Skip to main content
Erschienen in: Lasers in Medical Science 8/2018

26.05.2018 | Original Article

Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI)

verfasst von: Rohit Kumar Nair, Catherine Christie, David Ju, Diane Shin, Aftin Pomeroy, Kristian Berg, Qian Peng, Henry Hirschberg

Erschienen in: Lasers in Medical Science | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Light-based treatment modalities such as photothermal therapy (PTT) or photochemical internalization (PCI) have been well documented both experimentally and clinically to enhance the efficacy of chemotherapy. The main purpose of this study was to examine the cytotoxic effects of silica–gold nanoshell (AuNS)-loaded macrophage-mediated (MaNS) PTT and bleomycin BLM-PCI on monolayers of squamous cell carcinoma cells. The two modalities were applied separately and in simultaneous combination. Two different wavelengths of light were employed simultaneously, one to activate a highly efficient PCI photosensitizer, AlPcS2a (670 nm) and the other for the MaNS-mediated PTT (810 nm), to evaluate the combined effects of these modalities. The results clearly demonstrated that macrophages could ingest sufficient numbers of silica–gold nanoshells for efficient near infrared (NIR) activated PTT. A significant synergistic effect of simultaneously applied combined PTT and PCI, compared to each modality applied separately, was achieved. Light-driven therapies have the advantage of site specificity, non-invasive and non-toxic application, require inexpensive equipment and can be given as repetitive treatment protocols.
Literatur
1.
Zurück zum Zitat Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, Gaudernack G, Fodstad O, Kjølsrud S, Anholt H, Rodal GH, Rodal SK, Høgset A (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59(6):1180–1183PubMed Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, Gaudernack G, Fodstad O, Kjølsrud S, Anholt H, Rodal GH, Rodal SK, Høgset A (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59(6):1180–1183PubMed
2.
Zurück zum Zitat Berg K, Folini M, Prasmickaite L, Selbo PK, Bonsted A, Engesaeter BØ, Zaffaroni N, Weyergang A, Dietze A, Maelandsmo GM, Wagner E, Norum OJ, Høgset A (2007) Photochemical internalization: a new tool for drug delivery. Curr Pharm Biotechnol 8(6):362–372CrossRef Berg K, Folini M, Prasmickaite L, Selbo PK, Bonsted A, Engesaeter BØ, Zaffaroni N, Weyergang A, Dietze A, Maelandsmo GM, Wagner E, Norum OJ, Høgset A (2007) Photochemical internalization: a new tool for drug delivery. Curr Pharm Biotechnol 8(6):362–372CrossRef
3.
Zurück zum Zitat Norum OJ, Giercksky KE, Berg K (2009) Photochemical internalization as an adjunct to marginal surgery in a human sarcoma model. Photochem Photobiol Sci 8(6):758–762CrossRef Norum OJ, Giercksky KE, Berg K (2009) Photochemical internalization as an adjunct to marginal surgery in a human sarcoma model. Photochem Photobiol Sci 8(6):758–762CrossRef
4.
Zurück zum Zitat Selbo PK, Weyergang A, Høgset A, Norum OJ, Berstad MB, Vikdal M, Berg K (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148(1):2–12CrossRef Selbo PK, Weyergang A, Høgset A, Norum OJ, Berstad MB, Vikdal M, Berg K (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148(1):2–12CrossRef
5.
Zurück zum Zitat Weyergang A, Berstad ME, Bull-Hansen B, Olsen CE, Selbo PK, Berg K (2010) 2015 photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochem Photobiol Sci 14:1465CrossRef Weyergang A, Berstad ME, Bull-Hansen B, Olsen CE, Selbo PK, Berg K (2010) 2015 photochemical activation of drugs for the treatment of therapy-resistant cancers. Photochem Photobiol Sci 14:1465CrossRef
6.
Zurück zum Zitat Berg K, Dietze A, Kaalhus O, Høgset A (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res 11(23):8476–8485CrossRef Berg K, Dietze A, Kaalhus O, Høgset A (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res 11(23):8476–8485CrossRef
7.
Zurück zum Zitat Norum OJ, Bruland ØS, Gorunova L, Berg K (2009) Photochemical internalization of bleomycin before external-beam radiotherapy improves locoregional control in a human sarcoma model. Int J Radiat Oncol Biol Phys 75(3):878–885CrossRef Norum OJ, Bruland ØS, Gorunova L, Berg K (2009) Photochemical internalization of bleomycin before external-beam radiotherapy improves locoregional control in a human sarcoma model. Int J Radiat Oncol Biol Phys 75(3):878–885CrossRef
8.
Zurück zum Zitat Hirschberg H, Zhang MJ, Gach HM, Uzal FA, Chighvinadze D, Sun CH, Peng Q, Madsen SJ (2009) Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J Neuro-Oncol 95(3):317–329CrossRef Hirschberg H, Zhang MJ, Gach HM, Uzal FA, Chighvinadze D, Sun CH, Peng Q, Madsen SJ (2009) Targeted delivery of bleomycin to the brain using photo-chemical internalization of Clostridium perfringens epsilon prototoxin. J Neuro-Oncol 95(3):317–329CrossRef
9.
Zurück zum Zitat Mathews MS, Blickenstaff JW, Shih EC, Zamora G, Vo V, Sun CH, Hirschberg H, Madsen SJ (2012) Photochemical internalization of bleomycin for glioma treatment. J Biomed Opt 17(5):058001CrossRef Mathews MS, Blickenstaff JW, Shih EC, Zamora G, Vo V, Sun CH, Hirschberg H, Madsen SJ (2012) Photochemical internalization of bleomycin for glioma treatment. J Biomed Opt 17(5):058001CrossRef
10.
Zurück zum Zitat Sultan AA, Jerjes W, Berg K, Høgset A, Mosse CA, Hamoudi R, Hamdoon Z, Simeon C, Carnell D, Forster M, Hopper C (2016) Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial. Lancet Oncol 17(9):1217–1229CrossRef Sultan AA, Jerjes W, Berg K, Høgset A, Mosse CA, Hamoudi R, Hamdoon Z, Simeon C, Carnell D, Forster M, Hopper C (2016) Disulfonated tetraphenyl chlorin (TPCS2a)-induced photochemical internalisation of bleomycin in patients with solid malignancies: a phase 1, dose-escalation, first-in-man trial. Lancet Oncol 17(9):1217–1229CrossRef
11.
Zurück zum Zitat Tang Y, McGoron AJ (2009) Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B Biol 97:138–144CrossRef Tang Y, McGoron AJ (2009) Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J Photochem Photobiol B Biol 97:138–144CrossRef
12.
Zurück zum Zitat Zhang W, Guo Z, Huang D et al (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561CrossRef Zhang W, Guo Z, Huang D et al (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561CrossRef
13.
Zurück zum Zitat Mehtala JG, Torregrosa-Allen S, Elzey BD et al (2014) Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine 9(13):1939–1955CrossRef Mehtala JG, Torregrosa-Allen S, Elzey BD et al (2014) Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomedicine 9(13):1939–1955CrossRef
14.
Zurück zum Zitat Madsen SJ, Shih EC, Peng Q, Christie C, Krasieva T, Hirschberg H (2016) Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study. J Biomed Opt 21(1):18004CrossRef Madsen SJ, Shih EC, Peng Q, Christie C, Krasieva T, Hirschberg H (2016) Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study. J Biomed Opt 21(1):18004CrossRef
15.
Zurück zum Zitat Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, Maksimova IL, Tuchin VV (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14:021016CrossRef Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG, Maksimova IL, Tuchin VV (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14:021016CrossRef
16.
Zurück zum Zitat Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183CrossRef Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183CrossRef
17.
Zurück zum Zitat Gobin AM et al (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934CrossRef Gobin AM et al (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934CrossRef
18.
Zurück zum Zitat Oldenburg SJ et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247CrossRef Oldenburg SJ et al (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247CrossRef
19.
Zurück zum Zitat Oldenburg SJ et al (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899CrossRef Oldenburg SJ et al (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899CrossRef
20.
Zurück zum Zitat Huang X et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693CrossRef Huang X et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693CrossRef
21.
Zurück zum Zitat Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243CrossRef Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243CrossRef
22.
Zurück zum Zitat Huynh E, Zheng G (2015) Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (Lond) 10(13):1993–1995CrossRef Huynh E, Zheng G (2015) Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (Lond) 10(13):1993–1995CrossRef
23.
Zurück zum Zitat Fischbach MA, Bluestone JA, Lim WA (2013) Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 5(179):ps7CrossRef Fischbach MA, Bluestone JA, Lim WA (2013) Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 5(179):ps7CrossRef
24.
Zurück zum Zitat Basel MT, Shrestha TB, Bossmann SH, Troyer DL (2014) Cells as delivery vehicles for cancer therapeutics. Ther Deliv 5(5):555–567CrossRef Basel MT, Shrestha TB, Bossmann SH, Troyer DL (2014) Cells as delivery vehicles for cancer therapeutics. Ther Deliv 5(5):555–567CrossRef
25.
Zurück zum Zitat Choi MR et al (2007) A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765CrossRef Choi MR et al (2007) A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765CrossRef
26.
Zurück zum Zitat Owen MR, Byrne HM, Lewis CE (2004) Mathematical modeling of the use of macrophages as vehicles for drug-delivery to hypoxic tumour sites. J Theor Biol 226:377–391CrossRef Owen MR, Byrne HM, Lewis CE (2004) Mathematical modeling of the use of macrophages as vehicles for drug-delivery to hypoxic tumour sites. J Theor Biol 226:377–391CrossRef
27.
Zurück zum Zitat Valable S, Barbier EL, Bernaudin M, Roussel S, Segebarth C, Petit E et al (2008) In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. NeuroImage 40(2):973–983CrossRef Valable S, Barbier EL, Bernaudin M, Roussel S, Segebarth C, Petit E et al (2008) In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. NeuroImage 40(2):973–983CrossRef
28.
Zurück zum Zitat Choi J, Kim HY, Ju EJ et al (2012) Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33(16):4195–4203CrossRef Choi J, Kim HY, Ju EJ et al (2012) Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33(16):4195–4203CrossRef
29.
Zurück zum Zitat Baek S-K, Makkouk AR, Krasieva T, Sun C-H, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neuro-Oncol 104:439–448CrossRef Baek S-K, Makkouk AR, Krasieva T, Sun C-H, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neuro-Oncol 104:439–448CrossRef
30.
Zurück zum Zitat Madsen SJ, Christie C, Hong SJ, Trinidad A, Peng Q, Uzal FA, Hirschberg H (2015) Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 30(4):1357–1365CrossRef Madsen SJ, Christie C, Hong SJ, Trinidad A, Peng Q, Uzal FA, Hirschberg H (2015) Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers Med Sci 30(4):1357–1365CrossRef
31.
Zurück zum Zitat Christie C, Madsen SJ, Peng Q, Hirschberg H (2015) Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Ther Deliv 6(3):371–384CrossRef Christie C, Madsen SJ, Peng Q, Hirschberg H (2015) Macrophages as nanoparticle delivery vectors for photothermal therapy of brain tumors. Ther Deliv 6(3):371–384CrossRef
32.
Zurück zum Zitat Hirschberg H, Madsen SJ (2017) Cell mediated photothermal therapy of brain tumors. J NeuroImmune Pharmacol 12(1):99–106CrossRef Hirschberg H, Madsen SJ (2017) Cell mediated photothermal therapy of brain tumors. J NeuroImmune Pharmacol 12(1):99–106CrossRef
33.
Zurück zum Zitat Yang TD, Choi W, Yoon TH, Lee KJ, Lee JS, Han SH, Lee MG, Yim HS, Choi KM, Park MW, Jung KY, Baek SK (2012) Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells. J Biomed Opt 17:128003CrossRef Yang TD, Choi W, Yoon TH, Lee KJ, Lee JS, Han SH, Lee MG, Yim HS, Choi KM, Park MW, Jung KY, Baek SK (2012) Real-time phase-contrast imaging of photothermal treatment of head and neck squamous cell carcinoma: an in vitro study of macrophages as a vector for the delivery of gold nanoshells. J Biomed Opt 17:128003CrossRef
34.
Zurück zum Zitat Park H, Yang J, Lee J et al (2009) Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3(10):2919–2926CrossRef Park H, Yang J, Lee J et al (2009) Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3(10):2919–2926CrossRef
35.
Zurück zum Zitat Madsen SJ, Shih EC, Peng Q, Christie C, Krasieva T, Hirschberg H (2016) Photothermal enhancement of chemotherapy mediated by gold-silica nanoshells loaded macrophages; an in vitro squamous cell carcinoma study. J Biomed Opt 21(1):18004CrossRef Madsen SJ, Shih EC, Peng Q, Christie C, Krasieva T, Hirschberg H (2016) Photothermal enhancement of chemotherapy mediated by gold-silica nanoshells loaded macrophages; an in vitro squamous cell carcinoma study. J Biomed Opt 21(1):18004CrossRef
36.
Zurück zum Zitat Kah JC, Wan RC, Wong KY, Mhaisalkar S, Sheppard CJ, Olivo M (2008) Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study. Lasers Surg Med 40(8):584–589CrossRef Kah JC, Wan RC, Wong KY, Mhaisalkar S, Sheppard CJ, Olivo M (2008) Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study. Lasers Surg Med 40(8):584–589CrossRef
37.
Zurück zum Zitat Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ (2012) Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33(11):3270–3278CrossRef Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ (2012) Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 33(11):3270–3278CrossRef
38.
Zurück zum Zitat Trinidad AJ, Hong SJ, Peng Q, Madsen SJ, Hirschberg H (2014) Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma. Lasers Surg Med 46(4):310–318CrossRef Trinidad AJ, Hong SJ, Peng Q, Madsen SJ, Hirschberg H (2014) Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma. Lasers Surg Med 46(4):310–318CrossRef
39.
Zurück zum Zitat Christie C, Molina S, Gonzales J, Berg K, Nair RK, Huynh K, Madsen SJ, Hirschberg H (2016) Synergistic chemotherapy by combined moderate hyperthermia and photochemical internalization. Biomed Opt Express 7(4):1240–1250CrossRef Christie C, Molina S, Gonzales J, Berg K, Nair RK, Huynh K, Madsen SJ, Hirschberg H (2016) Synergistic chemotherapy by combined moderate hyperthermia and photochemical internalization. Biomed Opt Express 7(4):1240–1250CrossRef
40.
Zurück zum Zitat Kim H, Lee D, Kim J, Kim TI, Kim WJ (2013) Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7(8):6735–6746CrossRef Kim H, Lee D, Kim J, Kim TI, Kim WJ (2013) Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7(8):6735–6746CrossRef
41.
Zurück zum Zitat Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q (2015) Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 204:11–19CrossRef Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q (2015) Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 204:11–19CrossRef
42.
Zurück zum Zitat Li S, Feng S, Ding L, Liu Y, Zhu Q, Qian Z, Gu Y (2016) Nanomedicine engulfed by macrophages for targeted tumor therapy. Int J Nanomedicine 11:4107–4124CrossRef Li S, Feng S, Ding L, Liu Y, Zhu Q, Qian Z, Gu Y (2016) Nanomedicine engulfed by macrophages for targeted tumor therapy. Int J Nanomedicine 11:4107–4124CrossRef
43.
Zurück zum Zitat Shin D, Christie C, Ju D, Nair RK, Molina S, Berg K, Krasieva TB, Madsen SJ, Hirschberg H (2017) Photochemical internalization enhanced macrophage delivered chemotherapy. Photodiagnosis Photodyn Ther 21:156–162CrossRef Shin D, Christie C, Ju D, Nair RK, Molina S, Berg K, Krasieva TB, Madsen SJ, Hirschberg H (2017) Photochemical internalization enhanced macrophage delivered chemotherapy. Photodiagnosis Photodyn Ther 21:156–162CrossRef
Metadaten
Titel
Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI)
verfasst von
Rohit Kumar Nair
Catherine Christie
David Ju
Diane Shin
Aftin Pomeroy
Kristian Berg
Qian Peng
Henry Hirschberg
Publikationsdatum
26.05.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 8/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2534-5

Weitere Artikel der Ausgabe 8/2018

Lasers in Medical Science 8/2018 Zur Ausgabe