Skip to main content
Erschienen in: Diabetologia 4/2019

Open Access 29.01.2019 | Research Letter

Empagliflozin enhances human and murine cardiomyocyte glucose uptake by increased expression of GLUT1

verfasst von: Julian Mustroph, Charlotte M. Lücht, Olivia Wagemann, Thomas Sowa, Karin P. Hammer, Can M. Sag, Daniel Tarnowski, Andreas Holzamer, Steffen Pabel, Bo Eric Beuthner, Samuel Sossalla, Lars S. Maier, Stefan Wagner

Erschienen in: Diabetologia | Ausgabe 4/2019

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00125-019-4819-z) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Lars S. Maier and Stefan Wagner are joint senior authors.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
2-DG
2-Deoxyglucose
HF
Heart failure
SGLT2
Sodium–glucose cotransporter 2
TAC
Transverse aortic constriction
WT
Wild-type
To the Editor: The results of the Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME) showed that the sodium–glucose cotransporter 2 (SGLT2) inhibitor empagliflozin reduced mortality and hospitalisation due to heart failure (HF) in high-risk diabetic patients [1]. We have previously reported that empagliflozin improved contractile function in human cardiomyocytes isolated from individuals with HF, as well as myocytes from a mouse model of HF by transverse aortic constriction (TAC) [2]. However, we have shown that SGLT2 is not expressed in healthy or failing myocardium.
Cardiomyocytes mainly metabolise fatty acids to generate energy for contraction [3]. However, HF is characterised by fatty acid oxidation dysfunction, rendering myocytes more dependent on glucose metabolism [3]. The major pathway of glucose uptake in the cardiomyocyte is via glucose transporters of the GLUT family [3]. However, GLUT1 expression has been shown to be reduced in human HF [4]. In addition, transgenic overexpression of GLUT1 protects mice from the development of HF [5]. In the present study we investigated whether empagliflozin affects glucose transporter expression and glucose metabolism in cultured murine and human ventricular cardiomyocytes.
For detailed methods, please refer to the electronic supplementary material (ESM). Experiments conform to the Declaration of Helsinki and were approved by local authorities. Left ventricular myocardium was obtained from explanted hearts of heart transplant recipients with end-stage HF. Written consent had been given prior to tissue donation. The clinical characteristics of the donors can be found in ESM Table 1. For some experiments, male C57BL/6J mice (8–12 weeks old, Charles River, Sulzfeld, Germany; housed according to German animal laws) were used and HF was induced by TAC (at 5 weeks, as previously described [6]; see ESM Methods for details). Left ventricular function was assessed by echocardiography (ESM Methods, ESM Table 2).
Cardiomyocytes were isolated and cultured as described previously [2] (see ESM Methods for details) and exposed to a physiologically relevant concentration of empagliflozin (1 μmol/l [7]) or vehicle control (dimethyl sulfoxide; DMSO). Cell viability after 24 h exposure to empagliflozin was not different from vehicle control and unaffected by treatment with the GLUT inhibitor fasentin (50 μmol/l; ESM Fig. 1). However, the inclusion of non-vital cells in our experiments might limit the extrapolation of our data to the in vivo situation.
Western blots were performed using cell lysates. After denaturation (30 min at 37°C) in 1% (vol./vol.) β-mercaptoethanol, proteins were separated on 8% (wt/vol.) SDS-polyacrylamide gels, transferred to a membrane and incubated with primary GLUT antibodies at 4°C overnight (for details, see ESM Methods). Secondary horseradish peroxidase (HRP)-conjugated donkey anti-rabbit and sheep anti-mouse IgG antibodies were incubated for 1 h at room temperature. For detection, Immobilon Western Chemiluminescent HRP Substrate was used (see ESM Methods for details). We focused on the expression of GLUT1 and GLUT4 as they are the most abundant GLUT transporters in the heart and are responsible for handling the bulk of glucose transport [3]. One sample from Fig. 1c was excluded from the analysis due to failure of the loading control (GAPDH).
Glucose concentration was evaluated in wild-type (WT) and TAC murine cardiomyocytes and failing human ventricular cardiomyocytes using the Abcam Glucose Assay Kit (ab65333). In brief, after culture, cardiomyocytes were settled, supernatant was discarded, and cells were washed. Perchloric acid/potassium hydroxide deproteinisation was performed as described by the manufacturer. After addition of samples to well plates, reaction buffer from the kit was added and fluorescence was analysed using a Tecan plate reader (Tecan Group, Männedorf, Switzerland). For further details, please refer to the ESM Methods.
Glucose uptake was evaluated for TAC murine cardiomyocytes using the Abcam Glucose Uptake Assay Kit (ab136956) (see ESM Methods for details). In brief, after culture, cells were washed with PBS and starved in Tyrode’s solution with 10 mmol/l mannitol (instead of glucose) for 40 min. 2-Deoxyglucose (2-DG; 10 mmol/l) was added and in some cases fasentin 50 μmol/l was added to inhibit GLUT1 (experimental groups: vehicle, empagliflozin, vehicle + fasentin, empagliflozin + fasentin) for 20 min. 2-DG was omitted in respective negative controls. The rest of the protocol was performed as detailed in the manufacturer’s protocol. After addition of reaction mix, fluorescence was measured using a Tecan plate reader.
As all mice were from the same background and for TAC were subjected to the same surgical technique, no specific randomisation was performed. Cells from the cardiomyocyte isolations were split into equal parts and cultured with either vehicle or empagliflozin (+/− fasentin). Investigators were blinded with respect to group assignment. Outcome assessment was unblinded.
For all data, normality was tested using the Shapiro–Wilk normality test. All data showed normal distribution. Data points from each specimen were generated in pairs, as each cell isolation was split and cardiomyocytes exposed to vehicle and empagliflozin. Thus, the paired Student’s t test was used to test significance. Data are shown as scatter plots with the mean indicated. In addition, we report spaghetti graphs for paired data from each specimen to enable better evaluation of the empagliflozin effect.
Here, we show for the first time that empagliflozin exposure (24 h) resulted in significantly increased GLUT1 expression in murine and human ventricular cardiomyocytes, while expression of GLUT4 was unaltered (Fig. 1a–i). Expression of other cardiac GLUT transporters (GLUT8, GLUT10, GLUT12) was also unaffected by empagliflozin exposure (data not shown).
Increased empagliflozin-dependent GLUT1 expression was not only observed in healthy WT murine myocytes (Fig. 1a–c), but also in isolated ventricular cardiomyocytes of mice with HF induced by TAC (Fig. 1d–f), and, importantly, also in isolated human ventricular myocytes of individuals with end-stage HF (Fig. 1g–i).
To investigate if increased GLUT1 expression with empagliflozin may affect intracellular glucose availability, we measured intracellular glucose concentration in isolated ventricular myocytes. Interestingly, 24 h empagliflozin exposure significantly increased glucose concentration in ventricular myocytes isolated from WT mice, mice with TAC-induced HF and human failing ventricular myocytes (Fig. 1j–l, respectively).
To test if the increased glucose concentration was due to increased GLUT1-dependent glucose uptake in empagliflozin-exposed cardiomyocytes, we measured the uptake of glucose analogue 2-DG, which cannot be metabolised by the cell and allows for precise measurement of glucose uptake [8]. Since the empagliflozin effects are most relevant in HF, we used isolated TAC cardiomyocytes for these experiments.
Importantly, empagliflozin-exposure for 24 h significantly increased 2-DG uptake in TAC cardiomyocytes compared with vehicle control (Fig. 1m).
To test whether the increased glucose-uptake was indeed due to increased GLUT1 expression, we used the specific GLUT inhibitor fasentin (50 μmol/l). While this inhibitor may also affect GLUT4, the unchanged GLUT4 expression allows for assessment of the GLUT1 dependent uptake. Inhibition of GLUT1 with fasentin completely prevented the empagliflozin-dependent stimulation of glucose uptake (Fig. 1m), while expression of GLUT4 was not affected by fasentin (data not shown).
In summary, we show here that empagliflozin directly induces upregulation of GLUT1 expression in isolated failing human and murine cardiomyocytes. Moreover, increased empagliflozin-dependent GLUT1 expression enhanced glucose uptake and the intracellular glucose concentration. Our results may explain, at least in part, the beneficial effects of empagliflozin in HF.

Acknowledgements

We thank F. Radtke (Department of Internal Medicine II, University Medical Center Regensburg, Germany) for her technical expertise.

Contribution statement

JM, CML, OW, TS, KPH, CMS, DT, AH, SP, BEB, SS, LSM and SW contributed to analysis and interpretation of data, drafting and revising the article, and approved the final study. JM, TS and SW designed the experiments and performed data acquisition. JM and SW are both responsible for the integrity of the work as a whole.

Duality of interest

LSM receives compensation for talks for Boehringer Ingelheim, the company that sells empagliflozin. The other authors declare that they have no duality of interest associated with this manuscript.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
8.
Zurück zum Zitat Liu L, Cui S, Zhang R et al (2017) MiR-421 inhibits the malignant phenotype in glioma by directly targeting MEF2D. Am J Cancer Res 7(4):857–868PubMedPubMedCentral Liu L, Cui S, Zhang R et al (2017) MiR-421 inhibits the malignant phenotype in glioma by directly targeting MEF2D. Am J Cancer Res 7(4):857–868PubMedPubMedCentral
Metadaten
Titel
Empagliflozin enhances human and murine cardiomyocyte glucose uptake by increased expression of GLUT1
verfasst von
Julian Mustroph
Charlotte M. Lücht
Olivia Wagemann
Thomas Sowa
Karin P. Hammer
Can M. Sag
Daniel Tarnowski
Andreas Holzamer
Steffen Pabel
Bo Eric Beuthner
Samuel Sossalla
Lars S. Maier
Stefan Wagner
Publikationsdatum
29.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 4/2019
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-019-4819-z

Weitere Artikel der Ausgabe 4/2019

Diabetologia 4/2019 Zur Ausgabe

List of Referees

Referees 2018

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.