Skip to main content
Erschienen in: Tumor Biology 5/2016

01.12.2015 | Original Article

Enhanced Wnt signaling by methylation-mediated loss of SFRP2 promotes osteosarcoma cell invasion

verfasst von: Qiang Xiao, Yu Yang, Xuepu Zhang, Qing An

Erschienen in: Tumor Biology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Wnt signaling is essential for the initiation and progression of osteosarcoma (OS) tumors and is suppressed by the secreted frizzled-related proteins (SFRPs). The methylation-induced protein degradation reduces the activity of SFRPs and subsequently increases the activity of Wnt signaling. However, whether the methylation of SFRP2, a member of SFRPs, may be involved in the pathogenesis of OS is not known. Here, we investigated the expression levels of SFRP2 in OS specimens. We found that SFRP2 mRNA was significantly decreased and methylation of SFRP2 gene was significantly increased in malignant OS tumors as compared to the paired adjacent non-tumor tissue. Moreover, SFRP2 expression was significantly decreased in the malignant OS cell lines, SAOS2, MG63, and U2OS, but not in the primary osteoblast cells. The demethylation of SFRP2 gene by 5′-aza-deoxycytidine (5-aza-dCyd) in OS cell lines restored SFRP2 expression, at both mRNA and protein levels, and suppressed cell invasion. Furthermore, the demethylation of SFRP2 gene appeared to inhibit nuclear retention of a key Wnt signaling factor, β-catenin, in OS cell lines. Together, these data suggest that SFRP2 may function as an OS invasion suppressor by interfering with Wnt signaling, and the methylation of SFRP2 gene may promote pathogenesis of OS.
Literatur
1.
Zurück zum Zitat Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S. Frequent epigenetic inactivation of sfrp genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene. 2007;26:4699–713.CrossRefPubMed Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S. Frequent epigenetic inactivation of sfrp genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene. 2007;26:4699–713.CrossRefPubMed
2.
Zurück zum Zitat Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22.CrossRefPubMed Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 2004;36:417–22.CrossRefPubMed
3.
Zurück zum Zitat Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem. 2015;35:926–32.CrossRefPubMed Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z. Regulation of autophagy of prostate cancer cells by beta-catenin signaling. Cell Physiol Biochem. 2015;35:926–32.CrossRefPubMed
4.
Zurück zum Zitat Xu X, Ma J, Li C, Zhao W, Xu Y. Regulation of chondrosarcoma invasion by MMP26. Tumour Biol. 2015;36:365–9.CrossRefPubMed Xu X, Ma J, Li C, Zhao W, Xu Y. Regulation of chondrosarcoma invasion by MMP26. Tumour Biol. 2015;36:365–9.CrossRefPubMed
5.
Zurück zum Zitat Liu S, Chen M, Li P, Wu Y, Chang C, Qiu Y, et al. Ginsenoside rh2 inhibits cancer stem-like cells in skin squamous cell carcinoma. Cell Physiol Biochem. 2015;36:499–508.CrossRefPubMed Liu S, Chen M, Li P, Wu Y, Chang C, Qiu Y, et al. Ginsenoside rh2 inhibits cancer stem-like cells in skin squamous cell carcinoma. Cell Physiol Biochem. 2015;36:499–508.CrossRefPubMed
6.
Zurück zum Zitat Ge Z, Zhang B, Bu X, Wang Y, Xiang L, Tan J. Molecular mechanism of activating protein-4 regulated growth of hepatocellular carcinoma. Tumour Biol. 2014;35:12441–7.CrossRefPubMed Ge Z, Zhang B, Bu X, Wang Y, Xiang L, Tan J. Molecular mechanism of activating protein-4 regulated growth of hepatocellular carcinoma. Tumour Biol. 2014;35:12441–7.CrossRefPubMed
7.
Zurück zum Zitat Zhang H, Liu C, Kong Y, Huang H, Wang C, Zhang H. Tgfbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol. 2015;36:1613–8.CrossRefPubMed Zhang H, Liu C, Kong Y, Huang H, Wang C, Zhang H. Tgfbeta signaling in pancreatic ductal adenocarcinoma. Tumour Biol. 2015;36:1613–8.CrossRefPubMed
8.
Zurück zum Zitat Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, et al. Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res. 1998;18:657–66.PubMed Tsuchiya H, Tomita K, Mori Y, Asada N, Morinaga T, Kitano S, et al. Caffeine-assisted chemotherapy and minimized tumor excision for nonmetastatic osteosarcoma. Anticancer Res. 1998;18:657–66.PubMed
9.
Zurück zum Zitat Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.CrossRefPubMed Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.CrossRefPubMed
10.
Zurück zum Zitat Li G, Fu D, Liang W, Fan L, Chen K, Shan L, et al. Cyc1 silencing sensitizes osteosarcoma cells to trail-induced apoptosis. Cell Physiol Biochem. 2014;34:2070–80.CrossRefPubMed Li G, Fu D, Liang W, Fan L, Chen K, Shan L, et al. Cyc1 silencing sensitizes osteosarcoma cells to trail-induced apoptosis. Cell Physiol Biochem. 2014;34:2070–80.CrossRefPubMed
11.
Zurück zum Zitat Liu Y, He J, Chen X, Li J, Shen M, Yu W, et al. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of ERK and Akt pathways. Cell Physiol Biochem. 2014;34:637–45.CrossRefPubMed Liu Y, He J, Chen X, Li J, Shen M, Yu W, et al. The proapoptotic effect of formononetin in human osteosarcoma cells: involvement of inactivation of ERK and Akt pathways. Cell Physiol Biochem. 2014;34:637–45.CrossRefPubMed
12.
Zurück zum Zitat Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.CrossRefPubMed Wang Q, Cai J, Wang J, Xiong C, Zhao J. MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 2014;35:12743–8.CrossRefPubMed
13.
Zurück zum Zitat Xiao Q, Zhang X, Wu Y, Yang Y. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol. 2014;35:7611–6.CrossRefPubMed Xiao Q, Zhang X, Wu Y, Yang Y. Inhibition of macrophage polarization prohibits growth of human osteosarcoma. Tumour Biol. 2014;35:7611–6.CrossRefPubMed
14.
Zurück zum Zitat Luo XJ, Tang DG, Gao TL, Zhang YL, Wang M, Quan ZX, et al. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem. 2014;34:2180–8.CrossRefPubMed Luo XJ, Tang DG, Gao TL, Zhang YL, Wang M, Quan ZX, et al. MicroRNA-212 inhibits osteosarcoma cells proliferation and invasion by down-regulation of Sox4. Cell Physiol Biochem. 2014;34:2180–8.CrossRefPubMed
15.
Zurück zum Zitat Li F, Li S, Cheng T. Tgf-beta1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol Biochem. 2014;34:2169–79.CrossRefPubMed Li F, Li S, Cheng T. Tgf-beta1 promotes osteosarcoma cell migration and invasion through the miR-143-versican pathway. Cell Physiol Biochem. 2014;34:2169–79.CrossRefPubMed
16.
Zurück zum Zitat He Y, Meng C, Shao Z, Wang H, Yang S. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34:1485–96.CrossRefPubMed He Y, Meng C, Shao Z, Wang H, Yang S. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34:1485–96.CrossRefPubMed
17.
Zurück zum Zitat Chen J, Fu H, Wang Z, Yin F, Li J, Hua Y, et al. A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol Biochem. 2014;34:724–33.CrossRefPubMed Chen J, Fu H, Wang Z, Yin F, Li J, Hua Y, et al. A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol Biochem. 2014;34:724–33.CrossRefPubMed
18.
Zurück zum Zitat Xu H, Liu X, Zhao J. Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 2014;33:1547–56.CrossRefPubMed Xu H, Liu X, Zhao J. Down-regulation of miR-3928 promoted osteosarcoma growth. Cell Physiol Biochem. 2014;33:1547–56.CrossRefPubMed
19.
Zurück zum Zitat Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y. Mir-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting HMGA1. Cell Physiol Biochem. 2014;33:1329–39.CrossRefPubMed Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y. Mir-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting HMGA1. Cell Physiol Biochem. 2014;33:1329–39.CrossRefPubMed
20.
Zurück zum Zitat Pan W, Wang H, Jianwei R, Ye Z. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2k4 in human osteosarcoma cells. Cell Physiol Biochem. 2014;33:402–12.CrossRefPubMed Pan W, Wang H, Jianwei R, Ye Z. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2k4 in human osteosarcoma cells. Cell Physiol Biochem. 2014;33:402–12.CrossRefPubMed
21.
Zurück zum Zitat Chen X, Luther G, Zhang W, Nan G, Wagner ER, Liao Z, et al. The E-F hand calcium-binding protein S100A4 regulates the proliferation, survival and differentiation potential of human osteosarcoma cells. Cell Physiol Biochem. 2013;32:1083–96.CrossRefPubMed Chen X, Luther G, Zhang W, Nan G, Wagner ER, Liao Z, et al. The E-F hand calcium-binding protein S100A4 regulates the proliferation, survival and differentiation potential of human osteosarcoma cells. Cell Physiol Biochem. 2013;32:1083–96.CrossRefPubMed
22.
Zurück zum Zitat Chang YW, Zhao YF, Cao YL, Gu XF, Li ZQ, Wang SQ, et al. Liver x receptor alpha inhibits osteosarcoma cell proliferation through up-regulation of FoxO1. Cell Physiol Biochem. 2013;32:180–6.CrossRefPubMed Chang YW, Zhao YF, Cao YL, Gu XF, Li ZQ, Wang SQ, et al. Liver x receptor alpha inhibits osteosarcoma cell proliferation through up-regulation of FoxO1. Cell Physiol Biochem. 2013;32:180–6.CrossRefPubMed
23.
Zurück zum Zitat Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell. 2005;97:185–96.CrossRefPubMed Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell. 2005;97:185–96.CrossRefPubMed
24.
Zurück zum Zitat Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.CrossRefPubMed Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.CrossRefPubMed
25.
Zurück zum Zitat Ehrlund A, Mejhert N, Lorente-Cebrian S, Astrom G, Dahlman I, Laurencikiene J, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPS) in human adipose tissue. J Clin Endocrinol Metab. 2013;98:E503–508.CrossRefPubMed Ehrlund A, Mejhert N, Lorente-Cebrian S, Astrom G, Dahlman I, Laurencikiene J, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPS) in human adipose tissue. J Clin Endocrinol Metab. 2013;98:E503–508.CrossRefPubMed
26.
Zurück zum Zitat Shin H, Kim JH, Lee YS, Lee YC. Change in gene expression profiles of secreted frizzled-related proteins (SFRPS) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling. Int J Oncol. 2012;40:1533–42.PubMed Shin H, Kim JH, Lee YS, Lee YC. Change in gene expression profiles of secreted frizzled-related proteins (SFRPS) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling. Int J Oncol. 2012;40:1533–42.PubMed
27.
28.
Zurück zum Zitat Drescher U. A no-Wnt situation: SFRPS as axon guidance molecules. Nat Neurosci. 2005;8:1281–2.CrossRefPubMed Drescher U. A no-Wnt situation: SFRPS as axon guidance molecules. Nat Neurosci. 2005;8:1281–2.CrossRefPubMed
29.
Zurück zum Zitat Zhang Y, Chen H. Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp Biol Med (Maywood). 2011;236:714–22.CrossRef Zhang Y, Chen H. Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp Biol Med (Maywood). 2011;236:714–22.CrossRef
30.
Zurück zum Zitat Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009;112:646–53.CrossRefPubMed Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC, et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009;112:646–53.CrossRefPubMed
31.
Zurück zum Zitat Sui C, Ma J, Chen Q, Yang Y. The variation trends of SFRP2 methylation of tissue, feces, and blood detection in colorectal cancer development. Eur J Cancer Prev. 2015. doi: 10.1097/CEJ.0000000000000185 Sui C, Ma J, Chen Q, Yang Y. The variation trends of SFRP2 methylation of tissue, feces, and blood detection in colorectal cancer development. Eur J Cancer Prev. 2015. doi: 10.​1097/​CEJ.​0000000000000185​
32.
Zurück zum Zitat Zhang X, Song YF, Lu HN, Wang DP, Zhang XS, Huang SL, et al. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol. 2015;21:2629–37.CrossRefPubMedPubMedCentral Zhang X, Song YF, Lu HN, Wang DP, Zhang XS, Huang SL, et al. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol. 2015;21:2629–37.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Sui C, Wang G, Chen Q, Ma J. Variation risks of SFRP2 hypermethylation between precancerous disease and colorectal cancer. Tumour Biol. 2014;35:10457–65.CrossRefPubMed Sui C, Wang G, Chen Q, Ma J. Variation risks of SFRP2 hypermethylation between precancerous disease and colorectal cancer. Tumour Biol. 2014;35:10457–65.CrossRefPubMed
34.
Zurück zum Zitat Takeda M, Nagasaka T, Dong-Sheng S, Nishie H, Oka T, Yamada E, et al. Expansion of CpG methylation in the SFRP2 promoter region during colorectal tumorigenesis. Acta Med Okayama. 2011;65:169–77.PubMed Takeda M, Nagasaka T, Dong-Sheng S, Nishie H, Oka T, Yamada E, et al. Expansion of CpG methylation in the SFRP2 promoter region during colorectal tumorigenesis. Acta Med Okayama. 2011;65:169–77.PubMed
35.
Zurück zum Zitat Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.CrossRefPubMed Pehlivan S, Artac M, Sever T, Bozcuk H, Kilincarslan C, Pehlivan M. Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet. 2010;201:128–32.CrossRefPubMed
36.
Zurück zum Zitat Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol. 2008;14:524–31.CrossRefPubMedPubMedCentral Wang DR, Tang D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol. 2008;14:524–31.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Huang Z, Li L, Wang J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig Dis Sci. 2007;52:2287–91.CrossRefPubMed Huang Z, Li L, Wang J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig Dis Sci. 2007;52:2287–91.CrossRefPubMed
Metadaten
Titel
Enhanced Wnt signaling by methylation-mediated loss of SFRP2 promotes osteosarcoma cell invasion
verfasst von
Qiang Xiao
Yu Yang
Xuepu Zhang
Qing An
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 5/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4466-z

Weitere Artikel der Ausgabe 5/2016

Tumor Biology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.