Skip to main content
Erschienen in:

17.06.2022

Ensemble Approaches to Recognize Protected Health Information in Radiology Reports

verfasst von: Hannah Horng, Jackson Steinkamp, Charles E. Kahn Jr., Tessa S. Cook

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Natural language processing (NLP) techniques for electronic health records have shown great potential to improve the quality of medical care. The text of radiology reports frequently constitutes a large fraction of EHR data, and can provide valuable information about patients’ diagnoses, medical history, and imaging findings. The lack of a major public repository for radiological reports severely limits the development, testing, and application of new NLP tools. De-identification of protected health information (PHI) presents a major challenge to building such repositories, as many automated tools for de-identification were trained or designed for clinical notes and do not perform sufficiently well to build a public database of radiology reports. We developed and evaluated six ensemble models based on three publically available de-identification tools: MIT de-id, NeuroNER, and Philter. A set of 1023 reports was set aside as the testing partition. Two individuals with medical training annotated the test set for PHI; differences were resolved by consensus. Ensemble methods included simple voting schemes (1-Vote, 2-Votes, and 3-Votes), a decision tree, a naïve Bayesian classifier, and Adaboost boosting. The 1-Vote ensemble achieved recall of 998 / 1043 (95.7%); the 3-Votes ensemble had precision of 1035 / 1043 (99.2%). F1 scores were: 93.4% for the decision tree, 71.2% for the naïve Bayesian classifier, and 87.5% for the boosting method. Basic voting algorithms and machine learning classifiers incorporating the predictions of multiple tools can outperform each tool acting alone in de-identifying radiology reports. Ensemble methods hold substantial potential to improve automated de-identification tools for radiology reports to make such reports more available for research use to improve patient care and outcomes.
Literatur
1.
Zurück zum Zitat Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural language processing of clinical notes on chronic diseases: Systematic review. JMIR Med Inform 2019; 7(2):e12239.CrossRefPubMedPubMedCentral Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural language processing of clinical notes on chronic diseases: Systematic review. JMIR Med Inform 2019; 7(2):e12239.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Luo JW, Chong JJR. Review of natural language processing in radiology. Neuroimaging clinics of North America 2020; 30(4):447-458.CrossRefPubMed Luo JW, Chong JJR. Review of natural language processing in radiology. Neuroimaging clinics of North America 2020; 30(4):447-458.CrossRefPubMed
3.
Zurück zum Zitat Wu S, Roberts K, Datta S, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc 2020; 27(3):457-470.CrossRefPubMed Wu S, Roberts K, Datta S, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc 2020; 27(3):457-470.CrossRefPubMed
4.
Zurück zum Zitat Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6):1045-1057.CrossRefPubMedPubMedCentral Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6):1045-1057.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology 2016; 279(2):329-343.CrossRefPubMed Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology 2016; 279(2):329-343.CrossRefPubMed
7.
Zurück zum Zitat European Union. Directive (EU) 2016/680 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data by competent authorities for the purposes of the prevention, investigation, detection or prosecution of criminal offences or the execution of criminal penalties, and on the free movement of such data, and repealing Council Framework Decision 2008/977/JHA. 2016. Available online: https://eur-lex.europa.eu/eli/dir/2016/680/oj. Accessed 10 December 2021. European Union. Directive (EU) 2016/680 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data by competent authorities for the purposes of the prevention, investigation, detection or prosecution of criminal offences or the execution of criminal penalties, and on the free movement of such data, and repealing Council Framework Decision 2008/977/JHA. 2016. Available online: https://​eur-lex.​europa.​eu/​eli/​dir/​2016/​680/​oj. Accessed 10 December 2021.
9.
10.
Zurück zum Zitat Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2017; 24(3):596-606.CrossRefPubMed Dernoncourt F, Lee JY, Uzuner O, Szolovits P. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2017; 24(3):596-606.CrossRefPubMed
11.
Zurück zum Zitat Norgeot B, Muenzen K, Peterson TA, et al. Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes. NPJ digital medicine 2020; 3:57.CrossRefPubMedPubMedCentral Norgeot B, Muenzen K, Peterson TA, et al. Protected Health Information filter (Philter): accurately and securely de-identifying free-text clinical notes. NPJ digital medicine 2020; 3:57.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lee HJ, Zhang Y, Roberts K, Xu H. Leveraging existing corpora for de-identification of psychiatric notes using domain adaptation. AMIA Annu Symp Proc 2017:1070–1079. Lee HJ, Zhang Y, Roberts K, Xu H. Leveraging existing corpora for de-identification of psychiatric notes using domain adaptation. AMIA Annu Symp Proc 2017:1070–1079.
13.
Zurück zum Zitat Ferrández O, South BR, Shen S, Friedlin FJ, Samore MH, Meystre SM. BoB, a best-of-breed automated text de-identification system for VHA clinical documents. J Am Med Inform Assoc 2013; 20(1):77-83.CrossRefPubMed Ferrández O, South BR, Shen S, Friedlin FJ, Samore MH, Meystre SM. BoB, a best-of-breed automated text de-identification system for VHA clinical documents. J Am Med Inform Assoc 2013; 20(1):77-83.CrossRefPubMed
14.
Zurück zum Zitat Steinkamp JM, Pomeranz T, Adleberg J, Kahn CE, Jr., Cook TS. Evaluation of automated public de-identification tools on a corpus of radiology reports. Radiol Artif Intell 2020; 2(6):e190137.CrossRefPubMedPubMedCentral Steinkamp JM, Pomeranz T, Adleberg J, Kahn CE, Jr., Cook TS. Evaluation of automated public de-identification tools on a corpus of radiology reports. Radiol Artif Intell 2020; 2(6):e190137.CrossRefPubMedPubMedCentral
Metadaten
Titel
Ensemble Approaches to Recognize Protected Health Information in Radiology Reports
verfasst von
Hannah Horng
Jackson Steinkamp
Charles E. Kahn Jr.
Tessa S. Cook
Publikationsdatum
17.06.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-022-00673-0

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.