Skip to main content
Erschienen in: Current Allergy and Asthma Reports 8/2019

01.08.2019 | Basic and Applied Science (I Lewkowich, Section Editor)

Eosinophils: Nemeses of Pulmonary Pathogens?

verfasst von: Kim S. LeMessurier, Amali E. Samarasinghe

Erschienen in: Current Allergy and Asthma Reports | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria.

Recent Findings

While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens.

Summary

Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
Literatur
2.
Zurück zum Zitat McGarry MP. The evolutionary origins and presence of eosinophils in extant species. In: Rosenberg HF, Lee JJ, editors. Eosinophils in health and disease: Elsevier; 2013. p. 13–7. McGarry MP. The evolutionary origins and presence of eosinophils in extant species. In: Rosenberg HF, Lee JJ, editors. Eosinophils in health and disease: Elsevier; 2013. p. 13–7.
3.
Zurück zum Zitat • Lee JJ, et al. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40(4):563–75 This article provides an in-depth argument for why eosinophils should not be inferred as terminally differentiated cells that are harmful to the host when activated, but instead, why they should be considered a component of the innate immune system that performs a more sophisticated role in maintaining tissue homeostasis aiding in healing and repair. PubMedPubMedCentralCrossRef • Lee JJ, et al. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40(4):563–75 This article provides an in-depth argument for why eosinophils should not be inferred as terminally differentiated cells that are harmful to the host when activated, but instead, why they should be considered a component of the innate immune system that performs a more sophisticated role in maintaining tissue homeostasis aiding in healing and repair. PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chu VT, Berek C. Immunization induces activation of bone marrow eosinophils required for plasma cell survival. Eur J Immunol. 2012;42(1):130–7.PubMedCrossRef Chu VT, Berek C. Immunization induces activation of bone marrow eosinophils required for plasma cell survival. Eur J Immunol. 2012;42(1):130–7.PubMedCrossRef
6.
Zurück zum Zitat Chu VT, et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol. 2011;12(2):151–9.PubMedCrossRef Chu VT, et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol. 2011;12(2):151–9.PubMedCrossRef
7.
Zurück zum Zitat Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343(1):57–83.PubMedCrossRef Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343(1):57–83.PubMedCrossRef
9.
Zurück zum Zitat Voehringer D, van Rooijen N, Locksley RM. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol. 2007;81(6):1434–44.PubMedCrossRef Voehringer D, van Rooijen N, Locksley RM. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J Leukoc Biol. 2007;81(6):1434–44.PubMedCrossRef
11.
Zurück zum Zitat •• Gleich GJ, Klion AD, Lee JJ, Weller PF. The consequences of not having eosinophils. Allergy. 2013;68:829–35 This paper discusses patient subsets that do not have eosinophils and their responses to stimuli. PubMedCrossRef •• Gleich GJ, Klion AD, Lee JJ, Weller PF. The consequences of not having eosinophils. Allergy. 2013;68:829–35 This paper discusses patient subsets that do not have eosinophils and their responses to stimuli. PubMedCrossRef
12.
Zurück zum Zitat Kay AB. The role of eosinophils in the pathogenesis of asthma. Trends Mol Med. 2005;11(4):148–52.PubMedCrossRef Kay AB. The role of eosinophils in the pathogenesis of asthma. Trends Mol Med. 2005;11(4):148–52.PubMedCrossRef
13.
Zurück zum Zitat Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc. 2009;6(3):256–9.PubMedCrossRef Fahy JV. Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc. 2009;6(3):256–9.PubMedCrossRef
17.
Zurück zum Zitat Bozza PT, Yu W, Weller PF. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism. Mem Inst Oswaldo Cruz. 1997;92(Suppl 2):135–40.PubMedCrossRef Bozza PT, Yu W, Weller PF. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism. Mem Inst Oswaldo Cruz. 1997;92(Suppl 2):135–40.PubMedCrossRef
20.
Zurück zum Zitat Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett. 2007;252(1):147–56.PubMedCrossRef Kim ES, Sohn YW, Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett. 2007;252(1):147–56.PubMedCrossRef
21.
Zurück zum Zitat Dahl C, Hoffmann HJ, Saito H, Schiotz PO. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy. 2004;59(10):1087–96.PubMedCrossRef Dahl C, Hoffmann HJ, Saito H, Schiotz PO. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy. 2004;59(10):1087–96.PubMedCrossRef
22.
Zurück zum Zitat Rios FG, et al. Lung function and organ dysfunctions in 178 patients requiring mechanical ventilation during the 2009 influenza A (H1N1) pandemic. Crit Care. 2011;15(4):R201.PubMedPubMedCentralCrossRef Rios FG, et al. Lung function and organ dysfunctions in 178 patients requiring mechanical ventilation during the 2009 influenza A (H1N1) pandemic. Crit Care. 2011;15(4):R201.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.PubMedCrossRef Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.PubMedCrossRef
24.
Zurück zum Zitat Joseph D, Puttaswamy RK, Krovvidi H. Non-respiratory functions of the lung. Continuing Education in Anaesthesia Critical Care and Pain. 2013;13(3):98–102.CrossRef Joseph D, Puttaswamy RK, Krovvidi H. Non-respiratory functions of the lung. Continuing Education in Anaesthesia Critical Care and Pain. 2013;13(3):98–102.CrossRef
25.
Zurück zum Zitat Leuenberger P. Clinical importance of non-respiratory functions of the lung. Schweiz Med Wochenschr. 1983;113(29):1006–10.PubMed Leuenberger P. Clinical importance of non-respiratory functions of the lung. Schweiz Med Wochenschr. 1983;113(29):1006–10.PubMed
26.
Zurück zum Zitat Marshall BE. Editorial views: non-respiratory functions of the lung. Anesthesiology. 1973;39(6):573–4.PubMedCrossRef Marshall BE. Editorial views: non-respiratory functions of the lung. Anesthesiology. 1973;39(6):573–4.PubMedCrossRef
28.
Zurück zum Zitat Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12(2):117–29.PubMedCrossRef Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12(2):117–29.PubMedCrossRef
29.
Zurück zum Zitat Jacobsen EA, Lee NA, Lee JJ. Re-defining the unique roles for eosinophils in allergic respiratory inflammation. Clin Exp Allergy. 2014;44(9):1119–36.PubMedPubMedCentralCrossRef Jacobsen EA, Lee NA, Lee JJ. Re-defining the unique roles for eosinophils in allergic respiratory inflammation. Clin Exp Allergy. 2014;44(9):1119–36.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Calhoun WJ, Sedgwick J, Busse WW. The role of eosinophils in the pathophysiology of asthma. Ann N Y Acad Sci. 1991;629:62–72.PubMedCrossRef Calhoun WJ, Sedgwick J, Busse WW. The role of eosinophils in the pathophysiology of asthma. Ann N Y Acad Sci. 1991;629:62–72.PubMedCrossRef
31.
Zurück zum Zitat Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119(6):1303–10 quiz 1311–2.PubMedCrossRef Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol. 2007;119(6):1303–10 quiz 1311–2.PubMedCrossRef
33.
Zurück zum Zitat Kunst H, Mack D, Kon OM, Banerjee AK, Chiodini P, Grant A. Parasite infections of the lung: a guide for the respiratory physician. Thorax. 2011;66:528–36.PubMedCrossRef Kunst H, Mack D, Kon OM, Banerjee AK, Chiodini P, Grant A. Parasite infections of the lung: a guide for the respiratory physician. Thorax. 2011;66:528–36.PubMedCrossRef
34.
36.
Zurück zum Zitat O'Connell AE, Hess JA, Santiago GA, Nolan TJ, Lok JB, Lee JJ, et al. Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect Immun. 2011;79(7):2770–8.PubMedPubMedCentralCrossRef O'Connell AE, Hess JA, Santiago GA, Nolan TJ, Lok JB, Lee JJ, et al. Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect Immun. 2011;79(7):2770–8.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Specht S, Saeftel M, Arndt M, Endl E, Dubben B, Lee NA, et al. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun. 2006;74(9):5236–43.PubMedPubMedCentralCrossRef Specht S, Saeftel M, Arndt M, Endl E, Dubben B, Lee NA, et al. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun. 2006;74(9):5236–43.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205:79–90.PubMedPubMedCentralCrossRef Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205:79–90.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113(1):30–7.PubMedCrossRef Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113(1):30–7.PubMedCrossRef
41.
Zurück zum Zitat Gurish MF, Humbles A, Tao H, Finkelstein S, Boyce JA, Gerard C, et al. CCR3 is required for tissue eosinophilia and larval cytotoxicity after infection with Trichinella spiralis. J Immunol. 2002;168(11):5730–6.PubMedCrossRef Gurish MF, Humbles A, Tao H, Finkelstein S, Boyce JA, Gerard C, et al. CCR3 is required for tissue eosinophilia and larval cytotoxicity after infection with Trichinella spiralis. J Immunol. 2002;168(11):5730–6.PubMedCrossRef
42.
Zurück zum Zitat •• Fabre V, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182(3):1577–83 This paper provides evidence for the alternative role of eosinophils as supporters of parasite growth and survival in hosts. PubMedCrossRef •• Fabre V, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182(3):1577–83 This paper provides evidence for the alternative role of eosinophils as supporters of parasite growth and survival in hosts. PubMedCrossRef
43.
Zurück zum Zitat • Huang L, Appleton JA. Eosinophils in helminth infection: defenders and dupes. Trends Parasitol. 2016;32(10):798–807 This paper provides a balanced review of the role of eosinophils during worm infections focusing on both the beneficial and detrimental aspects to the parasite. PubMedPubMedCentralCrossRef • Huang L, Appleton JA. Eosinophils in helminth infection: defenders and dupes. Trends Parasitol. 2016;32(10):798–807 This paper provides a balanced review of the role of eosinophils during worm infections focusing on both the beneficial and detrimental aspects to the parasite. PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol. 2012;188(1):417–25.PubMedCrossRef Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol. 2012;188(1):417–25.PubMedCrossRef
46.
48.
Zurück zum Zitat Kim CK, Callaway Z, Gern JE. Viral infections and associated factors that promote acute exacerbations of asthma. Allergy Asthma Immunol Res. 2018;10(1):12–7.PubMedCrossRef Kim CK, Callaway Z, Gern JE. Viral infections and associated factors that promote acute exacerbations of asthma. Allergy Asthma Immunol Res. 2018;10(1):12–7.PubMedCrossRef
49.
Zurück zum Zitat •• Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, et al. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol. 2017;198(8):3214–26 This paper reports that eosinophils can be infected by influenza A virus, selectively release granule contents by piecemeal degranulation during influenza, and act as antigen-presenting cells to CD8 + T cells. PubMedPubMedCentralCrossRef •• Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, et al. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol. 2017;198(8):3214–26 This paper reports that eosinophils can be infected by influenza A virus, selectively release granule contents by piecemeal degranulation during influenza, and act as antigen-presenting cells to CD8 + T cells. PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat •• Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, et al. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 2014;123(5):743–52 Here, the authors provide in vivo evidence that eosinophils can be activated by pneumonia virus infection of mice, resulting in degranulation and reduced viral load. PubMedPubMedCentralCrossRef •• Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER, Lee JJ, et al. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood. 2014;123(5):743–52 Here, the authors provide in vivo evidence that eosinophils can be activated by pneumonia virus infection of mice, resulting in degranulation and reduced viral load. PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Akuthota P, Wang HB, Spencer LA, Weller PF. Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy. 2008;38(8):1254–63.PubMedPubMedCentralCrossRef Akuthota P, Wang HB, Spencer LA, Weller PF. Immunoregulatory roles of eosinophils: a new look at a familiar cell. Clin Exp Allergy. 2008;38(8):1254–63.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Rankin JA, Harris P, Ackerman SJ. The effects of eosinophil-granule major basic protein on lung-macrophage superoxide anion generation. J Allergy Clin Immunol. 1992;89(3):746–52.PubMedCrossRef Rankin JA, Harris P, Ackerman SJ. The effects of eosinophil-granule major basic protein on lung-macrophage superoxide anion generation. J Allergy Clin Immunol. 1992;89(3):746–52.PubMedCrossRef
53.
Zurück zum Zitat O'Reilly MA, Yee M, Buczynski BW, Vitiello PF, Keng PC, Welle SL, et al. Neonatal oxygen increases sensitivity to influenza A virus infection in adult mice by suppressing epithelial expression of Ear1. Am J Pathol. 2012;181(2):441–51.PubMedPubMedCentralCrossRef O'Reilly MA, Yee M, Buczynski BW, Vitiello PF, Keng PC, Welle SL, et al. Neonatal oxygen increases sensitivity to influenza A virus infection in adult mice by suppressing epithelial expression of Ear1. Am J Pathol. 2012;181(2):441–51.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Kim HW, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–34.PubMedCrossRef Kim HW, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–34.PubMedCrossRef
55.
Zurück zum Zitat Garofalo R, Kimpen JLL, Welliver RC, Ogra PL. Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection. J Pediatr. 1992;120(1):28–32.PubMedCrossRef Garofalo R, Kimpen JLL, Welliver RC, Ogra PL. Eosinophil degranulation in the respiratory tract during naturally acquired respiratory syncytial virus infection. J Pediatr. 1992;120(1):28–32.PubMedCrossRef
56.
Zurück zum Zitat De Swart RL, et al. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol. 2002;76(22):11561–9.PubMedPubMedCentralCrossRef De Swart RL, et al. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol. 2002;76(22):11561–9.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog. 2015;11(3):e1004757.PubMedPubMedCentralCrossRef Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM. RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog. 2015;11(3):e1004757.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998;26(14):3358–63.PubMedPubMedCentralCrossRef Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998;26(14):3358–63.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Rosenberg HF, Dyer KD, Domachowske JB. Respiratory viruses and eosinophils: exploring the connections. Antivir Res. 2009;83(1):1–9.PubMedCrossRef Rosenberg HF, Dyer KD, Domachowske JB. Respiratory viruses and eosinophils: exploring the connections. Antivir Res. 2009;83(1):1–9.PubMedCrossRef
60.
Zurück zum Zitat Rosenberg HF, Dyer KD, Domachowske JB. Eosinophils and their interactions with respiratory virus pathogens. Immunol Res. 2009;43(1–3):128–37.PubMedPubMedCentralCrossRef Rosenberg HF, Dyer KD, Domachowske JB. Eosinophils and their interactions with respiratory virus pathogens. Immunol Res. 2009;43(1–3):128–37.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat • Samarasinghe AE, Woolard SN, Boyd KL, Hoselton SA, Schuh JM, McCullers JA. The immune profile associated with acute allergic asthma accelerates clearance of influenza virus. Immunol Cell Biol. 2014;92:449–59 This paper reports the unexpected observation that acute allergic asthma, which is associated with lung eosinophilia is a protective co-morbidity during influenza A infection with increased virus-specific CD8 + T cells. These in vivo data support a role for eosinophils in the anti-viral response. PubMedPubMedCentralCrossRef • Samarasinghe AE, Woolard SN, Boyd KL, Hoselton SA, Schuh JM, McCullers JA. The immune profile associated with acute allergic asthma accelerates clearance of influenza virus. Immunol Cell Biol. 2014;92:449–59 This paper reports the unexpected observation that acute allergic asthma, which is associated with lung eosinophilia is a protective co-morbidity during influenza A infection with increased virus-specific CD8 + T cells. These in vivo data support a role for eosinophils in the anti-viral response. PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat To EE, et al. Intranasal and epicutaneous administration of toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice. Sci Rep. 2019;9(1):2366.PubMedPubMedCentralCrossRef To EE, et al. Intranasal and epicutaneous administration of toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice. Sci Rep. 2019;9(1):2366.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Handzel ZT, et al. Eosinophils bind rhinovirus and activate virus-specific T cells. J Immunol. 1998;160(3):1279–84.PubMed Handzel ZT, et al. Eosinophils bind rhinovirus and activate virus-specific T cells. J Immunol. 1998;160(3):1279–84.PubMed
64.
Zurück zum Zitat Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood. 2007;110(5):1578–86.PubMedCrossRef Phipps S, Lam CE, Mahalingam S, Newhouse M, Ramirez R, Rosenberg HF, et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood. 2007;110(5):1578–86.PubMedCrossRef
65.
Zurück zum Zitat Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood. 2009;114(13):2649–56.PubMedPubMedCentralCrossRef Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood. 2009;114(13):2649–56.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Drake MG, Bivins-Smith ER, Proskocil BJ, Nie Z, Scott GD, Lee JJ, et al. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am J Respir Cell Mol Biol. 2016;55(3):387–94.PubMedPubMedCentralCrossRef Drake MG, Bivins-Smith ER, Proskocil BJ, Nie Z, Scott GD, Lee JJ, et al. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am J Respir Cell Mol Biol. 2016;55(3):387–94.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat •• Domachowske JB, et al. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998;177(6):1458–64 This paper provides the first indication that eosinophil granule proteins have antiviral potential. PubMedCrossRef •• Domachowske JB, et al. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998;177(6):1458–64 This paper provides the first indication that eosinophil granule proteins have antiviral potential. PubMedCrossRef
68.
Zurück zum Zitat Ishioka T, Kimura H, Kita H, Obuchi M, Hoshino H, Noda M, et al. Effects of respiratory syncytial virus infection and major basic protein derived from eosinophils in pulmonary alveolar epithelial cells (A549). Cell Biol Int. 2011;35(5):467–74.PubMedCrossRef Ishioka T, Kimura H, Kita H, Obuchi M, Hoshino H, Noda M, et al. Effects of respiratory syncytial virus infection and major basic protein derived from eosinophils in pulmonary alveolar epithelial cells (A549). Cell Biol Int. 2011;35(5):467–74.PubMedCrossRef
69.
Zurück zum Zitat Colocho Zelaya EA, Orvell C, Strannegard O. Eosinophil cationic protein in nasopharyngeal secretions and serum of infants infected with respiratory syncytial virus. Pediatr Allergy Immunol. 1994;5(2):100–6.PubMedCrossRef Colocho Zelaya EA, Orvell C, Strannegard O. Eosinophil cationic protein in nasopharyngeal secretions and serum of infants infected with respiratory syncytial virus. Pediatr Allergy Immunol. 1994;5(2):100–6.PubMedCrossRef
70.
Zurück zum Zitat Gryglewski RJ, Wolkow PP, Uracz W, Janowska E, Bartus JB, Balbatun O, et al. Protective role of pulmonary nitric oxide in the acute phase of endotoxemia in rats. Circ Res. 1998;82(7):819–27.PubMedCrossRef Gryglewski RJ, Wolkow PP, Uracz W, Janowska E, Bartus JB, Balbatun O, et al. Protective role of pulmonary nitric oxide in the acute phase of endotoxemia in rats. Circ Res. 1998;82(7):819–27.PubMedCrossRef
71.
Zurück zum Zitat MacPherson JC, Comhair SAA, Erzurum SC, Klein DF, Lipscomb MF, Kavuru MS, et al. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol. 2001;166(9):5763–72.PubMedCrossRef MacPherson JC, Comhair SAA, Erzurum SC, Klein DF, Lipscomb MF, Kavuru MS, et al. Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol. 2001;166(9):5763–72.PubMedCrossRef
72.
Zurück zum Zitat Su YC, Townsend D, Herrero LJ, Zaid A, Rolph MS, Gahan ME, et al. Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol. 2015;89(3):1564–78.PubMedCrossRef Su YC, Townsend D, Herrero LJ, Zaid A, Rolph MS, Gahan ME, et al. Dual proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol. 2015;89(3):1564–78.PubMedCrossRef
73.
Zurück zum Zitat Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000;105(7):945–53.PubMedPubMedCentralCrossRef Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000;105(7):945–53.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat van Rijt LS, Vos N, Hijdra D, de Vries VC, Hoogsteden HC, Lambrecht BN. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol. 2003;171(7):3372–8.PubMedCrossRef van Rijt LS, Vos N, Hijdra D, de Vries VC, Hoogsteden HC, Lambrecht BN. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol. 2003;171(7):3372–8.PubMedCrossRef
75.
Zurück zum Zitat MacKenzie JR, Mattes J, Dent LA, Foster PS. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol. 2001;167(6):3146–55.PubMedCrossRef MacKenzie JR, Mattes J, Dent LA, Foster PS. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol. 2001;167(6):3146–55.PubMedCrossRef
76.
Zurück zum Zitat Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol. 2007;179(11):7585–92.PubMedCrossRef Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol. 2007;179(11):7585–92.PubMedCrossRef
77.
Zurück zum Zitat Bender BS, Croghan T, Zhang L, Small PA Jr. Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med. 1992;175(4):1143–5.PubMedCrossRef Bender BS, Croghan T, Zhang L, Small PA Jr. Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med. 1992;175(4):1143–5.PubMedCrossRef
78.
Zurück zum Zitat Topham DJ, Tripp RA, Doherty PC. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997;159(11):5197–200.PubMed Topham DJ, Tripp RA, Doherty PC. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997;159(11):5197–200.PubMed
79.
80.
Zurück zum Zitat • Cline MJ, Hanifin J, Lehrer RI. Phagocytosis by human eosinophils. Blood. 1968;32(6):922–34 This paper provides seminal evidence for the phagocytotic potential of eosinophils. PubMedCrossRef • Cline MJ, Hanifin J, Lehrer RI. Phagocytosis by human eosinophils. Blood. 1968;32(6):922–34 This paper provides seminal evidence for the phagocytotic potential of eosinophils. PubMedCrossRef
81.
Zurück zum Zitat Davoine F, Cao M, Wu Y, Ajamian F, Ilarraza R, Kokaji AI, et al. Virus-induced eosinophil mediator release requires antigen-presenting and CD4+ T cells. J Allergy Clin Immunol. 2008;122(1):69–77 77.e1-2.PubMedCrossRef Davoine F, Cao M, Wu Y, Ajamian F, Ilarraza R, Kokaji AI, et al. Virus-induced eosinophil mediator release requires antigen-presenting and CD4+ T cells. J Allergy Clin Immunol. 2008;122(1):69–77 77.e1-2.PubMedCrossRef
82.
Zurück zum Zitat DeChatelet LR, et al. Comparison of intracellular bactericidal activities of human neutrophils and eosinophils. Blood. 1978;52(3):609–17.PubMedCrossRef DeChatelet LR, et al. Comparison of intracellular bactericidal activities of human neutrophils and eosinophils. Blood. 1978;52(3):609–17.PubMedCrossRef
83.
Zurück zum Zitat Mickenberg ID, Root RK, Wolff SM. Bactericidal and metabolic properties of human eosinophils. Blood. 1972;39(1):67–80.PubMedCrossRef Mickenberg ID, Root RK, Wolff SM. Bactericidal and metabolic properties of human eosinophils. Blood. 1972;39(1):67–80.PubMedCrossRef
84.
Zurück zum Zitat Linch SN, Kelly AM, Danielson ET, Pero R, Lee JJ, Gold JA. Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun. 2009;77(11):4976–82.PubMedPubMedCentralCrossRef Linch SN, Kelly AM, Danielson ET, Pero R, Lee JJ, Gold JA. Mouse eosinophils possess potent antibacterial properties in vivo. Infect Immun. 2009;77(11):4976–82.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat •• Yousefi S, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949–53 This paper provides evidence that eosinophils release mitochondrial DNA in defense against Gram-negative bacteria without compromising its viability. PubMedCrossRef •• Yousefi S, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949–53 This paper provides evidence that eosinophils release mitochondrial DNA in defense against Gram-negative bacteria without compromising its viability. PubMedCrossRef
86.
Zurück zum Zitat Hatano Y, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. Apmis. 2009;117(2):115–23.PubMedCrossRef Hatano Y, et al. Phagocytosis of heat-killed Staphylococcus aureus by eosinophils: comparison with neutrophils. Apmis. 2009;117(2):115–23.PubMedCrossRef
87.
Zurück zum Zitat Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.PubMedCrossRef Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.PubMedCrossRef
88.
Zurück zum Zitat • Ueki S, Melo RCN, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074–83 This paper provides evidence for extracellular trap formation by eosinophils when activated through immunoglobulins, PAF, calcium ionophore, and PMA in a process termed EETosis. PubMedPubMedCentralCrossRef • Ueki S, Melo RCN, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074–83 This paper provides evidence for extracellular trap formation by eosinophils when activated through immunoglobulins, PAF, calcium ionophore, and PMA in a process termed EETosis. PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011;127(5):1260–6.PubMedPubMedCentralCrossRef Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011;127(5):1260–6.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Morshed M, Yousefi S, Stöckle C, Simon HU, Simon D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012;67(9):1127–37.PubMedCrossRef Morshed M, Yousefi S, Stöckle C, Simon HU, Simon D. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy. 2012;67(9):1127–37.PubMedCrossRef
91.
Zurück zum Zitat Migler R, DeChatelet LR, Bass DA. Human eosinophilic peroxidase: role in bactericidal activity. Blood. 1978;51(3):445–56.PubMedCrossRef Migler R, DeChatelet LR, Bass DA. Human eosinophilic peroxidase: role in bactericidal activity. Blood. 1978;51(3):445–56.PubMedCrossRef
92.
Zurück zum Zitat Jong EC, Henderson WR, Klebanoff SJ. Bactericidal activity of eosinophil peroxidase. J Immunol. 1980;124(3):1378–82.PubMed Jong EC, Henderson WR, Klebanoff SJ. Bactericidal activity of eosinophil peroxidase. J Immunol. 1980;124(3):1378–82.PubMed
93.
Zurück zum Zitat Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, Scialino G, et al. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect Immun. 2003;71(2):605–13.PubMedPubMedCentralCrossRef Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, Scialino G, et al. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect Immun. 2003;71(2):605–13.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat •• Percopo CM, Krumholz JO, Fischer ER, Kraemer LS, Ma M, Laky K, et al. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J Leukoc Biol. 2019;105(1):151–61 This paper describes one of the few studies that translate in vitro bactericidal properties of eosinophil granule proteins to in vivo models. Despite reports that EPX is bactericidal in vitro, the authors found that mice lacking EPX were able to clear Haemophilus influenzae equally as well as EPX-sufficient mice. PubMedCrossRef •• Percopo CM, Krumholz JO, Fischer ER, Kraemer LS, Ma M, Laky K, et al. Impact of eosinophil-peroxidase (EPX) deficiency on eosinophil structure and function in mouse airways. J Leukoc Biol. 2019;105(1):151–61 This paper describes one of the few studies that translate in vitro bactericidal properties of eosinophil granule proteins to in vivo models. Despite reports that EPX is bactericidal in vitro, the authors found that mice lacking EPX were able to clear Haemophilus influenzae equally as well as EPX-sufficient mice. PubMedCrossRef
95.
Zurück zum Zitat Soragni A, et al. Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation. Mol Cell. 2015;57(6):1011–21.PubMedPubMedCentralCrossRef Soragni A, et al. Toxicity of eosinophil MBP is repressed by intracellular crystallization and promoted by extracellular aggregation. Mol Cell. 2015;57(6):1011–21.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Torrent M, Odorizzi F, Nogués MV̀, Boix E. Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules. 2010;11(8):1983–90.PubMedCrossRef Torrent M, Odorizzi F, Nogués MV̀, Boix E. Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules. 2010;11(8):1983–90.PubMedCrossRef
97.
Zurück zum Zitat Torrent M, Pulido D, Nogués MV, Boix E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog. 2012;8(11):e1003005.PubMedPubMedCentralCrossRef Torrent M, Pulido D, Nogués MV, Boix E. Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation. PLoS Pathog. 2012;8(11):e1003005.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Lehrer RI, et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol. 1989;142(12):4428–34.PubMed Lehrer RI, et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol. 1989;142(12):4428–34.PubMed
99.
Zurück zum Zitat Torrent M, Navarro S, Moussaoui M, Nogués MV, Boix E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry. 2008;47(11):3544–55.PubMedCrossRef Torrent M, Navarro S, Moussaoui M, Nogués MV, Boix E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry. 2008;47(11):3544–55.PubMedCrossRef
100.
Zurück zum Zitat Pulido D, Moussaoui M, Andreu D, Nogués MV, Torrent M, Boix E. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrob Agents Chemother. 2012;56(5):2378–85.PubMedPubMedCentralCrossRef Pulido D, Moussaoui M, Andreu D, Nogués MV, Torrent M, Boix E. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrob Agents Chemother. 2012;56(5):2378–85.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Rosenberg HF, Ackerman SJ, Tenen DG. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med. 1989;170(1):163–76.PubMedCrossRef Rosenberg HF, Ackerman SJ, Tenen DG. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med. 1989;170(1):163–76.PubMedCrossRef
102.
Zurück zum Zitat Domachowske JB, Bonville CA, Dyer KD, Rosenberg HF. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res. 1998;26(23):5327–32.PubMedPubMedCentralCrossRef Domachowske JB, Bonville CA, Dyer KD, Rosenberg HF. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res. 1998;26(23):5327–32.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol. 2004;173(10):6134–42.PubMedCrossRef Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol. 2004;173(10):6134–42.PubMedCrossRef
104.
Zurück zum Zitat Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood. 2003;102(9):3396–403.PubMedCrossRef Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood. 2003;102(9):3396–403.PubMedCrossRef
105.
Zurück zum Zitat Melo RC, Weller PF. Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol. 2010;25(10):1341–54.PubMedPubMedCentral Melo RC, Weller PF. Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol. 2010;25(10):1341–54.PubMedPubMedCentral
106.
Zurück zum Zitat Svensson L, Wenneras C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect. 2005;7(4):720–8.PubMedCrossRef Svensson L, Wenneras C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect. 2005;7(4):720–8.PubMedCrossRef
107.
Zurück zum Zitat Hosoki K, Nakamura A, Kainuma K, Sugimoto M, Nagao M, Hiraguchi Y, et al. Differential activation of eosinophils by bacteria associated with asthma. Int Arch Allergy Immunol. 2013;161(Suppl 2):16–22.PubMedCrossRef Hosoki K, Nakamura A, Kainuma K, Sugimoto M, Nagao M, Hiraguchi Y, et al. Differential activation of eosinophils by bacteria associated with asthma. Int Arch Allergy Immunol. 2013;161(Suppl 2):16–22.PubMedCrossRef
108.
Zurück zum Zitat Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tokuda R, Wada H, et al. Differential activation of eosinophils by ‘probiotic’ Bifidobacterium bifidum and ‘pathogenic’ Clostridium difficile. Int Arch Allergy Immunol. 2010;152(Suppl 1):83–9.PubMedCrossRef Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tokuda R, Wada H, et al. Differential activation of eosinophils by ‘probiotic’ Bifidobacterium bifidum and ‘pathogenic’ Clostridium difficile. Int Arch Allergy Immunol. 2010;152(Suppl 1):83–9.PubMedCrossRef
109.
Zurück zum Zitat Fischer E, Capron M, Prin L, Kusnierz JP, Kazatchkine MD. Human eosinophils express CR1 and CR3 complement receptors for cleavage fragments of C3. Cell Immunol. 1986;97(2):297–306.PubMedCrossRef Fischer E, Capron M, Prin L, Kusnierz JP, Kazatchkine MD. Human eosinophils express CR1 and CR3 complement receptors for cleavage fragments of C3. Cell Immunol. 1986;97(2):297–306.PubMedCrossRef
110.
Zurück zum Zitat Gupta S, Ross GD, Good RA, Siegal FP. Surface markers of human eosinophils. Blood. 1976;48(5):755–63.PubMedCrossRef Gupta S, Ross GD, Good RA, Siegal FP. Surface markers of human eosinophils. Blood. 1976;48(5):755–63.PubMedCrossRef
111.
Zurück zum Zitat Lopez AF, Battye FL, Vadas MA. Fc receptors on mouse neutrophils and eosinophils: antigenic characteristics, isotype specificity and relative cell membrane density measured by flow cytometry. Immunology. 1985;55(1):125–33.PubMedPubMedCentral Lopez AF, Battye FL, Vadas MA. Fc receptors on mouse neutrophils and eosinophils: antigenic characteristics, isotype specificity and relative cell membrane density measured by flow cytometry. Immunology. 1985;55(1):125–33.PubMedPubMedCentral
112.
Zurück zum Zitat Mantovani B. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J Immunol. 1975;115(1):15–7.PubMed Mantovani B. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J Immunol. 1975;115(1):15–7.PubMed
113.
Zurück zum Zitat Plotz SG, et al. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood. 2001;97(1):235–41.PubMedCrossRef Plotz SG, et al. The interaction of human peripheral blood eosinophils with bacterial lipopolysaccharide is CD14 dependent. Blood. 2001;97(1):235–41.PubMedCrossRef
114.
Zurück zum Zitat Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, et al. Expression and function of toll-like receptors in eosinophils: activation by toll-like receptor 7 ligand. J Immunol. 2003;171(8):3977–82.PubMedCrossRef Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, et al. Expression and function of toll-like receptors in eosinophils: activation by toll-like receptor 7 ligand. J Immunol. 2003;171(8):3977–82.PubMedCrossRef
115.
Zurück zum Zitat Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, et al. TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood. 2009;113(14):3235–44.PubMedCrossRef Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, et al. TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood. 2009;113(14):3235–44.PubMedCrossRef
116.
Zurück zum Zitat Kvarnhammar AM, Petterson T, Cardell LO. NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology. 2011;134(3):314–25.PubMedPubMedCentralCrossRef Kvarnhammar AM, Petterson T, Cardell LO. NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology. 2011;134(3):314–25.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ, et al. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol. 2013;10(4):317–29.PubMedPubMedCentralCrossRef Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ, et al. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol. 2013;10(4):317–29.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Ahren IL, et al. Nontypeable Haemophilus influenzae activates human eosinophils through beta-glucan receptors. Am J Respir Cell Mol Biol. 2003;29(5):598–605.PubMedCrossRef Ahren IL, et al. Nontypeable Haemophilus influenzae activates human eosinophils through beta-glucan receptors. Am J Respir Cell Mol Biol. 2003;29(5):598–605.PubMedCrossRef
119.
Zurück zum Zitat Willment JA, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35(5):1539–47.PubMedCrossRef Willment JA, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35(5):1539–47.PubMedCrossRef
120.
Zurück zum Zitat Wong CK, Cheung PFY, Ip WK, Lam CWK. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol. 2007;37(1):85–96.PubMedCrossRef Wong CK, Cheung PFY, Ip WK, Lam CWK. Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol. 2007;37(1):85–96.PubMedCrossRef
121.
Zurück zum Zitat Hansel TT, Braunstein JB, Walker C, Blaser K, Bruijnzeel PL, Virchow JC Jr, et al. Sputum eosinophils from asthmatics express ICAM-1 and HLA-DR. Clin Exp Immunol. 1991;86(2):271–7.PubMedPubMedCentralCrossRef Hansel TT, Braunstein JB, Walker C, Blaser K, Bruijnzeel PL, Virchow JC Jr, et al. Sputum eosinophils from asthmatics express ICAM-1 and HLA-DR. Clin Exp Immunol. 1991;86(2):271–7.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Sedgwick JB, et al. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol. 1992;149(11):3710–8.PubMed Sedgwick JB, et al. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J Immunol. 1992;149(11):3710–8.PubMed
123.
Zurück zum Zitat Mengelers HJ, et al. Immunophenotyping of eosinophils recovered from blood and BAL of allergic asthmatics. Am J Respir Crit Care Med. 1994;149(2 Pt 1):345–51.PubMedCrossRef Mengelers HJ, et al. Immunophenotyping of eosinophils recovered from blood and BAL of allergic asthmatics. Am J Respir Crit Care Med. 1994;149(2 Pt 1):345–51.PubMedCrossRef
124.
Zurück zum Zitat Lucey DR, Nicholson-Weller A, Weller PF. Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci U S A. 1989;86(4):1348–51.PubMedPubMedCentralCrossRef Lucey DR, Nicholson-Weller A, Weller PF. Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci U S A. 1989;86(4):1348–51.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Wedi B, Wieczorek D, Stünkel T, Breuer K, Kapp A. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J Allergy Clin Immunol. 2002;109(3):477–84.PubMedCrossRef Wedi B, Wieczorek D, Stünkel T, Breuer K, Kapp A. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J Allergy Clin Immunol. 2002;109(3):477–84.PubMedCrossRef
127.
Zurück zum Zitat Mawhorter SD, Kazura JW, Boom WH. Human eosinophils as antigen-presenting cells: relative efficiency for superantigen- and antigen-induced CD4+ T-cell proliferation. Immunology. 1994;81(4):584–91.PubMedPubMedCentral Mawhorter SD, Kazura JW, Boom WH. Human eosinophils as antigen-presenting cells: relative efficiency for superantigen- and antigen-induced CD4+ T-cell proliferation. Immunology. 1994;81(4):584–91.PubMedPubMedCentral
128.
Zurück zum Zitat Weller PF, et al. Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol. 1993;150(6):2554–62.PubMed Weller PF, et al. Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol. 1993;150(6):2554–62.PubMed
129.
Zurück zum Zitat Palipane M, Snyder JD, LeMessurier KS, Schofield AK, Woolard SN, Samarasinghe AE. Macrophage CD14 impacts immune defenses against influenza virus in allergic hosts. Microb Pathog. 2019;127:212–9.PubMedCrossRef Palipane M, Snyder JD, LeMessurier KS, Schofield AK, Woolard SN, Samarasinghe AE. Macrophage CD14 impacts immune defenses against influenza virus in allergic hosts. Microb Pathog. 2019;127:212–9.PubMedCrossRef
Metadaten
Titel
Eosinophils: Nemeses of Pulmonary Pathogens?
verfasst von
Kim S. LeMessurier
Amali E. Samarasinghe
Publikationsdatum
01.08.2019
Verlag
Springer US
Erschienen in
Current Allergy and Asthma Reports / Ausgabe 8/2019
Print ISSN: 1529-7322
Elektronische ISSN: 1534-6315
DOI
https://doi.org/10.1007/s11882-019-0867-1

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.