Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2016

21.01.2016 | Review

Endothelial Repair and Regeneration Following Intimal Injury

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Coronary artery intervention using device implants significantly reduce the risk of restenosis and the need for revascularization but are associated with endothelial denudation and impaired function. This may be due to incomplete endothelial recovery as a result of intimal injury, presence of polymer and/or high antiproliferative drug accumulation in the intima. The permanent presence of a metal prosthesis or polymer may impair the proliferation of resident endothelial cells to cover empty areas. Attention has focused on the robust replenishment of endothelial monolayer by recruitment of circulating endothelial progenitor cells derived from the bone marrow to areas of endothelial injury. The balance between endothelial damage and repair is critical for the maintenance of intimal integrity, function, and prevention of thrombotic complications. This review will discuss on the aftereffects of intravascular device implants on endothelial injury and the pathways involved in endothelial repair and regeneration with an emphasis on endothelial progenitor cells.
Literatur
1.
Zurück zum Zitat Massberg, S., Schulz, C., & Gawaz, M. (2003). Role of platelets in the pathophysiology of acute coronary syndrome. Seminars in Vascular Medicine, 3(2), 147–162.CrossRefPubMed Massberg, S., Schulz, C., & Gawaz, M. (2003). Role of platelets in the pathophysiology of acute coronary syndrome. Seminars in Vascular Medicine, 3(2), 147–162.CrossRefPubMed
2.
Zurück zum Zitat Jackson, S. P., Nesbitt, W. S., & Kulkarni, S. (2003). Signaling events underlying thrombus formation. Journal of Thrombosis and Haemostasis, 1(7), 1602–1612.CrossRefPubMed Jackson, S. P., Nesbitt, W. S., & Kulkarni, S. (2003). Signaling events underlying thrombus formation. Journal of Thrombosis and Haemostasis, 1(7), 1602–1612.CrossRefPubMed
3.
Zurück zum Zitat Konstantinides, S., Schäfer, K., Thinnes, T., & Loskutoff, D. J. (2001). Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation, 103(4), 576–583.CrossRefPubMed Konstantinides, S., Schäfer, K., Thinnes, T., & Loskutoff, D. J. (2001). Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation, 103(4), 576–583.CrossRefPubMed
4.
Zurück zum Zitat Koppara, T., Cheng, Q., Yahagi, K., Mori, H., Sanchez, O. D., Feygin, J., et al. (2015). Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circulation. Cardiovascular Interventions, 8(6), e002427.CrossRefPubMed Koppara, T., Cheng, Q., Yahagi, K., Mori, H., Sanchez, O. D., Feygin, J., et al. (2015). Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circulation. Cardiovascular Interventions, 8(6), e002427.CrossRefPubMed
5.
Zurück zum Zitat Tesfamariam, B. (2008). Platelet function in intravascular device implant-induced intimal injury. Cardiovascular Revascularization Medicine, 9(2), 78–87.CrossRefPubMed Tesfamariam, B. (2008). Platelet function in intravascular device implant-induced intimal injury. Cardiovascular Revascularization Medicine, 9(2), 78–87.CrossRefPubMed
6.
Zurück zum Zitat Otsuka, F., Finn, A. V., Yazdani, S. K., Nakano, M., Kolodgie, F. D., & Virmani, R. (2012). The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology, 9(8), 439–453.CrossRefPubMed Otsuka, F., Finn, A. V., Yazdani, S. K., Nakano, M., Kolodgie, F. D., & Virmani, R. (2012). The importance of the endothelium in atherothrombosis and coronary stenting. Nature Reviews Cardiology, 9(8), 439–453.CrossRefPubMed
7.
Zurück zum Zitat Ballermann, B. J. (1998). Endothelial cell activation. Kidney International, 53(6), 1810–1826.CrossRefPubMed Ballermann, B. J. (1998). Endothelial cell activation. Kidney International, 53(6), 1810–1826.CrossRefPubMed
8.
Zurück zum Zitat Muldowney, J. A., 3rd, Stringham, J. R., Levy, S. E., Gleaves, L. A., Eren, M., Piana, R. N., et al. (2007). Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(2), 400–406.CrossRefPubMed Muldowney, J. A., 3rd, Stringham, J. R., Levy, S. E., Gleaves, L. A., Eren, M., Piana, R. N., et al. (2007). Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(2), 400–406.CrossRefPubMed
9.
Zurück zum Zitat Ara, J., Mirapeix, E., Arrizabalaga, P., Rodriguez, R., Ascaso, C., Abellana, R., et al. (2001). Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrology, Dialysis, Transplantation, 16, 276–285.CrossRefPubMed Ara, J., Mirapeix, E., Arrizabalaga, P., Rodriguez, R., Ascaso, C., Abellana, R., et al. (2001). Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrology, Dialysis, Transplantation, 16, 276–285.CrossRefPubMed
10.
Zurück zum Zitat Cai, H. (2005). NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circulation Research, 96(8), 818–822.CrossRefPubMed Cai, H. (2005). NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circulation Research, 96(8), 818–822.CrossRefPubMed
11.
Zurück zum Zitat Blum, A., Schneider, D. J., Sobel, B. E., & Dauerman, H. L. (2004). Endothelial dysfunction and inflammation after percutaneous coronary intervention. American Journal of Cardiology, 94(11), 1420–1423.CrossRefPubMed Blum, A., Schneider, D. J., Sobel, B. E., & Dauerman, H. L. (2004). Endothelial dysfunction and inflammation after percutaneous coronary intervention. American Journal of Cardiology, 94(11), 1420–1423.CrossRefPubMed
12.
Zurück zum Zitat Hofma, S. H., van der Giessen, W. J., van Dalen, B. M., Lemos, P. A., McFadden, E. P., Sianos, G., et al. (2006). Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. European Heart Journal, 27(2), 166–170.CrossRefPubMed Hofma, S. H., van der Giessen, W. J., van Dalen, B. M., Lemos, P. A., McFadden, E. P., Sianos, G., et al. (2006). Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. European Heart Journal, 27(2), 166–170.CrossRefPubMed
13.
Zurück zum Zitat Togni, M., Windecker, S., Cocchia, R., Wenaweser, P., Cook, S., Billinger, M., et al. (2005). Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. Journal of the American College of Cardiology, 46(2), 231–236.CrossRefPubMed Togni, M., Windecker, S., Cocchia, R., Wenaweser, P., Cook, S., Billinger, M., et al. (2005). Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. Journal of the American College of Cardiology, 46(2), 231–236.CrossRefPubMed
14.
Zurück zum Zitat Pendyala, L. K., Li, J., Shinke, T., Geva, S., Yin, X., Chen, J. P., et al. (2009). Endothelium-dependent vasomotor dysfunction in pig coronary arteries with paclitaxel-eluting stents is associated with inflammation and oxidative stress. JACC Cardiovascular Interventions, 2(3), 253–262.CrossRefPubMed Pendyala, L. K., Li, J., Shinke, T., Geva, S., Yin, X., Chen, J. P., et al. (2009). Endothelium-dependent vasomotor dysfunction in pig coronary arteries with paclitaxel-eluting stents is associated with inflammation and oxidative stress. JACC Cardiovascular Interventions, 2(3), 253–262.CrossRefPubMed
15.
Zurück zum Zitat Tesfamariam, B. (2008). Drug release kinetics from stent device-based delivery systems. Journal of Cardiovascular Pharmacology, 51(2), 118–125.CrossRefPubMed Tesfamariam, B. (2008). Drug release kinetics from stent device-based delivery systems. Journal of Cardiovascular Pharmacology, 51(2), 118–125.CrossRefPubMed
16.
Zurück zum Zitat Stähli, B. E., Camici, G. G., Steffel, J., Akhmedov, A., Shojaati, K., Graber, M., et al. (2006). Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circulation Research, 99(2), 149–155.CrossRefPubMed Stähli, B. E., Camici, G. G., Steffel, J., Akhmedov, A., Shojaati, K., Graber, M., et al. (2006). Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation. Circulation Research, 99(2), 149–155.CrossRefPubMed
17.
Zurück zum Zitat Holy, E. W., Jakob, P., Eickner, T., Camici, G. G., Beer, J. H., Akhmedov, A., et al. (2014). PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. European Heart Journal, 35(12), 808–820.CrossRefPubMed Holy, E. W., Jakob, P., Eickner, T., Camici, G. G., Beer, J. H., Akhmedov, A., et al. (2014). PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. European Heart Journal, 35(12), 808–820.CrossRefPubMed
18.
Zurück zum Zitat Ma, Q., Zhou, Y., Nie, X., Yu, M., Gao, F., Wang, Z., et al. (2012). Rapamycin affects tissue plasminogen activator and plasminogen activator inhibitor I expression: a potential prothrombotic mechanism of drug-eluting stents. Angiology, 63(5), 330–335.CrossRefPubMed Ma, Q., Zhou, Y., Nie, X., Yu, M., Gao, F., Wang, Z., et al. (2012). Rapamycin affects tissue plasminogen activator and plasminogen activator inhibitor I expression: a potential prothrombotic mechanism of drug-eluting stents. Angiology, 63(5), 330–335.CrossRefPubMed
19.
Zurück zum Zitat Togni, M., Räber, L., Cocchia, R., Wenaweser, P., Cook, S., Windecker, S., et al. (2007). Local vascular dysfunction after coronary paclitaxel-eluting stent implantation. International Journal of Cardiology, 120(2), 212–220.CrossRefPubMed Togni, M., Räber, L., Cocchia, R., Wenaweser, P., Cook, S., Windecker, S., et al. (2007). Local vascular dysfunction after coronary paclitaxel-eluting stent implantation. International Journal of Cardiology, 120(2), 212–220.CrossRefPubMed
20.
Zurück zum Zitat Jabs, A., Göbel, S., Wenzel, P., Kleschyov, A. L., Hortmann, M., Oelze, M., et al. (2008). Sirolimus-induced vascular dysfunction: increased mitochondrial and nicotinamide adenosine dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation. Journal of the American College of Cardiology, 51(22), 2130–2138.CrossRefPubMed Jabs, A., Göbel, S., Wenzel, P., Kleschyov, A. L., Hortmann, M., Oelze, M., et al. (2008). Sirolimus-induced vascular dysfunction: increased mitochondrial and nicotinamide adenosine dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation. Journal of the American College of Cardiology, 51(22), 2130–2138.CrossRefPubMed
21.
Zurück zum Zitat Camici, G. G., Steffel, J., Amanovic, I., Breitenstein, A., Baldinger, J., Keller, S., et al. (2010). Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents. European Heart Journal, 31(2), 236–242.CrossRefPubMed Camici, G. G., Steffel, J., Amanovic, I., Breitenstein, A., Baldinger, J., Keller, S., et al. (2010). Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents. European Heart Journal, 31(2), 236–242.CrossRefPubMed
22.
Zurück zum Zitat Liu, H. T., Li, F., Wang, W. Y., Li, X. J., Liu, Y. M., Wang, R. A., et al. (2010). Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells. Texas Heart Institute Journal, 37(2), 194–201.PubMedPubMedCentral Liu, H. T., Li, F., Wang, W. Y., Li, X. J., Liu, Y. M., Wang, R. A., et al. (2010). Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells. Texas Heart Institute Journal, 37(2), 194–201.PubMedPubMedCentral
23.
Zurück zum Zitat Potnis, P. A., Tesfamariam, B., & Wood, S. C. (2011). Induction of nicotinamide-adenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents. Journal of Cardiovascular Pharmacology, 57(6), 712–720.CrossRefPubMed Potnis, P. A., Tesfamariam, B., & Wood, S. C. (2011). Induction of nicotinamide-adenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents. Journal of Cardiovascular Pharmacology, 57(6), 712–720.CrossRefPubMed
24.
Zurück zum Zitat Nakano, M., Yahagi, K., Otsuka, F., Sakakura, K., Finn, A. V., Kutys, R., et al. (2014). Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. Journal of the American College of Cardiology, 63, 2510–2520.CrossRefPubMed Nakano, M., Yahagi, K., Otsuka, F., Sakakura, K., Finn, A. V., Kutys, R., et al. (2014). Causes of early stent thrombosis in patients presenting with acute coronary syndrome: an ex vivo human autopsy study. Journal of the American College of Cardiology, 63, 2510–2520.CrossRefPubMed
25.
Zurück zum Zitat Wang, X., Zachman, A. L., Chun, Y. W., Shen, F. W., Hwang, Y. S., & Sung, H. J. (2014). Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent. International Journal of Cardiology, 174(3), 688–695.CrossRefPubMedPubMedCentral Wang, X., Zachman, A. L., Chun, Y. W., Shen, F. W., Hwang, Y. S., & Sung, H. J. (2014). Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent. International Journal of Cardiology, 174(3), 688–695.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Nührenberg, T. G., Voisard, R., Fahlisch, F., Rudelius, M., Braun, J., Gschwend, J., et al. (2005). Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB Journal, 19(2), 246–248.PubMed Nührenberg, T. G., Voisard, R., Fahlisch, F., Rudelius, M., Braun, J., Gschwend, J., et al. (2005). Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB Journal, 19(2), 246–248.PubMed
27.
Zurück zum Zitat van Beusekom, H. M., Sorop, O., van den Heuvel, M., Onuma, Y., Duncker, D. J., Danser, A. H., et al. (2010). Endothelial function rather than endothelial restoration is altered in paclitaxel- as compared to bare metal-, sirolimus and tacrolimus-eluting stents. EuroIntervention, 6(1), 117–125.CrossRefPubMed van Beusekom, H. M., Sorop, O., van den Heuvel, M., Onuma, Y., Duncker, D. J., Danser, A. H., et al. (2010). Endothelial function rather than endothelial restoration is altered in paclitaxel- as compared to bare metal-, sirolimus and tacrolimus-eluting stents. EuroIntervention, 6(1), 117–125.CrossRefPubMed
28.
Zurück zum Zitat Nakazawa, G., Nakano, M., Otsuka, F., Wilcox, J. N., Melder, R., Pruitt, S., et al. (2011). Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circulation. Cardiovascular Interventions, 4(1), 38–46.CrossRefPubMed Nakazawa, G., Nakano, M., Otsuka, F., Wilcox, J. N., Melder, R., Pruitt, S., et al. (2011). Evaluation of polymer-based comparator drug-eluting stents using a rabbit model of iliac artery atherosclerosis. Circulation. Cardiovascular Interventions, 4(1), 38–46.CrossRefPubMed
29.
Zurück zum Zitat Otsuka, F., Byrne, R. A., Yahagi, K., Mori, H., Ladich, E., Fowler, D. R., et al. (2015). Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. European Heart Journal, 36(32), 2147–2159.CrossRefPubMed Otsuka, F., Byrne, R. A., Yahagi, K., Mori, H., Ladich, E., Fowler, D. R., et al. (2015). Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. European Heart Journal, 36(32), 2147–2159.CrossRefPubMed
30.
Zurück zum Zitat Joner, M., Nakazawa, G., Finn, A. V., Quee, S. C., Coleman, L., Acampado, E., et al. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342.CrossRefPubMed Joner, M., Nakazawa, G., Finn, A. V., Quee, S. C., Coleman, L., Acampado, E., et al. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342.CrossRefPubMed
31.
32.
Zurück zum Zitat Torisu, T., Torisu, K., Lee, I. H., Liu, J., Malide, D., Combs, C. A., et al. (2013). Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nature Medicine, 19(10), 1281–1287.CrossRefPubMedPubMedCentral Torisu, T., Torisu, K., Lee, I. H., Liu, J., Malide, D., Combs, C. A., et al. (2013). Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nature Medicine, 19(10), 1281–1287.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Hayashi, S., Yamamoto, A., You, F., Yamashita, K., Ikegame, Y., Tawada, M., et al. (2009). The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. American Journal of Pathology, 175(5), 2226–2234.CrossRefPubMedPubMedCentral Hayashi, S., Yamamoto, A., You, F., Yamashita, K., Ikegame, Y., Tawada, M., et al. (2009). The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. American Journal of Pathology, 175(5), 2226–2234.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Barilli, A., Visigalli, R., Sala, R., Gazzola, G. C., Parolari, A., Tremoli, E., et al. (2008). In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovascular Research, 78, 563–571.CrossRefPubMed Barilli, A., Visigalli, R., Sala, R., Gazzola, G. C., Parolari, A., Tremoli, E., et al. (2008). In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovascular Research, 78, 563–571.CrossRefPubMed
36.
Zurück zum Zitat Guo, F., Li, X., Peng, J., Tang, Y., Yang, Q., Liu, L., et al. (2014). Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Annals of Biomedical Engineering, 42(9), 1978–1988.CrossRefPubMed Guo, F., Li, X., Peng, J., Tang, Y., Yang, Q., Liu, L., et al. (2014). Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Annals of Biomedical Engineering, 42(9), 1978–1988.CrossRefPubMed
37.
Zurück zum Zitat Perry, T. E., Song, M., Despres, D. J., Kim, S. M., San, H., Yu, Z. X., et al. (2009). Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovascular Research, 84, 317–325.CrossRefPubMedPubMedCentral Perry, T. E., Song, M., Despres, D. J., Kim, S. M., San, H., Yu, Z. X., et al. (2009). Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovascular Research, 84, 317–325.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., et al. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thrombosis and Haemostasis, 93(2), 228–235.PubMed Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., et al. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thrombosis and Haemostasis, 93(2), 228–235.PubMed
39.
Zurück zum Zitat Quilici, J., Banzet, N., Paule, P., Meynard, J. B., Mutin, M., Bonnet, J. L., et al. (2004). Circulating endothelial cell count as a diagnostic marker for non-ST-elevation acute coronary syndromes. Circulation, 110(12), 1586–1591.CrossRefPubMed Quilici, J., Banzet, N., Paule, P., Meynard, J. B., Mutin, M., Bonnet, J. L., et al. (2004). Circulating endothelial cell count as a diagnostic marker for non-ST-elevation acute coronary syndromes. Circulation, 110(12), 1586–1591.CrossRefPubMed
40.
41.
Zurück zum Zitat Szmitko, P. E., Fedak, P. W., Weisel, R. D., Stewart, D. J., Kutryk, M. J., & Verma, S. (2003). Endothelial progenitor cells: New hope for a broken heart. Circulation, 107(24), 3093–3100.CrossRefPubMed Szmitko, P. E., Fedak, P. W., Weisel, R. D., Stewart, D. J., Kutryk, M. J., & Verma, S. (2003). Endothelial progenitor cells: New hope for a broken heart. Circulation, 107(24), 3093–3100.CrossRefPubMed
42.
Zurück zum Zitat Bonello, L., Harhouri, K., Baumstarck, K., Arnaud, L., Lesavre, N., Piot, C., et al. (2012). Mobilization of CD34+ KDR+ endothelial progenitor cells predicts target lesion revascularization. Journal of Thrombosis and Haemostasis, 10(9), 1906–1913.CrossRefPubMed Bonello, L., Harhouri, K., Baumstarck, K., Arnaud, L., Lesavre, N., Piot, C., et al. (2012). Mobilization of CD34+ KDR+ endothelial progenitor cells predicts target lesion revascularization. Journal of Thrombosis and Haemostasis, 10(9), 1906–1913.CrossRefPubMed
43.
Zurück zum Zitat Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49(7), 741–752.CrossRefPubMed Shantsila, E., Watson, T., & Lip, G. Y. (2007). Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology, 49(7), 741–752.CrossRefPubMed
44.
Zurück zum Zitat Ben Shoshan, J., & George, J. (2007). Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials. Pharmacology and Therapeutics, 115(1), 25–36.CrossRefPubMed Ben Shoshan, J., & George, J. (2007). Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials. Pharmacology and Therapeutics, 115(1), 25–36.CrossRefPubMed
45.
Zurück zum Zitat Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9(6), 702–712.CrossRefPubMed Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9(6), 702–712.CrossRefPubMed
46.
Zurück zum Zitat Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353(10), 999–1007.CrossRefPubMed Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353(10), 999–1007.CrossRefPubMed
47.
Zurück zum Zitat Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348(7), 593–600.CrossRefPubMed Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348(7), 593–600.CrossRefPubMed
48.
Zurück zum Zitat Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95(4), 343–353.CrossRefPubMed Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95(4), 343–353.CrossRefPubMed
49.
Zurück zum Zitat Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Medicine, 8(4), 403–409.CrossRefPubMed Sata, M., Saiura, A., Kunisato, A., Tojo, A., Okada, S., Tokuhisa, T., et al. (2002). Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Medicine, 8(4), 403–409.CrossRefPubMed
50.
Zurück zum Zitat Larsen, K., Cheng, C., Tempel, D., Parker, S., Yazdani, S., den Dekker, W. K., et al. (2012). Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model. European Heart Journal, 33(1), 120–128.CrossRefPubMedPubMedCentral Larsen, K., Cheng, C., Tempel, D., Parker, S., Yazdani, S., den Dekker, W. K., et al. (2012). Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model. European Heart Journal, 33(1), 120–128.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Takabatake, S., Hayashi, K., Nakanishi, C., Hao, H., Sakata, K., Kawashiri, M. A., et al. (2014). Vascular endothelial growth factor bound stents: application of in situ capture technology of circulating endothelial progenitor cells in porcine coronary model. Journal of Interventional Cardiology, 27(1), 63–72.CrossRefPubMed Takabatake, S., Hayashi, K., Nakanishi, C., Hao, H., Sakata, K., Kawashiri, M. A., et al. (2014). Vascular endothelial growth factor bound stents: application of in situ capture technology of circulating endothelial progenitor cells in porcine coronary model. Journal of Interventional Cardiology, 27(1), 63–72.CrossRefPubMed
52.
Zurück zum Zitat Pernagallo, S., Tura, O., Wu, M., Samuel, K., Diaz-Mochon, J. J., Hansen, A., et al. (2012). Novel biopolymers to enhance endothelialization of intra-vascular devices. Adv Healthc Mater, 1(5), 646–656.CrossRefPubMed Pernagallo, S., Tura, O., Wu, M., Samuel, K., Diaz-Mochon, J. J., Hansen, A., et al. (2012). Novel biopolymers to enhance endothelialization of intra-vascular devices. Adv Healthc Mater, 1(5), 646–656.CrossRefPubMed
53.
Zurück zum Zitat Blindt, R., Vogt, F., Astafieva, I., Fach, C., Hristov, M., Krott, N., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47(9), 1786–1795.CrossRefPubMed Blindt, R., Vogt, F., Astafieva, I., Fach, C., Hristov, M., Krott, N., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47(9), 1786–1795.CrossRefPubMed
54.
Zurück zum Zitat Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.CrossRefPubMedPubMedCentral Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Paradisi, G., Bracaglia, M., Basile, F., Di'Ipolito, S., Di Nicuolo, F., Ianniello, F., et al. (2012). Effect of pravastatin on endothelial function and endothelial progenitor cells in healthy postmenopausal women. Clinical and Experimental Obstetrics and Gynecology, 39(2), 153–159.PubMed Paradisi, G., Bracaglia, M., Basile, F., Di'Ipolito, S., Di Nicuolo, F., Ianniello, F., et al. (2012). Effect of pravastatin on endothelial function and endothelial progenitor cells in healthy postmenopausal women. Clinical and Experimental Obstetrics and Gynecology, 39(2), 153–159.PubMed
56.
Zurück zum Zitat Baran, Ç., Durdu, S., Dalva, K., Zaim, Ç., Dogan, A., Ocakoglu, G., et al. (2012). Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial. Stem Cell Reviews, 8(3), 963–971.CrossRefPubMed Baran, Ç., Durdu, S., Dalva, K., Zaim, Ç., Dogan, A., Ocakoglu, G., et al. (2012). Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial. Stem Cell Reviews, 8(3), 963–971.CrossRefPubMed
57.
Zurück zum Zitat Walter, D. H., Zeiher, A. M., & Dimmeler, S. (2004). Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary Artery Disease, 15(5), 235–242.CrossRefPubMed Walter, D. H., Zeiher, A. M., & Dimmeler, S. (2004). Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary Artery Disease, 15(5), 235–242.CrossRefPubMed
58.
Zurück zum Zitat Sugiura, T., Kondo, T., Kureishi-Bando, Y., Numaguchi, Y., Yoshida, O., Dohi, Y., et al. (2008). Nifedipine improves endothelial function: role of endothelial progenitor cells. Hypertension, 52(3), 491–498.CrossRefPubMed Sugiura, T., Kondo, T., Kureishi-Bando, Y., Numaguchi, Y., Yoshida, O., Dohi, Y., et al. (2008). Nifedipine improves endothelial function: role of endothelial progenitor cells. Hypertension, 52(3), 491–498.CrossRefPubMed
59.
Zurück zum Zitat de Ciuceis, C., Pilu, A., Rizzoni, D., Porteri, E., Muiesan, M. L., Salvetti, M., et al. (2011). Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Pressure, 20(2), 77–83.CrossRefPubMed de Ciuceis, C., Pilu, A., Rizzoni, D., Porteri, E., Muiesan, M. L., Salvetti, M., et al. (2011). Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Pressure, 20(2), 77–83.CrossRefPubMed
60.
Zurück zum Zitat Yao, E. H., Fukuda, N., Matsumoto, T., Katakawa, M., Yamamoto, C., Han, Y., et al. (2008). Effects of the antioxidative blocker celiprolol on endothelial progenitor cells in hypertensive rats. American Journal of Hypertension, 21(9), 1062–1068.CrossRefPubMed Yao, E. H., Fukuda, N., Matsumoto, T., Katakawa, M., Yamamoto, C., Han, Y., et al. (2008). Effects of the antioxidative blocker celiprolol on endothelial progenitor cells in hypertensive rats. American Journal of Hypertension, 21(9), 1062–1068.CrossRefPubMed
61.
Zurück zum Zitat Santulli, G., Wronska, A., Uryu, K., Diacovo, T. G., Gao, M., Marx, S. O., et al. (2014). A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 124(9), 4102–4114.CrossRefPubMedPubMedCentral Santulli, G., Wronska, A., Uryu, K., Diacovo, T. G., Gao, M., Marx, S. O., et al. (2014). A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. Journal of Clinical Investigation, 124(9), 4102–4114.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Szmitko, P. E., Wang, C. H., Weisel, R. D., de Almeida, J. R., Anderson, T. J., & Verma, S. (2003). New markers of inflammation and endothelial cell activation: part I. Circulation, 108(16), 1917–1923.CrossRefPubMed Szmitko, P. E., Wang, C. H., Weisel, R. D., de Almeida, J. R., Anderson, T. J., & Verma, S. (2003). New markers of inflammation and endothelial cell activation: part I. Circulation, 108(16), 1917–1923.CrossRefPubMed
63.
Zurück zum Zitat Kozuka, K., Kohriyama, T., Nomura, E., Ikeda, J., Kajikawa, H., & Nakamura, S. (2002). Endothelial markers and adhesion molecules in acute ischemic stroke-sequential change and differences in stroke subtype. Atherosclerosis, 161, 161–168.CrossRefPubMed Kozuka, K., Kohriyama, T., Nomura, E., Ikeda, J., Kajikawa, H., & Nakamura, S. (2002). Endothelial markers and adhesion molecules in acute ischemic stroke-sequential change and differences in stroke subtype. Atherosclerosis, 161, 161–168.CrossRefPubMed
64.
Zurück zum Zitat Sabatier, F., Camoin-Jau, L., Anfosso, F., Sampol, J., & Dignat-George, F. (2009). Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. Journal of Cellular and Molecular Medicine, 13(3), 454–471.CrossRefPubMedPubMedCentral Sabatier, F., Camoin-Jau, L., Anfosso, F., Sampol, J., & Dignat-George, F. (2009). Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. Journal of Cellular and Molecular Medicine, 13(3), 454–471.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Kümpers, P., Hellpap, J., David, S., Horn, R., Leitolf, H., Haller, H., et al. (2009). Circulating angiopoietin-2 is a marker and potential mediator of endothelial cell detachment in ANCA-associated vasculitis with renal involvement. Nephrology, Dialysis, Transplantation, 24(6), 1845–1850.CrossRefPubMed Kümpers, P., Hellpap, J., David, S., Horn, R., Leitolf, H., Haller, H., et al. (2009). Circulating angiopoietin-2 is a marker and potential mediator of endothelial cell detachment in ANCA-associated vasculitis with renal involvement. Nephrology, Dialysis, Transplantation, 24(6), 1845–1850.CrossRefPubMed
66.
Zurück zum Zitat Vowinkel, T., Wood, K. C., Stokes, K. Y., Russell, J., Krieglstein, C. F., & Granger, D. N. (2006). Differential expression and regulation of murine CD40 in regional vascular beds. American Journal of Physiology Heart and Circulatory Physiology, 290(2), H631–639.CrossRefPubMed Vowinkel, T., Wood, K. C., Stokes, K. Y., Russell, J., Krieglstein, C. F., & Granger, D. N. (2006). Differential expression and regulation of murine CD40 in regional vascular beds. American Journal of Physiology Heart and Circulatory Physiology, 290(2), H631–639.CrossRefPubMed
67.
Zurück zum Zitat Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. Journal of the American Society of Hypertension, 6(2), 85–99.CrossRefPubMed Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. Journal of the American Society of Hypertension, 6(2), 85–99.CrossRefPubMed
Metadaten
Titel
Endothelial Repair and Regeneration Following Intimal Injury
Publikationsdatum
21.01.2016
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2016
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9677-1

Weitere Artikel der Ausgabe 2/2016

Journal of Cardiovascular Translational Research 2/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.