
Zurück zum Zitat X. Sun, C. Fan, L. Hu, N. Du, C. Xu, H. Ren, Role of let-7 in maintaining characteristics of breast cancer stem cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 28, 789–792 (2012)PubMed X. Sun, C. Fan, L. Hu, N. Du, C. Xu, H. Ren, Role of let-7 in maintaining characteristics of breast cancer stem cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 28, 789–792 (2012)PubMed
100.
Zurück zum Zitat F. Meng, R. Henson, H. Wehbe–Janek, K. Ghoshal, S.T. Jacob, T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007)PubMed F. Meng, R. Henson, H. Wehbe–Janek, K. Ghoshal, S.T. Jacob, T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007)PubMed
101.
Zurück zum Zitat S. Zhu, M.-L. Si, H. Wu, Y.-Y. Mo, MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007)PubMed S. Zhu, M.-L. Si, H. Wu, Y.-Y. Mo, MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007)PubMed
102.
Zurück zum Zitat X. Hu, J. Guo, L. Zheng, C. Li, T.M. Zheng, J.L. Tanyi, S. Liang, C. Benedetto, M. Mitidieri, D. Katsaros, X. Zhao, Y. Zhang, Q. Huang, L. Zhang, The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol. Cancer Res. 11, 240–250 (2013)PubMedPubMedCentral X. Hu, J. Guo, L. Zheng, C. Li, T.M. Zheng, J.L. Tanyi, S. Liang, C. Benedetto, M. Mitidieri, D. Katsaros, X. Zhao, Y. Zhang, Q. Huang, L. Zhang, The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol. Cancer Res. 11, 240–250 (2013)PubMedPubMedCentral
103.
Zurück zum Zitat J. Li, Y. Zhang, W. Zhang, S. Jia, R. Tian, Y. Kang, Y. Ma, D. Li, Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int. J. Surg. Oncol. 2013, 875078 (2013)PubMedPubMedCentral J. Li, Y. Zhang, W. Zhang, S. Jia, R. Tian, Y. Kang, Y. Ma, D. Li, Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int. J. Surg. Oncol. 2013, 875078 (2013)PubMedPubMedCentral
104.
Zurück zum Zitat C.H. Moriarty, B. Pursell, A.M. Mercurio, miR-10b targets Tiam1 implications for Rac activation and carcinoma migration. J. Biol. Chem 285, 20541–20546 (2010)PubMedPubMedCentral C.H. Moriarty, B. Pursell, A.M. Mercurio, miR-10b targets Tiam1 implications for Rac activation and carcinoma migration. J. Biol. Chem 285, 20541–20546 (2010)PubMedPubMedCentral
105.
Zurück zum Zitat I. Haque, S. Banerjee, S. Mehta, A. De, M. Majumder, M.S. Mayo, S. Kambhampati, D.R. Campbell, S.K. Banerjee, Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells. J. Biol. Chem. 286, 43475–43485 (2011)PubMedPubMedCentral I. Haque, S. Banerjee, S. Mehta, A. De, M. Majumder, M.S. Mayo, S. Kambhampati, D.R. Campbell, S.K. Banerjee, Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells. J. Biol. Chem. 286, 43475–43485 (2011)PubMedPubMedCentral
106.
Zurück zum Zitat D. Ovcharenko, K. Kelnar, C. Johnson, N. Leng, D. Brown, Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 67, 10782–10788 (2007)PubMed D. Ovcharenko, K. Kelnar, C. Johnson, N. Leng, D. Brown, Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 67, 10782–10788 (2007)PubMed
107.
Zurück zum Zitat S. Jiang, H.-W. Zhang, M.-H. Lu, X.-H. He, Y. Li, H. Gu, M.-F. Liu, E.-D. Wang, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)PubMed S. Jiang, H.-W. Zhang, M.-H. Lu, X.-H. He, Y. Li, H. Gu, M.-F. Liu, E.-D. Wang, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)PubMed
108.
Zurück zum Zitat W. Kong, L. He, M. Coppola, J. Guo, N.N. Esposito, D. Coppola, J.Q. Cheng, MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem. 285, 17869–17879 (2010)PubMedPubMedCentral W. Kong, L. He, M. Coppola, J. Guo, N.N. Esposito, D. Coppola, J.Q. Cheng, MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem. 285, 17869–17879 (2010)PubMedPubMedCentral
109.
Zurück zum Zitat C.-M. Zhang, J. Zhao, H.-Y. Deng, MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci. 20, 79 (2013)PubMedPubMedCentral C.-M. Zhang, J. Zhao, H.-Y. Deng, MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J. Biomed. Sci. 20, 79 (2013)PubMedPubMedCentral
110.
Zurück zum Zitat T.E. Miller, K. Ghoshal, B. Ramaswamy, S. Roy, J. Datta, C.L. Shapiro, S. Jacob, S. Majumder, MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283, 29897–29903 (2008)PubMedPubMedCentral T.E. Miller, K. Ghoshal, B. Ramaswamy, S. Roy, J. Datta, C.L. Shapiro, S. Jacob, S. Majumder, MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem. 283, 29897–29903 (2008)PubMedPubMedCentral
111.
Zurück zum Zitat S. Stinson, M.R. Lackner, A.T. Adai, N. Yu, H.-J. Kim, C. O’Brien, J. Spoerke, S. Jhunjhunwala, Z. Boyd, T. Januario, miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal 4, pt5-pt5 (2011) S. Stinson, M.R. Lackner, A.T. Adai, N. Yu, H.-J. Kim, C. O’Brien, J. Spoerke, S. Jhunjhunwala, Z. Boyd, T. Januario, miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal 4, pt5-pt5 (2011)
112.
Zurück zum Zitat M.S. Hwang, N. Yu, S.Y. Stinson, P. Yue, R.J. Newman, B.B. Allan, D. Dornan, miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One 8, e66502 (2013)PubMedPubMedCentral M.S. Hwang, N. Yu, S.Y. Stinson, P. Yue, R.J. Newman, B.B. Allan, D. Dornan, miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One 8, e66502 (2013)PubMedPubMedCentral
113.
Zurück zum Zitat R. Nassirpour, P.P. Mehta, S.M. Baxi, M.-J. Yin, miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One 8, e62170 (2013)PubMedPubMedCentral R. Nassirpour, P.P. Mehta, S.M. Baxi, M.-J. Yin, miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One 8, e62170 (2013)PubMedPubMedCentral
114.
Zurück zum Zitat D.M. Cittelly, J. Finlay-Schultz, E.N. Howe, N.S. Spoelstra, S.D. Axlund, P. Hendricks, B.M. Jacobsen, C.A. Sartorius, J.K. Richer, Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 32, 2555 (2013)PubMed D.M. Cittelly, J. Finlay-Schultz, E.N. Howe, N.S. Spoelstra, S.D. Axlund, P. Hendricks, B.M. Jacobsen, C.A. Sartorius, J.K. Richer, Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 32, 2555 (2013)PubMed
115.
Zurück zum Zitat Z. Wu, X. Huang, X. Huang, Q. Zou, Y. Guo, The inhibitory role of Mir-29 in growth of breast cancer cells. J. Exp. Clin. Cancer Res. 32, 98 (2013)PubMedPubMedCentral Z. Wu, X. Huang, X. Huang, Q. Zou, Y. Guo, The inhibitory role of Mir-29 in growth of breast cancer cells. J. Exp. Clin. Cancer Res. 32, 98 (2013)PubMedPubMedCentral
116.
Zurück zum Zitat L. Jiang, L. Yu, X. Zhang, F. Lei, L. Wang, X. Liu, S. Wu, J. Zhu, G. Wu, L. Cao, miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res. 76, 1101–1111 (2016)PubMed L. Jiang, L. Yu, X. Zhang, F. Lei, L. Wang, X. Liu, S. Wu, J. Zhu, G. Wu, L. Cao, miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res. 76, 1101–1111 (2016)PubMed
117.
Zurück zum Zitat Y.-Z. Pan, M.E. Morris, A.-M. Yu, MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. 75, 1374–1379 (2009)PubMedPubMedCentral Y.-Z. Pan, M.E. Morris, A.-M. Yu, MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol. 75, 1374–1379 (2009)PubMedPubMedCentral
118.
Zurück zum Zitat O. Kovalchuk, J. Filkowski, J. Meservy, Y. Ilnytskyy, V.P. Tryndyak, C. Vasyl'F, I.P. Pogribny, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 7, 2152–2159 (2008)PubMed O. Kovalchuk, J. Filkowski, J. Meservy, Y. Ilnytskyy, V.P. Tryndyak, C. Vasyl'F, I.P. Pogribny, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther. 7, 2152–2159 (2008)PubMed
119.
Zurück zum Zitat Z. Liang, H. Wu, J. Xia, Y. Li, Y. Zhang, K. Huang, N. Wagar, Y. Yoon, H.T. Cho, S. Scala, Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol. 79, 817–824 (2010)PubMed Z. Liang, H. Wu, J. Xia, Y. Li, Y. Zhang, K. Huang, N. Wagar, Y. Yoon, H.T. Cho, S. Scala, Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem. Pharmacol. 79, 817–824 (2010)PubMed
120.
Zurück zum Zitat M.-T. Ma, M. He, Y. Wang, X.-Y. Jiao, L. Zhao, X.-F. Bai, Z.-J. Yu, H.-Z. Wu, M.-L. Sun, Z.-G. Song, MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 339, 107–115 (2013)PubMed M.-T. Ma, M. He, Y. Wang, X.-Y. Jiao, L. Zhao, X.-F. Bai, Z.-J. Yu, H.-Z. Wu, M.-L. Sun, Z.-G. Song, MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 339, 107–115 (2013)PubMed
121.
Zurück zum Zitat W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B. 16, 18–31 (2015)PubMedPubMedCentral W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B. 16, 18–31 (2015)PubMedPubMedCentral
122.
Zurück zum Zitat L.B. Frankel, N.R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, A.H. Lund, Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008)PubMed L.B. Frankel, N.R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, A.H. Lund, Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008)PubMed
123.
Zurück zum Zitat J. Qi, J. Wang, H. Katayama, S. Sen, S.-m. Liu, Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma 60, 135 (2013)PubMedPubMedCentral J. Qi, J. Wang, H. Katayama, S. Sen, S.-m. Liu, Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma 60, 135 (2013)PubMedPubMedCentral
124.
Zurück zum Zitat L.-X. Yan, X.-F. Huang, Q. Shao, M.-Y. Huang, L. Deng, Q.-L. Wu, Y.-X. Zeng, J.-Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14, 2348–2360 (2008)PubMedPubMedCentral L.-X. Yan, X.-F. Huang, Q. Shao, M.-Y. Huang, L. Deng, Q.-L. Wu, Y.-X. Zeng, J.-Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14, 2348–2360 (2008)PubMedPubMedCentral
125.
Zurück zum Zitat L.X. Yan, Q.N. Wu, Y. Zhang, Y.Y. Li, D.Z. Liao, J.H. Hou, J. Fu, M.S. Zeng, J.P. Yun, Q.L. Wu, Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 13, R2 (2011)PubMedPubMedCentral L.X. Yan, Q.N. Wu, Y. Zhang, Y.Y. Li, D.Z. Liao, J.H. Hou, J. Fu, M.S. Zeng, J.P. Yun, Q.L. Wu, Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 13, R2 (2011)PubMedPubMedCentral
126.
Zurück zum Zitat S. Gilad, E. Meiri, Y. Yogev, S. Benjamin, D. Lebanony, N. Yerushalmi, H. Benjamin, M. Kushnir, H. Cholakh, N. Melamed, Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148 (2008)PubMedPubMedCentral S. Gilad, E. Meiri, Y. Yogev, S. Benjamin, D. Lebanony, N. Yerushalmi, H. Benjamin, M. Kushnir, H. Cholakh, N. Melamed, Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148 (2008)PubMedPubMedCentral
127.
Zurück zum Zitat D.P. Nguyen, J. Li, S.S. Yadav, A.K. Tewari, Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int. 114, 168–176 (2014)PubMed D.P. Nguyen, J. Li, S.S. Yadav, A.K. Tewari, Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int. 114, 168–176 (2014)PubMed
128.
Zurück zum Zitat T.A. Farazi, H.M. Horlings, J. ten Hoeve, A. Mihailovic, H. Halfwerk, P. Morozov, M. Brown, M. Hafner, F. Reyal, M. van Kouwenhove, MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 71, 4443–4453 (2011)PubMedPubMedCentral T.A. Farazi, H.M. Horlings, J. ten Hoeve, A. Mihailovic, H. Halfwerk, P. Morozov, M. Brown, M. Hafner, F. Reyal, M. van Kouwenhove, MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 71, 4443–4453 (2011)PubMedPubMedCentral
129.
Zurück zum Zitat A.L. Smith, R. Iwanaga, D.J. Drasin, D.S. Micalizzi, R.L. Vartuli, A.-C. Tan, H.L. Ford, The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31, 5162 (2012)PubMedPubMedCentral A.L. Smith, R. Iwanaga, D.J. Drasin, D.S. Micalizzi, R.L. Vartuli, A.-C. Tan, H.L. Ford, The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31, 5162 (2012)PubMedPubMedCentral
130.
Zurück zum Zitat W.-X. Chen, Q. Hu, M.-T. Qiu, S.-L. Zhong, J.-J. Xu, J.-H. Tang, J.-H. Zhao, miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 34, 1361–1370 (2013)PubMed W.-X. Chen, Q. Hu, M.-T. Qiu, S.-L. Zhong, J.-J. Xu, J.-H. Tang, J.-H. Zhao, miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 34, 1361–1370 (2013)PubMed
131.
Zurück zum Zitat M.A. Taylor, K. Sossey-Alaoui, C.L. Thompson, D. Danielpour, W.P. Schiemann, TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest. 123, 150–163 (2013)PubMed M.A. Taylor, K. Sossey-Alaoui, C.L. Thompson, D. Danielpour, W.P. Schiemann, TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J. Clin. Invest. 123, 150–163 (2013)PubMed
132.
Zurück zum Zitat F. Wang, Z. Zheng, J. Guo, X. Ding, Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 119, 586–593 (2010)PubMed F. Wang, Z. Zheng, J. Guo, X. Ding, Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol. Oncol. 119, 586–593 (2010)PubMed
133.
Zurück zum Zitat K. Cuk, M. Zucknick, J. Heil, D. Madhavan, S. Schott, A. Turchinovich, D. Arlt, M. Rath, C. Sohn, A. Benner, Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer 132, 1602–1612 (2013)PubMed K. Cuk, M. Zucknick, J. Heil, D. Madhavan, S. Schott, A. Turchinovich, D. Arlt, M. Rath, C. Sohn, A. Benner, Circulating microRNAs in plasma as early detection markers for breast cancer. Int. J. Cancer 132, 1602–1612 (2013)PubMed
134.
Zurück zum Zitat E.K. Ng, R. Li, V.Y. Shin, H.C. Jin, C.P. Leung, E.S. Ma, R. Pang, D. Chua, K.-M. Chu, W. Law, Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8, e53141 (2013)PubMedPubMedCentral E.K. Ng, R. Li, V.Y. Shin, H.C. Jin, C.P. Leung, E.S. Ma, R. Pang, D. Chua, K.-M. Chu, W. Law, Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8, e53141 (2013)PubMedPubMedCentral
135.
Zurück zum Zitat N.H. Kim, H.S. Kim, X.-Y. Li, I. Lee, H.-S. Choi, S.E. Kang, S.Y. Cha, J.K. Ryu, D. Yoon, E.R. Fearon, A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J. Cell Biol. 195, 417–433 (2011)PubMedPubMedCentral N.H. Kim, H.S. Kim, X.-Y. Li, I. Lee, H.-S. Choi, S.E. Kang, S.Y. Cha, J.K. Ryu, D. Yoon, E.R. Fearon, A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. J. Cell Biol. 195, 417–433 (2011)PubMedPubMedCentral
136.
Zurück zum Zitat L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007)PubMed L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007)PubMed
137.
Zurück zum Zitat L.A. Doyle, W. Yang, L.V. Abruzzo, T. Krogmann, Y. Gao, A.K. Rishi, D.D. Ross, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95, 15665–15670 (1998)PubMedPubMedCentral L.A. Doyle, W. Yang, L.V. Abruzzo, T. Krogmann, Y. Gao, A.K. Rishi, D.D. Ross, A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95, 15665–15670 (1998)PubMedPubMedCentral
138.
Zurück zum Zitat C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 13, 714–727 (2013)PubMed C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 13, 714–727 (2013)PubMed
139.
Zurück zum Zitat J.I. Fletcher, M. Haber, M.J. Henderson, M.D. Norris, ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer. 10, 147–157 (2010)PubMed J.I. Fletcher, M. Haber, M.J. Henderson, M.D. Norris, ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer. 10, 147–157 (2010)PubMed
140.
Zurück zum Zitat N. Haraguchi, H. Ishii, K. Mimori, F. Tanaka, M. Ohkuma, H.M. Kim, H. Akita, D. Takiuchi, H. Hatano, H. Nagano, CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326 (2010)PubMedPubMedCentral N. Haraguchi, H. Ishii, K. Mimori, F. Tanaka, M. Ohkuma, H.M. Kim, H. Akita, D. Takiuchi, H. Hatano, H. Nagano, CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326 (2010)PubMedPubMedCentral
141.
Zurück zum Zitat V. Baumann, J. Winkler, miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 6, 1967–1984 (2014)PubMed V. Baumann, J. Winkler, miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 6, 1967–1984 (2014)PubMed
142.
Zurück zum Zitat Y. Chen, D.-Y. Gao, L. Huang, In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015)PubMed Y. Chen, D.-Y. Gao, L. Huang, In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015)PubMed
143.
Zurück zum Zitat S. Singh, A.S. Narang, R.I. Mahato, Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res. 28, 2996–3015 (2011)PubMed S. Singh, A.S. Narang, R.I. Mahato, Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res. 28, 2996–3015 (2011)PubMed
144.
Zurück zum Zitat R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775 (2010)PubMedPubMedCentral R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov. 9, 775 (2010)PubMedPubMedCentral
145.
Zurück zum Zitat L.S. Hon, Z. Zhang, The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8, R166 (2007)PubMedPubMedCentral L.S. Hon, Z. Zhang, The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol. 8, R166 (2007)PubMedPubMedCentral
146.
Zurück zum Zitat H. Wang, R. Garzon, H. Sun, K.J. Ladner, R. Singh, J. Dahlman, A. Cheng, B.M. Hall, S.J. Qualman, D.S. Chandler, NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369–381 (2008)PubMed H. Wang, R. Garzon, H. Sun, K.J. Ladner, R. Singh, J. Dahlman, A. Cheng, B.M. Hall, S.J. Qualman, D.S. Chandler, NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369–381 (2008)PubMed
147.
Zurück zum Zitat J.J. Zhao, J. Lin, T. Lwin, H. Yang, J. Guo, W. Kong, S. Dessureault, L.C. Moscinski, D. Rezania, W.S. Dalton, E. Sotomayor, J. Tao, J.Q. Cheng, microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115, 2630–2639 (2010)PubMedPubMedCentral J.J. Zhao, J. Lin, T. Lwin, H. Yang, J. Guo, W. Kong, S. Dessureault, L.C. Moscinski, D. Rezania, W.S. Dalton, E. Sotomayor, J. Tao, J.Q. Cheng, microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115, 2630–2639 (2010)PubMedPubMedCentral
148.
Zurück zum Zitat N. Amodio, M.T. Di Martino, U. Foresta, E. Leone, M. Lionetti, M. Leotta, A.M. Gulla, M.R. Pitari, F. Conforti, M. Rossi, V. Agosti, M. Fulciniti, G. Misso, F. Morabito, M. Ferrarini, A. Neri, M. Caraglia, N.C. Munshi, K.C. Anderson, P. Tagliaferri, P. Tassone, miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 3, e436 (2012)PubMedPubMedCentral N. Amodio, M.T. Di Martino, U. Foresta, E. Leone, M. Lionetti, M. Leotta, A.M. Gulla, M.R. Pitari, F. Conforti, M. Rossi, V. Agosti, M. Fulciniti, G. Misso, F. Morabito, M. Ferrarini, A. Neri, M. Caraglia, N.C. Munshi, K.C. Anderson, P. Tagliaferri, P. Tassone, miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis. 3, e436 (2012)PubMedPubMedCentral
149.
Zurück zum Zitat N. Amodio, M.A. Stamato, A.M. Gulla, E. Morelli, E. Romeo, L. Raimondi, M.R. Pitari, I. Ferrandino, G. Misso, M. Caraglia, I. Perrotta, A. Neri, M. Fulciniti, C. Rolfo, K.C. Anderson, N.C. Munshi, P. Tagliaferri, P. Tassone, Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol. Cancer Ther. 15, 1364–1375 (2016)PubMed N. Amodio, M.A. Stamato, A.M. Gulla, E. Morelli, E. Romeo, L. Raimondi, M.R. Pitari, I. Ferrandino, G. Misso, M. Caraglia, I. Perrotta, A. Neri, M. Fulciniti, C. Rolfo, K.C. Anderson, N.C. Munshi, P. Tagliaferri, P. Tassone, Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol. Cancer Ther. 15, 1364–1375 (2016)PubMed
150.
Zurück zum Zitat T. Saito, P. Sætrom, MicroRNAs–targeting and target prediction. Nat. Biotechnol. 27, 243–249 (2010) T. Saito, P. Sætrom, MicroRNAs–targeting and target prediction. Nat. Biotechnol. 27, 243–249 (2010)
151.
Zurück zum Zitat C.A. Gebeshuber, K. Zatloukal, J. Martinez, miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 10, 400–405 (2009)PubMedPubMedCentral C.A. Gebeshuber, K. Zatloukal, J. Martinez, miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 10, 400–405 (2009)PubMedPubMedCentral
152.
Zurück zum Zitat C. Price, J. Chen, MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis. 1, 53–63 (2014)PubMedPubMedCentral C. Price, J. Chen, MicroRNAs in cancer biology and therapy: Current status and perspectives. Genes Dis. 1, 53–63 (2014)PubMedPubMedCentral
153.
Zurück zum Zitat A.F. Christopher, R.P. Kaur, G. Kaur, A. Kaur, V. Gupta, P. Bansal, MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect. Clin. Res. 7, 68 (2016)PubMedPubMedCentral A.F. Christopher, R.P. Kaur, G. Kaur, A. Kaur, V. Gupta, P. Bansal, MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect. Clin. Res. 7, 68 (2016)PubMedPubMedCentral
154.
Zurück zum Zitat J. Weiler, J. Hunziker, J. Hall, Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 13, 496–502 (2006)PubMed J. Weiler, J. Hunziker, J. Hall, Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 13, 496–502 (2006)PubMed
155.
Zurück zum Zitat L. Aagaard, J.J. Rossi, RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 59, 75–86 (2007)PubMedPubMedCentral L. Aagaard, J.J. Rossi, RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 59, 75–86 (2007)PubMedPubMedCentral
156.
Zurück zum Zitat X. Zhao, F. Pan, C.M. Holt, A.L. Lewis, J.R. Lu, Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin. Drug Deliv. 6, 673–686 (2009)PubMed X. Zhao, F. Pan, C.M. Holt, A.L. Lewis, J.R. Lu, Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Expert Opin. Drug Deliv. 6, 673–686 (2009)PubMed
157.
Zurück zum Zitat J. Krützfeldt, N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel, Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)PubMed J. Krützfeldt, N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel, Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)PubMed
158.
Zurück zum Zitat W.-Y. Choi, A.J. Giraldez, A.F. Schier, Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007)PubMed W.-Y. Choi, A.J. Giraldez, A.F. Schier, Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007)PubMed
159.
Zurück zum Zitat C.M. Loya, C.S. Lu, D. Van Vactor, T.A. Fulga, Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat. Methods 6, 897–903 (2009)PubMedPubMedCentral C.M. Loya, C.S. Lu, D. Van Vactor, T.A. Fulga, Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat. Methods 6, 897–903 (2009)PubMedPubMedCentral
160.
Zurück zum Zitat E. Brognara, E. Fabbri, F. Aimi, A. Manicardi, N. Bianchi, A. Finotti, G. Breveglieri, M. Borgatti, R. Corradini, R. Marchelli, Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int. J. Oncol. 41, 2119–2127 (2012)PubMed E. Brognara, E. Fabbri, F. Aimi, A. Manicardi, N. Bianchi, A. Finotti, G. Breveglieri, M. Borgatti, R. Corradini, R. Marchelli, Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int. J. Oncol. 41, 2119–2127 (2012)PubMed
161.
Zurück zum Zitat K. Gumireddy, D.D. Young, X. Xiong, J.B. Hogenesch, Q. Huang, A. Deiters, Small-Molecule Inhibitors of MicroRNA miR-21 Function. Angew. Chem. Int. Ed. Engl. 47, 7482–7484 (2008)PubMedPubMedCentral K. Gumireddy, D.D. Young, X. Xiong, J.B. Hogenesch, Q. Huang, A. Deiters, Small-Molecule Inhibitors of MicroRNA miR-21 Function. Angew. Chem. Int. Ed. Engl. 47, 7482–7484 (2008)PubMedPubMedCentral
162.
Zurück zum Zitat J. Kota, R.R. Chivukula, K.A. O'Donnell, E.A. Wentzel, C.L. Montgomery, H.-W. Hwang, T.-C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009)PubMedPubMedCentral J. Kota, R.R. Chivukula, K.A. O'Donnell, E.A. Wentzel, C.L. Montgomery, H.-W. Hwang, T.-C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009)PubMedPubMedCentral
163.
Zurück zum Zitat D. Dykxhoorn, D. Palliser, J. Lieberman, The silent treatment: siRNAs as small molecule drugs. Gene Ther. 13, 541–552 (2006)PubMed D. Dykxhoorn, D. Palliser, J. Lieberman, The silent treatment: siRNAs as small molecule drugs. Gene Ther. 13, 541–552 (2006)PubMed
164.
Zurück zum Zitat M.V. Iorio, M. Ferracin, C.-G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)PubMed M.V. Iorio, M. Ferracin, C.-G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)PubMed
165.
Zurück zum Zitat Y. Akao, Y. Nakagawa, T. Naoe, let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull. 29, 903–906 (2006)PubMed Y. Akao, Y. Nakagawa, T. Naoe, let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull. 29, 903–906 (2006)PubMed
166.
Zurück zum Zitat S.M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L. Reinert, D. Brown, F.J. Slack, RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005)PubMed S.M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L. Reinert, D. Brown, F.J. Slack, RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005)PubMed
167.
Zurück zum Zitat M.K. McDonald, Y. Tian, R.A. Qureshi, M. Gormley, A. Ertel, R. Gao, E. Aradillas Lopez, G.M. Alexander, A. Sacan, P. Fortina, S.K. Ajit, Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155, 1527–1539 (2014)PubMedPubMedCentral M.K. McDonald, Y. Tian, R.A. Qureshi, M. Gormley, A. Ertel, R. Gao, E. Aradillas Lopez, G.M. Alexander, A. Sacan, P. Fortina, S.K. Ajit, Functional significance of macrophage-derived exosomes in inflammation and pain. Pain 155, 1527–1539 (2014)PubMedPubMedCentral
168.
Zurück zum Zitat M. Mittelbrunn, C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González, F. Sánchez-Cabo, M.Á. González, A. Bernad, F. Sánchez-Madrid, Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011)PubMed M. Mittelbrunn, C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González, F. Sánchez-Cabo, M.Á. González, A. Bernad, F. Sánchez-Madrid, Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011)PubMed
169.
Zurück zum Zitat U. Putz, J. Howitt, A. Doan, C.-P. Goh, L.-H. Low, J. Silke, S.-S. Tan, The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal. 5, ra70–ra70 (2012)PubMed U. Putz, J. Howitt, A. Doan, C.-P. Goh, L.-H. Low, J. Silke, S.-S. Tan, The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal. 5, ra70–ra70 (2012)PubMed
170.
Zurück zum Zitat H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J.J. Lee, J.O. Lötvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007)PubMed H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J.J. Lee, J.O. Lötvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007)PubMed
171.
Zurück zum Zitat W. Zhou, M.Y. Fong, Y. Min, G. Somlo, L. Liu, M.R. Palomares, Y. Yu, A. Chow, S.T.F. O’Connor, A.R. Chin, Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014)PubMedPubMedCentral W. Zhou, M.Y. Fong, Y. Min, G. Somlo, L. Liu, M.R. Palomares, Y. Yu, A. Chow, S.T.F. O’Connor, A.R. Chin, Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014)PubMedPubMedCentral
172.
Zurück zum Zitat A.M. Marleau, C.-S. Chen, J.A. Joyce, R.H. Tullis, Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. 10, 134 (2012)PubMedPubMedCentral A.M. Marleau, C.-S. Chen, J.A. Joyce, R.H. Tullis, Exosome removal as a therapeutic adjuvant in cancer. J. Transl. Med. 10, 134 (2012)PubMedPubMedCentral
173.
Zurück zum Zitat P.K. Lim, S.A. Bliss, S.A. Patel, M. Taborga, M.A. Dave, L.A. Gregory, S.J. Greco, M. Bryan, P.S. Patel, P. Rameshwar, Gap junction–mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011)PubMed P.K. Lim, S.A. Bliss, S.A. Patel, M. Taborga, M.A. Dave, L.A. Gregory, S.J. Greco, M. Bryan, P.S. Patel, P. Rameshwar, Gap junction–mediated import of MicroRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011)PubMed
174.
Zurück zum Zitat M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J.-D. Huang, E. Song, Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 10, 117 (2011)PubMedPubMedCentral M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J.-D. Huang, E. Song, Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 10, 117 (2011)PubMedPubMedCentral
175.
Zurück zum Zitat W.-x. Chen, X.-m. Liu, M.-m. Lv, L. Chen, J.-h. Zhao, S.-l. Zhong, M.-h. Ji, Q. Hu, Z. Luo, J.-z. Wu, Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9, e95240 (2014)PubMedPubMedCentral W.-x. Chen, X.-m. Liu, M.-m. Lv, L. Chen, J.-h. Zhao, S.-l. Zhong, M.-h. Ji, Q. Hu, Z. Luo, J.-z. Wu, Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9, e95240 (2014)PubMedPubMedCentral
176.
Zurück zum Zitat S. Zhong, W. Li, Z. Chen, J. Xu, J. Zhao, MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 531, 8–14 (2013)PubMed S. Zhong, W. Li, Z. Chen, J. Xu, J. Zhao, MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 531, 8–14 (2013)PubMed
177.
Zurück zum Zitat S. Erika, J. Dan-Corneliu, P. George, Breast cancer immunotherapy. Maedica 10, 185 (2015) S. Erika, J. Dan-Corneliu, P. George, Breast cancer immunotherapy. Maedica 10, 185 (2015)
178.
Zurück zum Zitat L.Y. Yu, J. Tang, C.M. Zhang, W.J. Zeng, H. Yan, M.P. Li, X.P. Chen, New immunotherapy strategies in breast cancer. Int. J. Environ. Res. Public Health 14, E68 (2017)PubMed L.Y. Yu, J. Tang, C.M. Zhang, W.J. Zeng, H. Yan, M.P. Li, X.P. Chen, New immunotherapy strategies in breast cancer. Int. J. Environ. Res. Public Health 14, E68 (2017)PubMed
179.
Zurück zum Zitat D. Lindau, P. Gielen, M. Kroesen, P. Wesseling, G.J. Adema, The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013)PubMedPubMedCentral D. Lindau, P. Gielen, M. Kroesen, P. Wesseling, G.J. Adema, The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013)PubMedPubMedCentral
180.
Zurück zum Zitat A. Xiong, Z. Yang, Y. Shen, J. Zhou, Q. Shen, Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6, 926–957 (2014)PubMedPubMedCentral A. Xiong, Z. Yang, Y. Shen, J. Zhou, Q. Shen, Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6, 926–957 (2014)PubMedPubMedCentral
181.
Zurück zum Zitat K. Athreya, S.J.T.C.R. Ali, Advances on immunotherapy in breast cancer. Transl. Cancer Res. 6, 30–37 (2017) K. Athreya, S.J.T.C.R. Ali, Advances on immunotherapy in breast cancer. Transl. Cancer Res. 6, 30–37 (2017)
182.
Zurück zum Zitat G.M. Weir, R.S. Liwski, M. Mansour, Immune modulation by chemotherapy or immunotherapy to enhance cancer vaccines. Cancers 3, 3114–3142 (2011)PubMedPubMedCentral G.M. Weir, R.S. Liwski, M. Mansour, Immune modulation by chemotherapy or immunotherapy to enhance cancer vaccines. Cancers 3, 3114–3142 (2011)PubMedPubMedCentral
183.
Zurück zum Zitat F.K. Dermani, P. Samadi, G. Rahmani, A.K. Kohlan, R. Najafi, PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. Suppl. 233, 1–13 (2018) F.K. Dermani, P. Samadi, G. Rahmani, A.K. Kohlan, R. Najafi, PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. Suppl. 233, 1–13 (2018)
184.
Zurück zum Zitat J.F. Grosso, M.N. Jure-Kunkel, CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13, 5 (2013)PubMedPubMedCentral J.F. Grosso, M.N. Jure-Kunkel, CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13, 5 (2013)PubMedPubMedCentral
185.
Zurück zum Zitat H.L. McArthur, D.B. Page, Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy. Clin. Adv. Hematol. Oncol. 14, 922–933 (2016)PubMed H.L. McArthur, D.B. Page, Immunotherapy for the treatment of breast cancer: checkpoint blockade, cancer vaccines, and future directions in combination immunotherapy. Clin. Adv. Hematol. Oncol. 14, 922–933 (2016)PubMed
186.
Zurück zum Zitat S. Adams, J.R. Diamond, E.P. Hamilton, P.R. Pohlmann, S.M. Tolaney, L. Molinero, X. He, D. Waterkamp, R. Funke, J.J.J.C.O. Powderly, Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J. Clin. Oncol. 34, 1009 (2016) S. Adams, J.R. Diamond, E.P. Hamilton, P.R. Pohlmann, S.M. Tolaney, L. Molinero, X. He, D. Waterkamp, R. Funke, J.J.J.C.O. Powderly, Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J. Clin. Oncol. 34, 1009 (2016)
187.
Zurück zum Zitat T.F. Gajewski, H. Schreiber, Y.-X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013)PubMedPubMedCentral T.F. Gajewski, H. Schreiber, Y.-X. Fu, Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013)PubMedPubMedCentral
188.
Zurück zum Zitat C. Domschke, Y. Ge, I. Bernhardt, S. Schott, S. Keim, S. Juenger, M. Bucur, L. Mayer, M. Blumenstein, J. Rom, J. Heil, C. Sohn, A. Schneeweiss, P. Beckhove, F. Schuetz, Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol. Immunother. 62, 1053–1060 (2013)PubMed C. Domschke, Y. Ge, I. Bernhardt, S. Schott, S. Keim, S. Juenger, M. Bucur, L. Mayer, M. Blumenstein, J. Rom, J. Heil, C. Sohn, A. Schneeweiss, P. Beckhove, F. Schuetz, Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol. Immunother. 62, 1053–1060 (2013)PubMed
189.
Zurück zum Zitat E.A. Mittendorf, G.E. Peoples, Injecting hope--a review of breast cancer vaccines. Oncology 30, 475–475 (2016)PubMed E.A. Mittendorf, G.E. Peoples, Injecting hope--a review of breast cancer vaccines. Oncology 30, 475–475 (2016)PubMed
190.
Zurück zum Zitat S. Mac Keon, M.S. Ruiz, S. Gazzaniga, R. Wainstok, Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models. Front. Immunol. 6, 243 (2015)PubMedPubMedCentral S. Mac Keon, M.S. Ruiz, S. Gazzaniga, R. Wainstok, Dendritic cell-based vaccination in cancer: Therapeutic implications emerging from murine models. Front. Immunol. 6, 243 (2015)PubMedPubMedCentral
191.
Zurück zum Zitat D. Xue, Y. Liang, S. Duan, J. He, J. Su, J. Zhu, N. Hu, J. Liu, Y. Zhao, X. Lu, Enhanced anti-tumor immunity against breast cancer induced by whole tumor cell vaccines genetically modified expressing alpha-Gal epitopes. Oncol. Rep. 36, 2843–2851 (2016)PubMed D. Xue, Y. Liang, S. Duan, J. He, J. Su, J. Zhu, N. Hu, J. Liu, Y. Zhao, X. Lu, Enhanced anti-tumor immunity against breast cancer induced by whole tumor cell vaccines genetically modified expressing alpha-Gal epitopes. Oncol. Rep. 36, 2843–2851 (2016)PubMed
192.
Zurück zum Zitat V.K. Sondak and J.A. Sosman, in: Secondary, Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: Melacine®, (Elsevier, 2003), pp. 409-415 V.K. Sondak and J.A. Sosman, in: Secondary, Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: Melacine®, (Elsevier, 2003), pp. 409-415
193.
Zurück zum Zitat C.G. Drake, E.J. Lipson, J.R. Brahmer, Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 11, 24–37 (2014)PubMed C.G. Drake, E.J. Lipson, J.R. Brahmer, Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 11, 24–37 (2014)PubMed
194.
Zurück zum Zitat P.A. Ott, Z. Hu, D.B. Keskin, S.A. Shukla, J. Sun, D.J. Bozym, W. Zhang, A. Luoma, A. Giobbie-Hurder, L. Peter, An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217 (2017)PubMedPubMedCentral P.A. Ott, Z. Hu, D.B. Keskin, S.A. Shukla, J. Sun, D.J. Bozym, W. Zhang, A. Luoma, A. Giobbie-Hurder, L. Peter, An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217 (2017)PubMedPubMedCentral
195.
Zurück zum Zitat C. Curtis, S.P. Shah, S.-F. Chin, G. Turashvili, O.M. Rueda, M.J. Dunning, D. Speed, A.G. Lynch, S. Samarajiwa, Y. Yuan, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346 (2012)PubMedPubMedCentral C. Curtis, S.P. Shah, S.-F. Chin, G. Turashvili, O.M. Rueda, M.J. Dunning, D. Speed, A.G. Lynch, S. Samarajiwa, Y. Yuan, The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346 (2012)PubMedPubMedCentral
196.
Zurück zum Zitat A. Dols, J.W. Smith 2nd, S.L. Meijer, B.A. Fox, H.M. Hu, E. Walker, S. Rosenheim, T. Moudgil, T. Doran, W. Wood, M. Seligman, W.G. Alvord, D. Schoof, W.J. Urba, Vaccination of women with metastatic breast cancer, using a costimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum. Gene Ther. 14, 1117–1123 (2003)PubMed A. Dols, J.W. Smith 2nd, S.L. Meijer, B.A. Fox, H.M. Hu, E. Walker, S. Rosenheim, T. Moudgil, T. Doran, W. Wood, M. Seligman, W.G. Alvord, D. Schoof, W.J. Urba, Vaccination of women with metastatic breast cancer, using a costimulatory gene (CD80)-modified, HLA-A2-matched, allogeneic, breast cancer cell line: clinical and immunological results. Hum. Gene Ther. 14, 1117–1123 (2003)PubMed
197.
Zurück zum Zitat B. Guckel, S. Stumm, C. Rentzsch, A. Marme, G. Mannhardt, D. Wallwiener, A CD80-transfected human breast cancer cell variant induces HER-2/neu-specific T cells in HLA-A*02-matched situations in vitro as well as in vivo. Cancer Immunol. Immunother. 54, 129–140 (2005)PubMed B. Guckel, S. Stumm, C. Rentzsch, A. Marme, G. Mannhardt, D. Wallwiener, A CD80-transfected human breast cancer cell variant induces HER-2/neu-specific T cells in HLA-A*02-matched situations in vitro as well as in vivo. Cancer Immunol. Immunother. 54, 129–140 (2005)PubMed
198.
Zurück zum Zitat S. Chatterjee, P.R. Johnson, K. Wong Jr., Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258, 1485–1489 (1992)PubMed S. Chatterjee, P.R. Johnson, K. Wong Jr., Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 258, 1485–1489 (1992)PubMed
199.
Zurück zum Zitat G. Curigliano, G. Spitaleri, E. Pietri, M. Rescigno, F. de Braud, A. Cardillo, E. Munzone, A. Rocca, G. Bonizzi, V. Brichard, L. Orlando, A. Goldhirsch, Breast cancer vaccines: a clinical reality or fairy tale? Ann. Oncol. 17, 750–762 (2006)PubMed G. Curigliano, G. Spitaleri, E. Pietri, M. Rescigno, F. de Braud, A. Cardillo, E. Munzone, A. Rocca, G. Bonizzi, V. Brichard, L. Orlando, A. Goldhirsch, Breast cancer vaccines: a clinical reality or fairy tale? Ann. Oncol. 17, 750–762 (2006)PubMed
200.
Zurück zum Zitat K.L. Knutson, K. Schiffman, M.A. Cheever, M.L. Disis, Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin. Cancer Res. 8, 1014–1018 (2002)PubMed K.L. Knutson, K. Schiffman, M.A. Cheever, M.L. Disis, Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin. Cancer Res. 8, 1014–1018 (2002)PubMed
201.
Zurück zum Zitat J.L. Murray, M.E. Gillogly, D. Przepiorka, H. Brewer, N.K. Ibrahim, D.J. Booser, G.N. Hortobagyi, A.P. Kudelka, K.H. Grabstein, M.A. Cheever, C.G. Ioannides, Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin. Cancer Res. 8, 3407–3418 (2002)PubMed J.L. Murray, M.E. Gillogly, D. Przepiorka, H. Brewer, N.K. Ibrahim, D.J. Booser, G.N. Hortobagyi, A.P. Kudelka, K.H. Grabstein, M.A. Cheever, C.G. Ioannides, Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin. Cancer Res. 8, 3407–3418 (2002)PubMed
202.
Zurück zum Zitat T.Z. Zaks, S.A. Rosenberg, Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res. 58, 4902–4908 (1998)PubMed T.Z. Zaks, S.A. Rosenberg, Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res. 58, 4902–4908 (1998)PubMed
203.
Zurück zum Zitat R. Benedetti, C. Dell’Aversana, C. Giorgio, R. Astorri, L. Altucci, Breast cancer vaccines: New insights. Front. Endocrinol. 8, 270 (2017) R. Benedetti, C. Dell’Aversana, C. Giorgio, R. Astorri, L. Altucci, Breast cancer vaccines: New insights. Front. Endocrinol. 8, 270 (2017)
204.
Zurück zum Zitat Y. Chen, P. Emtage, Q. Zhu, R. Foley, W. Muller, M. Hitt, J. Gauldie, Y. Wan, Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther. 8, 316–323 (2001)PubMed Y. Chen, P. Emtage, Q. Zhu, R. Foley, W. Muller, M. Hitt, J. Gauldie, Y. Wan, Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther. 8, 316–323 (2001)PubMed
205.
Zurück zum Zitat I.M. Svane, A.E. Pedersen, H.E. Johnsen, D. Nielsen, C. Kamby, E. Gaarsdal, K. Nikolajsen, S. Buus, M.H. Claesson, Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol. Immunother. 53, 633–641 (2004)PubMed I.M. Svane, A.E. Pedersen, H.E. Johnsen, D. Nielsen, C. Kamby, E. Gaarsdal, K. Nikolajsen, S. Buus, M.H. Claesson, Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol. Immunother. 53, 633–641 (2004)PubMed
206.
Zurück zum Zitat J.W. Yewdell, D.C. Tscharke, Immunology: Inside the professionals. Nature 418, 923–924 (2002)PubMed J.W. Yewdell, D.C. Tscharke, Immunology: Inside the professionals. Nature 418, 923–924 (2002)PubMed
207.
Zurück zum Zitat X.-R. Ren, J. Wei, G. Lei, J. Wang, J. Lu, W. Xia, N. Spector, L.S. Barak, T.M. Clay, T. Osada, Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells. Breast Cancer Res. 14, R89 (2012)PubMedPubMedCentral X.-R. Ren, J. Wei, G. Lei, J. Wang, J. Lu, W. Xia, N. Spector, L.S. Barak, T.M. Clay, T. Osada, Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells. Breast Cancer Res. 14, R89 (2012)PubMedPubMedCentral
208.
Zurück zum Zitat J.D. Sander, J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)PubMedPubMedCentral J.D. Sander, J.K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)PubMedPubMedCentral
209.
Zurück zum Zitat F.J. Sánchez-Rivera, T. Jacks, Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer. 15, 387–395 (2015)PubMedPubMedCentral F.J. Sánchez-Rivera, T. Jacks, Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer. 15, 387–395 (2015)PubMedPubMedCentral
210.
Zurück zum Zitat F.A. Khan, N.S. Pandupuspitasari, H. Chun-Jie, Z. Ao, M. Jamal, A. Zohaib, F.A. Khan, M.R. Hakim, Z. ShuJun, CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget 7, 52541 (2016)PubMedPubMedCentral F.A. Khan, N.S. Pandupuspitasari, H. Chun-Jie, Z. Ao, M. Jamal, A. Zohaib, F.A. Khan, M.R. Hakim, Z. ShuJun, CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget 7, 52541 (2016)PubMedPubMedCentral
211.
Zurück zum Zitat X. Wang, C. Lomas, M.A. Tycon, C. Betts, S. Weaver, Abstract 2431: Single cell gene expression profiling in breast cancer cells with the Her2/neu gene knockout by CRISPR-Cas9. Cancer Res. 77, 2431–2431 (2017) X. Wang, C. Lomas, M.A. Tycon, C. Betts, S. Weaver, Abstract 2431: Single cell gene expression profiling in breast cancer cells with the Her2/neu gene knockout by CRISPR-Cas9. Cancer Res. 77, 2431–2431 (2017)
212.
Zurück zum Zitat H. Wang, W. Sun, CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett. 385, 137–143 (2017)PubMed H. Wang, W. Sun, CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett. 385, 137–143 (2017)PubMed
213.
Zurück zum Zitat Q. Wu, P. Madany, J. Akech, J.R. Dobson, S. Douthwright, G. Browne, J.L. Colby, G.E. Winter, J.E. Bradner, J. Pratap, The SWI/SNF ATPases are required for triple negative breast cancer cell proliferation. J. Cell. Physiol. 230, 2683–2694 (2015)PubMedPubMedCentral Q. Wu, P. Madany, J. Akech, J.R. Dobson, S. Douthwright, G. Browne, J.L. Colby, G.E. Winter, J.E. Bradner, J. Pratap, The SWI/SNF ATPases are required for triple negative breast cancer cell proliferation. J. Cell. Physiol. 230, 2683–2694 (2015)PubMedPubMedCentral
214.
Zurück zum Zitat S. Annunziato, S.M. Kas, M. Nethe, H. Yücel, J. Del Bravo, C. Pritchard, R.B. Ali, B. van Gerwen, B. Siteur, A.P. Drenth, Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016)PubMedPubMedCentral S. Annunziato, S.M. Kas, M. Nethe, H. Yücel, J. Del Bravo, C. Pritchard, R.B. Ali, B. van Gerwen, B. Siteur, A.P. Drenth, Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016)PubMedPubMedCentral
Metadaten
Titel
Emerging ways to treat breast cancer: will promises be met?
verfasst von
Pouria Samadi
Sahar Saki
Fatemeh Karimi Dermani
Mona Pourjafar
Massoud Saidijam
Publikationsdatum
27.09.2018
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 6/2018
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0409-1

Weitere Artikel der Ausgabe 6/2018

Cellular Oncology 6/2018 Zur Ausgabe

Neu im Fachgebiet Pathologie