Skip to main content
Erschienen in: Angiogenesis 4/2017

24.08.2017 | Review Paper

Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall

verfasst von: Maria Margarida Tenreiro, Maria Leonor Correia, Maria Alexandra Brito

Erschienen in: Angiogenesis | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Literatur
9.
13.
14.
Zurück zum Zitat Bydlowski S, Levy D, Ruiz J, Pereira J (2013) Hematopoietic stem cell niche: role in normal and malignant hematopoiesis. In: Alimoghaddam K (ed) Stem cell biology in normal life and diseases, 1st edn. InTech, Rijeka, pp 18–31. doi:10.5772/55508 Bydlowski S, Levy D, Ruiz J, Pereira J (2013) Hematopoietic stem cell niche: role in normal and malignant hematopoiesis. In: Alimoghaddam K (ed) Stem cell biology in normal life and diseases, 1st edn. InTech, Rijeka, pp 18–31. doi:10.​5772/​55508
15.
Zurück zum Zitat Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101. doi:10.1038/nature07639 PubMedCrossRef Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101. doi:10.​1038/​nature07639 PubMedCrossRef
16.
Zurück zum Zitat Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. doi:10.1182/blood-2004-11-4422 PubMedCrossRef Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. doi:10.​1182/​blood-2004-11-4422 PubMedCrossRef
19.
Zurück zum Zitat Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. doi:10.1038/nature09262 PubMedPubMedCentralCrossRef Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. doi:10.​1038/​nature09262 PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96. doi:10.1038/nature07434 PubMedCrossRef Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96. doi:10.​1038/​nature07434 PubMedCrossRef
21.
Zurück zum Zitat Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664. doi:10.1038/nm1417 PubMedCrossRef Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664. doi:10.​1038/​nm1417 PubMedCrossRef
23.
Zurück zum Zitat Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328. doi:10.1038/nature17624 PubMedCrossRef Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328. doi:10.​1038/​nature17624 PubMedCrossRef
24.
29.
Zurück zum Zitat Morales-Ruiz M, Jiménez W (2005) Neovascularization, angiogenesis, and vascular remodeling in portal hypertension. In: Sanyal AJ, Shah VH (eds) Clinical gastroenterology: portal hypertension. Humana Press Inc., Totowa, pp 99–112. doi:10.1007/978-1-59259-885-4_7 CrossRef Morales-Ruiz M, Jiménez W (2005) Neovascularization, angiogenesis, and vascular remodeling in portal hypertension. In: Sanyal AJ, Shah VH (eds) Clinical gastroenterology: portal hypertension. Humana Press Inc., Totowa, pp 99–112. doi:10.​1007/​978-1-59259-885-4_​7 CrossRef
30.
Zurück zum Zitat Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228. doi:10.1161/01.RES.85.3.221 PubMedCrossRef Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228. doi:10.​1161/​01.​RES.​85.​3.​221 PubMedCrossRef
32.
Zurück zum Zitat Griffioen AW (2012) Angiogenesis. In: Schwab M (ed) Encyclopedia of cancer, vol 1, 3rd edn. Springer, Berlin, pp 185–186 Griffioen AW (2012) Angiogenesis. In: Schwab M (ed) Encyclopedia of cancer, vol 1, 3rd edn. Springer, Berlin, pp 185–186
37.
Zurück zum Zitat Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972. doi:10.1016/S0301-472X(02)00867-6 PubMedCrossRef Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972. doi:10.​1016/​S0301-472X(02)00867-6 PubMedCrossRef
38.
40.
Zurück zum Zitat Balaji S, King A, Crombleholme TM, Keswani SG (2013) The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle) 2:283–295. doi:10.1089/wound.2012.0398 CrossRef Balaji S, King A, Crombleholme TM, Keswani SG (2013) The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle) 2:283–295. doi:10.​1089/​wound.​2012.​0398 CrossRef
41.
Zurück zum Zitat Velazquez OC (2007) Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg 45:39–47. doi:10.1016/j.jvs.2007.02.068 CrossRef Velazquez OC (2007) Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg 45:39–47. doi:10.​1016/​j.​jvs.​2007.​02.​068 CrossRef
47.
Zurück zum Zitat Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Waltenberger J, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486. doi:10.1016/S0008-6363(03)00252-9 PubMedCrossRef Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Waltenberger J, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486. doi:10.​1016/​S0008-6363(03)00252-9 PubMedCrossRef
48.
Zurück zum Zitat Amini AR, Laurencin CT, Nukavarapu SP (2012) Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res 30:1507–1515. doi:10.1002/jor.22097 PubMedCrossRef Amini AR, Laurencin CT, Nukavarapu SP (2012) Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res 30:1507–1515. doi:10.​1002/​jor.​22097 PubMedCrossRef
50.
Zurück zum Zitat Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A (2008) Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14:1678–1685. doi:10.1158/1078-0432.CCR-07-4071 PubMedCrossRef Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A (2008) Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14:1678–1685. doi:10.​1158/​1078-0432.​CCR-07-4071 PubMedCrossRef
51.
Zurück zum Zitat Shi Q, VandeBerg JL (2015) Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. Am J Stem Cells 4:32–37PubMedPubMedCentral Shi Q, VandeBerg JL (2015) Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. Am J Stem Cells 4:32–37PubMedPubMedCentral
53.
Zurück zum Zitat Case J, Mead LE, Bessler WK, Prater D, Ha White, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Da Ingram (2007) Human CD34+ AC133+ VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118. doi:10.1016/j.exphem.2007.04.002 PubMedCrossRef Case J, Mead LE, Bessler WK, Prater D, Ha White, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Da Ingram (2007) Human CD34+ AC133+ VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118. doi:10.​1016/​j.​exphem.​2007.​04.​002 PubMedCrossRef
54.
Zurück zum Zitat Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ Cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc 27:1572–1579. doi:10.1161/ATVBAHA.107.144972 CrossRef Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ Cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc 27:1572–1579. doi:10.​1161/​ATVBAHA.​107.​144972 CrossRef
56.
Zurück zum Zitat Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Ma Moore, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMed Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Ma Moore, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMed
59.
Zurück zum Zitat Bardin N, Anfosso F, Massé JM, Cramer E, Sabatier F, Bivic AL, Sampol J, Dignat-George F (2001) Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 98:3677–3684. doi:10.1182/blood.V98.13.3677 PubMedCrossRef Bardin N, Anfosso F, Massé JM, Cramer E, Sabatier F, Bivic AL, Sampol J, Dignat-George F (2001) Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 98:3677–3684. doi:10.​1182/​blood.​V98.​13.​3677 PubMedCrossRef
61.
Zurück zum Zitat Banks RE, Gearing AJ, Hemingway IK, Norfolk DR, Perren TJ, Selby PJ (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68:122–124PubMedPubMedCentralCrossRef Banks RE, Gearing AJ, Hemingway IK, Norfolk DR, Perren TJ, Selby PJ (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68:122–124PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211. doi:10.1016/0092-8674(89)90775-7 PubMedCrossRef Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211. doi:10.​1016/​0092-8674(89)90775-7 PubMedCrossRef
64.
Zurück zum Zitat Schnürch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMed Schnürch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMed
66.
Zurück zum Zitat Nocka K, Buck J, Levi E, Besmer P (1990) Candidate ligand for the c-kit transmembrane kinase receptor: kL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 9:3287–3294PubMedPubMedCentral Nocka K, Buck J, Levi E, Besmer P (1990) Candidate ligand for the c-kit transmembrane kinase receptor: kL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 9:3287–3294PubMedPubMedCentral
67.
Zurück zum Zitat Lau MYZ, Dharmage SC, Burgess JA, Lowe AJ, Lodge CJ, Campbell B, Matheson MC (2014) CD14 polymorphisms, microbial exposure and allergic diseases: a systematic review of gene-environment interactions. Allergy 69:1440–1453. doi:10.1111/all.12454 PubMedCrossRef Lau MYZ, Dharmage SC, Burgess JA, Lowe AJ, Lodge CJ, Campbell B, Matheson MC (2014) CD14 polymorphisms, microbial exposure and allergic diseases: a systematic review of gene-environment interactions. Allergy 69:1440–1453. doi:10.​1111/​all.​12454 PubMedCrossRef
68.
Zurück zum Zitat Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030PubMed Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030PubMed
71.
Zurück zum Zitat Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL, Matarelli F, Fatebenefratelli O, Marrow B, Unit T, Maggiore O (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. Br J Haematol 115:186–194. doi:10.1046/j.1365-2141.2001.03077.x PubMedCrossRef Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL, Matarelli F, Fatebenefratelli O, Marrow B, Unit T, Maggiore O (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. Br J Haematol 115:186–194. doi:10.​1046/​j.​1365-2141.​2001.​03077.​x PubMedCrossRef
74.
Zurück zum Zitat Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identifcation of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. doi:10.1182/blood-2004-04-1396 PubMedCrossRef Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identifcation of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. doi:10.​1182/​blood-2004-04-1396 PubMedCrossRef
75.
Zurück zum Zitat Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 3:18. doi:10.1186/1755-8794-3-18 PubMedPubMedCentralCrossRef Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 3:18. doi:10.​1186/​1755-8794-3-18 PubMedPubMedCentralCrossRef
76.
81.
Zurück zum Zitat Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, Melton L Jr (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346:564–569. doi:10.1056/NEJMoa01133202 PubMedCrossRef Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, Melton L Jr (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346:564–569. doi:10.​1056/​NEJMoa01133202 PubMedCrossRef
85.
Zurück zum Zitat Rajshenkhar C, Shaji K (2015) Risk stratification in multiple myeloma. Ann Hematol Oncol 2:1046 Rajshenkhar C, Shaji K (2015) Risk stratification in multiple myeloma. Ann Hematol Oncol 2:1046
86.
Zurück zum Zitat Kastritis E, Terpos E, Moulopoulos L, Spyropoulou-Vlachou M, Kanellias N, Eleftherakis-Papaiakovou E, Gkotzamanidou M, Migkou M, Gavriatopoulou M, Roussou M, Tasidou A, Dimopoulos MA (2013) Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 27:947–953. doi:10.1038/leu.2012.309 PubMedCrossRef Kastritis E, Terpos E, Moulopoulos L, Spyropoulou-Vlachou M, Kanellias N, Eleftherakis-Papaiakovou E, Gkotzamanidou M, Migkou M, Gavriatopoulou M, Roussou M, Tasidou A, Dimopoulos MA (2013) Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 27:947–953. doi:10.​1038/​leu.​2012.​309 PubMedCrossRef
89.
Zurück zum Zitat Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, Cavo M, Usmani S, Durie BG, Avet-Loiseau H, International Myeloma Working G (2014) IMWG consensus on risk stratification in multiple myeloma. Leukemia 28:269–277. doi:10.1038/leu.2013.247 PubMedCrossRef Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, Cavo M, Usmani S, Durie BG, Avet-Loiseau H, International Myeloma Working G (2014) IMWG consensus on risk stratification in multiple myeloma. Leukemia 28:269–277. doi:10.​1038/​leu.​2013.​247 PubMedCrossRef
90.
Zurück zum Zitat Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Martino M, Morabito F, Gentili S (2015) Smoldering multiple myeloma: to treat or not to treat. Expert Opin Pharmacother 16:1–6CrossRef Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Martino M, Morabito F, Gentili S (2015) Smoldering multiple myeloma: to treat or not to treat. Expert Opin Pharmacother 16:1–6CrossRef
93.
Zurück zum Zitat Kurtin SE (2013) Relapsed or relapsed/refractory multiple myeloma. J Adv Pract Oncol 4:5–14 Kurtin SE (2013) Relapsed or relapsed/refractory multiple myeloma. J Adv Pract Oncol 4:5–14
94.
Zurück zum Zitat Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM (2001) Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91:1219–1230PubMedCrossRef Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM (2001) Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91:1219–1230PubMedCrossRef
95.
Zurück zum Zitat Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21:1079–1088. doi:10.1038/sj.leu.2404621 PubMedPubMedCentral Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21:1079–1088. doi:10.​1038/​sj.​leu.​2404621 PubMedPubMedCentral
96.
Zurück zum Zitat Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M (2015) Multiple myeloma and bone marrow mesenchymal stem cells’ crosstalk: effect on translation initiation. Mol Carcinog 55:1343–1354. doi:10.1002/mc.22378 PubMedCrossRef Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M (2015) Multiple myeloma and bone marrow mesenchymal stem cells’ crosstalk: effect on translation initiation. Mol Carcinog 55:1343–1354. doi:10.​1002/​mc.​22378 PubMedCrossRef
97.
99.
Zurück zum Zitat Kristensen IB, Christensen JH, Lyng MB, Moller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N (2014) Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma 55:911–919. doi:10.3109/10428194.2013.820288 PubMedCrossRef Kristensen IB, Christensen JH, Lyng MB, Moller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N (2014) Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma 55:911–919. doi:10.​3109/​10428194.​2013.​820288 PubMedCrossRef
100.
Zurück zum Zitat Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JM, Zannettino AC, Phan TG, Croucher PI (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983. doi:10.1038/ncomms9983 PubMedPubMedCentralCrossRef Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JM, Zannettino AC, Phan TG, Croucher PI (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983. doi:10.​1038/​ncomms9983 PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073PubMed Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073PubMed
102.
Zurück zum Zitat Calcinotto A, Ponzoni M, Ria R, Grioni M, Cattaneo E, Villa I, Sabrina Bertilaccio MT, Chesi M, Rubinacci A, Tonon G, Bergsagel PL, Vacca A, Bellone M (2015) Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncoimmunology 4:e1008850. doi:10.1080/2162402X.2015.1008850 PubMedPubMedCentralCrossRef Calcinotto A, Ponzoni M, Ria R, Grioni M, Cattaneo E, Villa I, Sabrina Bertilaccio MT, Chesi M, Rubinacci A, Tonon G, Bergsagel PL, Vacca A, Bellone M (2015) Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncoimmunology 4:e1008850. doi:10.​1080/​2162402X.​2015.​1008850 PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Di Raimondo F, Azzaro MP, Palumbo GA, Bagnato S, Giustolisi G, Floridia PM, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805PubMed Di Raimondo F, Azzaro MP, Palumbo GA, Bagnato S, Giustolisi G, Floridia PM, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805PubMed
106.
Zurück zum Zitat Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28:551–559PubMedCrossRef Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28:551–559PubMedCrossRef
107.
Zurück zum Zitat Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165PubMedCrossRef Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165PubMedCrossRef
110.
Zurück zum Zitat Terpos E, Anargyrou K, Katodritou E, Kastritis E, Papatheodorou A, Christoulas D, Pouli A, Michalis E, Delimpasi S, Gkotzamanidou M, Nikitas N, Koumoustiotis V, Margaritis D, Tsionos K, Stefanoudaki E, Meletis J, Zervas K, Dimopoulos MA, Greek Myeloma Study Group G (2012) Circulating angiopoietin-1 to angiopoietin-2 ratio is an independent prognostic factor for survival in newly diagnosed patients with multiple myeloma who received therapy with novel antimyeloma agents. Int J Cancer 130:735–742. doi:10.1002/ijc.26062 PubMedCrossRef Terpos E, Anargyrou K, Katodritou E, Kastritis E, Papatheodorou A, Christoulas D, Pouli A, Michalis E, Delimpasi S, Gkotzamanidou M, Nikitas N, Koumoustiotis V, Margaritis D, Tsionos K, Stefanoudaki E, Meletis J, Zervas K, Dimopoulos MA, Greek Myeloma Study Group G (2012) Circulating angiopoietin-1 to angiopoietin-2 ratio is an independent prognostic factor for survival in newly diagnosed patients with multiple myeloma who received therapy with novel antimyeloma agents. Int J Cancer 130:735–742. doi:10.​1002/​ijc.​26062 PubMedCrossRef
112.
113.
Zurück zum Zitat Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H (2003) Expression of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica 88:113–115PubMed Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H (2003) Expression of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica 88:113–115PubMed
114.
Zurück zum Zitat Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165. doi:10.1182/blood-2003-11-3811 PubMedCrossRef Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165. doi:10.​1182/​blood-2003-11-3811 PubMedCrossRef
115.
Zurück zum Zitat Zhang H, Vakil V, Braunstein M, Smith ELP, Maroney J, Chen L, Dai K, Berenson JR, Hussain MM, Kluepperberg U, Norin AJ, Akman HO, Özçelik T, Oa Batuman (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294. doi:10.1182/blood-200406-2101 PubMedCrossRef Zhang H, Vakil V, Braunstein M, Smith ELP, Maroney J, Chen L, Dai K, Berenson JR, Hussain MM, Kluepperberg U, Norin AJ, Akman HO, Özçelik T, Oa Batuman (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294. doi:10.​1182/​blood-200406-2101 PubMedCrossRef
117.
Zurück zum Zitat Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, Sacco A, Glavey S, Shi J, Reagan MR, Prosper F, Bellone M, Chesi M, Bergsagel LP, Vacca A, Roccaro AM, Ghobrial IM (2016) Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30:1103–1115. doi:10.1038/leu.2016.3 PubMedCrossRef Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, Sacco A, Glavey S, Shi J, Reagan MR, Prosper F, Bellone M, Chesi M, Bergsagel LP, Vacca A, Roccaro AM, Ghobrial IM (2016) Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30:1103–1115. doi:10.​1038/​leu.​2016.​3 PubMedCrossRef
118.
Zurück zum Zitat Udi J, Wider D, Kleber M, Ihorst G, Muller A, Wasch R, Engelhardt M (2011) Early and mature endothelial progenitors and VEGFR2+ -cells in multiple myeloma: association with disease characteristics and variation in different cell compartments. Leuk Res 35:1265–1268. doi:10.1016/j.leukres.2011.05.021 PubMedCrossRef Udi J, Wider D, Kleber M, Ihorst G, Muller A, Wasch R, Engelhardt M (2011) Early and mature endothelial progenitors and VEGFR2+ -cells in multiple myeloma: association with disease characteristics and variation in different cell compartments. Leuk Res 35:1265–1268. doi:10.​1016/​j.​leukres.​2011.​05.​021 PubMedCrossRef
120.
Zurück zum Zitat Blix ES, Kildal AB, Bertelsen E, Waage A, Myklebust JH, Kolstad A, Husebekk A (2015) Content of endothelial progenitor cells in autologous stem cell grafts predict survival after transplantation for multiple myeloma. Biol Blood Marrow Transplant 21:840–847. doi:10.1016/j.bbmt.2014.12.027 PubMedCrossRef Blix ES, Kildal AB, Bertelsen E, Waage A, Myklebust JH, Kolstad A, Husebekk A (2015) Content of endothelial progenitor cells in autologous stem cell grafts predict survival after transplantation for multiple myeloma. Biol Blood Marrow Transplant 21:840–847. doi:10.​1016/​j.​bbmt.​2014.​12.​027 PubMedCrossRef
122.
Zurück zum Zitat Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, MaS Moore, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637PubMedPubMedCentralCrossRef Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, MaS Moore, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, Margioris AN (2007) Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta 379:31–35. doi:10.1016/j.cca.2006.11.024 PubMedCrossRef Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, Margioris AN (2007) Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta 379:31–35. doi:10.​1016/​j.​cca.​2006.​11.​024 PubMedCrossRef
124.
Zurück zum Zitat Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2002) Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 101:512–518. doi:10.1002/ijc.10642 PubMedCrossRef Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2002) Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 101:512–518. doi:10.​1002/​ijc.​10642 PubMedCrossRef
125.
Zurück zum Zitat Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18:976–982. doi:10.1038/sj.leu.2403331 PubMedCrossRef Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18:976–982. doi:10.​1038/​sj.​leu.​2403331 PubMedCrossRef
126.
Zurück zum Zitat Ribatti D, Basile A, Ruggieri S, Vacca A (2014) Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci 19:304–311. doi:10.2741/4209 CrossRef Ribatti D, Basile A, Ruggieri S, Vacca A (2014) Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci 19:304–311. doi:10.​2741/​4209 CrossRef
127.
Zurück zum Zitat Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M (1997) Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 90:1649–1655PubMed Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M (1997) Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 90:1649–1655PubMed
128.
Zurück zum Zitat Munemasa S, Sakai A, Kuroda Y, Okikawa Y, Katayama Y, Asaoku H, Kubo T, Miyakawa Y, Serikawa M, Sasaki T, Kimura A (2007) Connective tissue growth factor is an indicator of bone involvement in multiple myeloma, but matrix metalloproteinase-9 is not. Br J Haematol 139:41–50. doi:10.1111/j.1365-2141.2007.06721.x PubMedCrossRef Munemasa S, Sakai A, Kuroda Y, Okikawa Y, Katayama Y, Asaoku H, Kubo T, Miyakawa Y, Serikawa M, Sasaki T, Kimura A (2007) Connective tissue growth factor is an indicator of bone involvement in multiple myeloma, but matrix metalloproteinase-9 is not. Br J Haematol 139:41–50. doi:10.​1111/​j.​1365-2141.​2007.​06721.​x PubMedCrossRef
129.
Zurück zum Zitat Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91:2305–2309PubMedPubMedCentralCrossRef Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91:2305–2309PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2 m(null) mice. Leukemia 16:1992–2003. doi:10.1038/sj.leu.2402684 PubMedCrossRef Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2 m(null) mice. Leukemia 16:1992–2003. doi:10.​1038/​sj.​leu.​2402684 PubMedCrossRef
133.
Zurück zum Zitat Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG, Proia A, Terjung RL, Peters KG (2006) Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res 69:925–935. doi:10.1016/j.cardiores.2005.12.005 PubMedCrossRef Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG, Proia A, Terjung RL, Peters KG (2006) Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res 69:925–935. doi:10.​1016/​j.​cardiores.​2005.​12.​005 PubMedCrossRef
134.
Zurück zum Zitat Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, Broek IV, Fujii N, Tamamura H, Van Camp B, Vanderkerken K (2006) The involvement of stromal derived factor 1α in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91:605–612PubMed Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, Broek IV, Fujii N, Tamamura H, Van Camp B, Vanderkerken K (2006) The involvement of stromal derived factor 1α in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91:605–612PubMed
135.
Zurück zum Zitat Asri A, Sabour J, Atashi A, Soleimani M (2016) Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1A/CXCR4 axis. EXCLI J 2016:134–143. doi:10.17179/excli2014-585 Asri A, Sabour J, Atashi A, Soleimani M (2016) Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1A/CXCR4 axis. EXCLI J 2016:134–143. doi:10.​17179/​excli2014-585
136.
Zurück zum Zitat Lu A, Wang L, Qian L (2015) The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int 39:484–490. doi:10.1002/cbin.10405 PubMedCrossRef Lu A, Wang L, Qian L (2015) The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int 39:484–490. doi:10.​1002/​cbin.​10405 PubMedCrossRef
137.
Zurück zum Zitat Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135PubMedPubMedCentralCrossRef Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Martin SK, Dewar AL, Farrugia AN, Horvath N, Gronthos S, To LB, Zannettino AC (2006) Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res 12:6973–6977. doi:10.1158/1078-0432.CCR-06-0323 PubMedCrossRef Martin SK, Dewar AL, Farrugia AN, Horvath N, Gronthos S, To LB, Zannettino AC (2006) Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res 12:6973–6977. doi:10.​1158/​1078-0432.​CCR-06-0323 PubMedCrossRef
140.
141.
143.
Zurück zum Zitat Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497. doi:10.1096/fj.05-5137fje PubMedCrossRef Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497. doi:10.​1096/​fj.​05-5137fje PubMedCrossRef
144.
Zurück zum Zitat Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Ma Moore, Ka Hajjar, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi:10.1038/nm1101-1194 PubMedCrossRef Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Ma Moore, Ka Hajjar, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi:10.​1038/​nm1101-1194 PubMedCrossRef
145.
Zurück zum Zitat Valkovic T, Babarovic E, Lucin K, Stifter S, Aralica M, Pecanic S, Seili-Bekafigo I, Duletic-Nacinovic A, Nemet D, Jonjic N (2014) Plasma levels of osteopontin and vascular endothelial growth factor in association with clinical features and parameters of tumor burden in patients with multiple myeloma. Biomed Res Int 2014:513170. doi:10.1155/2014/513170 PubMedPubMedCentralCrossRef Valkovic T, Babarovic E, Lucin K, Stifter S, Aralica M, Pecanic S, Seili-Bekafigo I, Duletic-Nacinovic A, Nemet D, Jonjic N (2014) Plasma levels of osteopontin and vascular endothelial growth factor in association with clinical features and parameters of tumor burden in patients with multiple myeloma. Biomed Res Int 2014:513170. doi:10.​1155/​2014/​513170 PubMedPubMedCentralCrossRef
147.
148.
Zurück zum Zitat Brito AB, Lourenco GJ, Oliveira GB, De Souza CA, Vassallo J, Lima CS (2014) Associations of VEGF and VEGFR2 polymorphisms with increased risk and aggressiveness of multiple myeloma. Ann Hematol 93:1363–1369. doi:10.1007/s00277-014-2062-8 PubMed Brito AB, Lourenco GJ, Oliveira GB, De Souza CA, Vassallo J, Lima CS (2014) Associations of VEGF and VEGFR2 polymorphisms with increased risk and aggressiveness of multiple myeloma. Ann Hematol 93:1363–1369. doi:10.​1007/​s00277-014-2062-8 PubMed
149.
Zurück zum Zitat Vacca A, Loreto MD, Ribatti D, Di Stefano R, Gadaleta-Caldarola Iodice G, Caloro D, Dammacco F (1995) Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-I, and CD44. Am J Hematol 50:9–14. doi:10.1002/ajh.2830500103 PubMedCrossRef Vacca A, Loreto MD, Ribatti D, Di Stefano R, Gadaleta-Caldarola Iodice G, Caloro D, Dammacco F (1995) Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-I, and CD44. Am J Hematol 50:9–14. doi:10.​1002/​ajh.​2830500103 PubMedCrossRef
150.
151.
152.
Zurück zum Zitat Wang YD, Hu Y, Sun CY, Wang HF (2008) Role of multiple myeloma cells on normal endothelial cells in co-culture system. Zhonghua Xue Ye Xue Za Zhi 29:658–661PubMed Wang YD, Hu Y, Sun CY, Wang HF (2008) Role of multiple myeloma cells on normal endothelial cells in co-culture system. Zhonghua Xue Ye Xue Za Zhi 29:658–661PubMed
157.
Zurück zum Zitat Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112PubMed Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112PubMed
158.
Zurück zum Zitat Li B, Bai W, Sun P, Zhou B, Hu B, Ying J (2015) The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J Interferon Cytokine Res 35:23–31. doi:10.1089/jir.2014.0004 PubMedCrossRef Li B, Bai W, Sun P, Zhou B, Hu B, Ying J (2015) The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J Interferon Cytokine Res 35:23–31. doi:10.​1089/​jir.​2014.​0004 PubMedCrossRef
159.
Zurück zum Zitat Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, K-i Sasaki, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835. doi:10.1084/jem.20042097 PubMedPubMedCentralCrossRef Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, K-i Sasaki, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835. doi:10.​1084/​jem.​20042097 PubMedPubMedCentralCrossRef
161.
162.
Zurück zum Zitat Guo S, Yu L, Cheng Y, Li C, Zhang J, An J, Wang H, Yan B, Zhan T, Cao Y, Zheng H, Li Z (2012) PDGFRβ triggered by bFGF promotes the proliferation and migration of endothelial progenitor cells via p-ERK signalling. Cell Biol Int 36:945–950. doi:10.1042/CBI20110657 PubMedCrossRef Guo S, Yu L, Cheng Y, Li C, Zhang J, An J, Wang H, Yan B, Zhan T, Cao Y, Zheng H, Li Z (2012) PDGFRβ triggered by bFGF promotes the proliferation and migration of endothelial progenitor cells via p-ERK signalling. Cell Biol Int 36:945–950. doi:10.​1042/​CBI20110657 PubMedCrossRef
163.
Zurück zum Zitat Wang H, Huang H, Yin Y, Deng M, Kang H, Huang L (2014) Platelet derived growth factor receptor β over-expression in endothelial progenitor cells promote reendothelialization after vascular injury. Zhonghua Xin Xue Guan Bing Za Zhi 42:214–218PubMed Wang H, Huang H, Yin Y, Deng M, Kang H, Huang L (2014) Platelet derived growth factor receptor β over-expression in endothelial progenitor cells promote reendothelialization after vascular injury. Zhonghua Xin Xue Guan Bing Za Zhi 42:214–218PubMed
164.
Zurück zum Zitat Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E (2005) Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol 204:948–955. doi:10.1002/jcp.20362 PubMedCrossRef Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E (2005) Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol 204:948–955. doi:10.​1002/​jcp.​20362 PubMedCrossRef
166.
Zurück zum Zitat Sufen G, Xianghong Y, Yongxia C, Qian P (2011) bFGF and PDGF-BB have a synergistic effect on the proliferation, migration and VEGF release of endothelial progenitor cells. Cell Biol Int 35:545–551. doi:10.1042/CBI20100401 PubMedCrossRef Sufen G, Xianghong Y, Yongxia C, Qian P (2011) bFGF and PDGF-BB have a synergistic effect on the proliferation, migration and VEGF release of endothelial progenitor cells. Cell Biol Int 35:545–551. doi:10.​1042/​CBI20100401 PubMedCrossRef
167.
Zurück zum Zitat Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367. doi:10.1158/0008-5472.CAN-07-0293 PubMedPubMedCentralCrossRef Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367. doi:10.​1158/​0008-5472.​CAN-07-0293 PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Coluccia AM, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A, Di Renzo N, Dammacco F, Tassone P, Ribatti D, Gambacorti-Passerini C, Vacca A (2008) Validation of PDGFRβ and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356. doi:10.1182/blood-2007-10-116590 PubMedCrossRef Coluccia AM, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A, Di Renzo N, Dammacco F, Tassone P, Ribatti D, Gambacorti-Passerini C, Vacca A (2008) Validation of PDGFRβ and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356. doi:10.​1182/​blood-2007-10-116590 PubMedCrossRef
170.
Zurück zum Zitat Torimura T, Iwamoto H, Nakamura T, Abe M, Ikezono Y, Wada F, Sakaue T, Masuda H, Hashimoto O, Koga H, Ueno T, Yano H (2016) Antiangiogenic and antitumor activities of aflibercept, a soluble VEGF receptor-1 and -2, in a mouse model of hepatocellular carcinoma. Neoplasia 18:413–424. doi:10.1016/j.neo.2016.05.001 PubMedPubMedCentralCrossRef Torimura T, Iwamoto H, Nakamura T, Abe M, Ikezono Y, Wada F, Sakaue T, Masuda H, Hashimoto O, Koga H, Ueno T, Yano H (2016) Antiangiogenic and antitumor activities of aflibercept, a soluble VEGF receptor-1 and -2, in a mouse model of hepatocellular carcinoma. Neoplasia 18:413–424. doi:10.​1016/​j.​neo.​2016.​05.​001 PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Y-y Baek, D-k Lee, Kim J, J-h Kim, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, K-s Ha, Y-g Kwon, Y-m Kim (2017) Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 8:11763–11777. doi:10.18632/oncotarget.14343 Y-y Baek, D-k Lee, Kim J, J-h Kim, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, K-s Ha, Y-g Kwon, Y-m Kim (2017) Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 8:11763–11777. doi:10.​18632/​oncotarget.​14343
172.
Zurück zum Zitat Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O’Donnell MR, Mohrbacher AF, Forman SJ, Frankel P, Chen HX, Doroshow JH, Gandara DR (2011) Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 154:533–535. doi:10.1111/j.1365-2141.2011.08623.x PubMedPubMedCentralCrossRef Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O’Donnell MR, Mohrbacher AF, Forman SJ, Frankel P, Chen HX, Doroshow JH, Gandara DR (2011) Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 154:533–535. doi:10.​1111/​j.​1365-2141.​2011.​08623.​x PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat White D, Kassim A, Bhaskar B, Yi J, Wamstad K, Paton VE (2012) Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer Metastasis Rev 119:339–347. doi:10.1002/cncr.27745 White D, Kassim A, Bhaskar B, Yi J, Wamstad K, Paton VE (2012) Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer Metastasis Rev 119:339–347. doi:10.​1002/​cncr.​27745
174.
Zurück zum Zitat Podar K, Tonon G, Sattler M, Tai Y-T, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103:19478–19483. doi:10.1073/pnas.0609329103 PubMedPubMedCentralCrossRef Podar K, Tonon G, Sattler M, Tai Y-T, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103:19478–19483. doi:10.​1073/​pnas.​0609329103 PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820. doi:10.1182/blood-2009-02-207209 PubMedCrossRef Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820. doi:10.​1182/​blood-2009-02-207209 PubMedCrossRef
176.
Zurück zum Zitat Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95. doi:10.1158/1078-0432.CCR-0221-3 PubMedCrossRef Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95. doi:10.​1158/​1078-0432.​CCR-0221-3 PubMedCrossRef
177.
Zurück zum Zitat Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP, Eisenhauer E (2006) A phase II study of ZD6474 (ZactimaTM), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs 24:529–535. doi:10.1007/s10637-006-9022-7 PubMed Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP, Eisenhauer E (2006) A phase II study of ZD6474 (ZactimaTM), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs 24:529–535. doi:10.​1007/​s10637-006-9022-7 PubMed
178.
Zurück zum Zitat Azab AK, Runnels JM, Pitsillides C, A-s Moreau, Azab F, Leuleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113:4341–4351. doi:10.1182/blood-2008-10-186668 PubMedPubMedCentralCrossRef Azab AK, Runnels JM, Pitsillides C, A-s Moreau, Azab F, Leuleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113:4341–4351. doi:10.​1182/​blood-2008-10-186668 PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao J, Cui B (2007) AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. Cardiovasc Pharmacol 50:61–67. doi:10.1097/FJC.0b013e3180587e4d CrossRef Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao J, Cui B (2007) AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. Cardiovasc Pharmacol 50:61–67. doi:10.​1097/​FJC.​0b013e3180587e4d​ CrossRef
180.
Zurück zum Zitat Wichert S, Juliusson G, Johansson Å, Sonesson E, Teige I, Wickenberg AT, Frendeus B, Korsgren M, Hansson M (2017) A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS ONE 12:e0171205. doi:10.1371/journal.pone.0171205 PubMedPubMedCentralCrossRef Wichert S, Juliusson G, Johansson Å, Sonesson E, Teige I, Wickenberg AT, Frendeus B, Korsgren M, Hansson M (2017) A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS ONE 12:e0171205. doi:10.​1371/​journal.​pone.​0171205 PubMedPubMedCentralCrossRef
Metadaten
Titel
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall
verfasst von
Maria Margarida Tenreiro
Maria Leonor Correia
Maria Alexandra Brito
Publikationsdatum
24.08.2017
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 4/2017
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-017-9571-8

Weitere Artikel der Ausgabe 4/2017

Angiogenesis 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.