Skip to main content
main-content

01.11.2018 | Patient Facing Systems | Ausgabe 11/2018

Journal of Medical Systems 11/2018

Enhanced Computational Model for Gravitational Search Optimized Echo State Neural Networks Based Oral Cancer Detection

Zeitschrift:
Journal of Medical Systems > Ausgabe 11/2018
Autoren:
Mohammed Al-Ma’aitah, Ahmad Ali AlZubi
Wichtige Hinweise
This article is part of the Topical Collection on Patient Facing Systems

Abstract

The Clinical Oncology of American Society report in 2016 predicted deaths are increased upto 9570 due to oral cancer. This cancer occurs due to abnormal tissue growth in the oral cavity. This cancer has limited symptoms, so, it has been difficult to recognize in the early stages. To reduce the death rate of this oral cavity cancer, an automatic system has been developed by applying the optimization techniques in both image processing and machine learning techniques. Even though these methods are successfully recognizing the cancer, the detection accuracy is still one of the major issues because of complex oral tissue structure. So, this paper introduces the Gravitational Search Optimized Echo state neural networks for predicting the oral cancer with effective manner. Initially the X-ray images are collected from the oral cancer database which contains several noises that has to be eliminated with the help of the adaptive wiener filter. Then the affected part has been segmented with the help of the enhanced Markov Stimulated Annealing and the features are derived from segmented region. The derived features are analyzed with the help of the proposed classifier. The excellence of the oral cancer detection system is evaluated using simulation results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Nicht verpassen: e.Med bis 13. März 2019 100€ günstiger im ersten Jahr!

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2018

Journal of Medical Systems 11/2018 Zur Ausgabe