Skip to main content
Erschienen in: Virology Journal 1/2017

Open Access 01.12.2017 | Review

Epidemiology and genetic diversity of bovine leukemia virus

verfasst von: Meripet Polat, Shin-nosuke Takeshima, Yoko Aida

Erschienen in: Virology Journal | Ausgabe 1/2017

Abstract

Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Abkürzungen
AGID
Agar gel immunodiffusion
BI
Bayesian inference method
BLV
Bovine leukemia virus
EBL
Enzootic bovine leukosis
ELISA
Enzyme-linked immunosorbent assay
EPAHW
European Food Safety Authority panel on animal health and welfare
HTLV-I &-II
Human T-cell lymphotropic virus types I and II
LTR
Long terminal repeats
miRNA
microRNA
ML
Maximum likelihood method
NJ
Neighbor-joining method
PCR
Polymerase chain reaction
PHA
Passive hemagglutination assay
PL
Persistent lymphocytosis
qPCR
Quantitative PCR
RFLP
Restriction fragment length polymorphism
RIA
Radio immunoassay
STLV
Simian T-cell lymphotropic virus

Background

Bovine leukemia virus (BLV) is a retrovirus, an oncogenic member of the Deltaretrovirus genus, and the causative agent of enzootic bovine leukosis (EBL) [1, 2]. The Deltaretrovirus genus also includes human T-cell lymphotropic virus types I and II (HTLV-I and -II) and simian T-cell lymphotropic virus (STLV) [3, 4]. EBL is a contagious lymphoproliferative disease of cattle, characterized by B-cell lymphosarcoma, which occurs throughout the world [2, 5]. Although BLV can infect various immune cell populations, including CD5+ IgM+ and CD5 IgM+ B-cells; CD2+, CD3+, CD4+, CD8+, and γ/δ T-cells; monocytes; and granulocytes in peripheral blood and lymphoid tissues of cattle [611], BLV-induced tumors usually arise from the CD5+ IgM+ B-cell subpopulation [12].
BLV infection can result in a variety of clinical outcomes [2]. The majority of BLV-infected cattle are asymptomatic carriers of the virus, neither showing any clinical signs nor any changes in lymphocyte count; however, a recent study showed that although lymphocyte counts were not elevated in BLV-infected but clinically normal cattle, CD5+ IgM+ B-cells were increased [11], and there is substantial evidence suggesting that BLV-infected but clinically normal cattle may exhibit a degree of immunological dysregulation leading to economic losses for various reasons including reduced milk production [13], a high incidence of infectious disease [14], and reproductive inefficiency [15]. Approximately one-third of infected cattle develop a benign form of non-malignant proliferation of untransformed B-lymphocytes, termed persistent lymphocytosis (PL). PL is typically characterized by a permanent and stable increase in the number of CD5+ IgM+ B-cells circulating in the peripheral blood. Less than 5% of infected cattle develop malignant B-cell lymphoma originating from mono- or oligo-clonal accumulation of CD5+ IgM+ B-cells after a relatively long period of latency. This malignant form of B-cell lymphoma is predominantly detected in cattle over 4–5 years old [16]. Such malignancies induce disruption of the spleen and remarkable enlargement of the lymph nodes, which can be visible under the skin. BLV-induced neoplastic cells can penetrate into the abomasums, right auricle of the heart, intestine, kidney, lung, liver, and uterus. The clinical signs of BLV-induced tumors are varied and primarily involve digestive disturbance, weight loss, weakness, reduced milk production, loss of appetite, and enlarged lymph nodes [17].

BLV genome structure

The BLV genome consists of 8714 nucleotides (nt) [18] including essential structural protein and enzyme coding genes and a pX region, flanked by two identical long terminal repeats (LTRs) (Fig. 1a). The structural protein and enzyme coding genes, namely, gag, pro, pol, and env, have essential and indispensable roles in the viral lifecycle, viral infectivity, and the production of infectious virions [1924]. The gag gene of BLV is translated as the precursor, Pr45 Gag, and processed to generate three mature proteins [19, 23]: the matrix protein, p15, which binds viral genomic RNA and interacts with the lipid bilayer of the viral membrane [25]; the capsid protein, p24, which is the major target of the host immune response, with high antibody titers against this molecule found in the serum of infected animals [26, 27]; and the nucleocapsid protein, p12, which binds to packaged genomic RNA [28] (Fig. 1b). The env gene encodes the mature extracellular protein, gp51, and a transmembrane protein, gp30 [19]. The pX region, which is located between env and the 3′ LTR [2], encodes the regulatory proteins Tax and Rex, and the accessory proteins R3 and G4 (Fig. 1a). The regulatory proteins are important for regulation of viral transcription, transformation of BLV-induced leukemogenesis, and nuclear export of viral RNA into the cytoplasm [2936]. The R3 and G4 accessory proteins contribute to the maintenance of high viral loads [37, 38]. In addition to the genes described above, the BLV genome also contains RNA polymerase-III-encoded viral microRNAs (miRNAs) between the env and pX regions. Viral miRNAs are strongly expressed in preleukemic and malignant cells, and may have roles in tumor onset and progression [39, 40] through their effects on proviral load and consequently viral replication in the natural host [41]. Besides, Van Driessche et al. revealed the recruitment of positive epigenetic marks on BLV miRNA cluster, inducing strong antisense promoter activity [42]. They also identified cis-acting elements of an RNAPII-dependent promoter [42].

BLV diagnosis

A variety of techniques have been developed for diagnosis of BLV and implemented worldwide. These diagnostic methods can be assigned into two main groups, consisting of antibody-based serological tests and detection of the proviral genome by nucleic acid-based polymerase chain reaction (PCR) assays (summarized in Table 1).
Table 1
Summary of common techniques used for diagnosis of BLV prevalence
Diagnostic assay
Sample
Target
Advantages
Disadvantages
References
Type
Assay
Serological test
AGID
Serum
Antibodies (p24, gp51)
Specific, simple, and easy to perform Large scale screening Less expensive
Rapid
Less sensitive and inconclusive Cannot evaluate disease states of infected cattle
Aida et al., 1989 [47]
Wang et al., 1991 [48]
Monti et al., 2005 [49]
Kurdi et al., 1999 [50]
Jimba et al., 2012 [43]
Naif et al., 1990 [55]
ELISA
Serum Milk Bulk milk
Antibodies (p24, gp51)
Specific and sensitive Large scale screening Time saving
False negatives (cattle in early infection phase) False positive (maternally derived antibodies) Cannot evaluate disease states of infected cattle A number of controls and a plate reader required Results require interpretation
Naif et al., 1990 [55]
Burridge et al., 1982 [56]
Schoepf et al., 1997 [53]
Kurdi et al., 1999 [50]
Monti et al., 2005 [49]
Jimba et al., 2012 [43]
Zaghawa et al., 2002 [52]
PHA
Virus particle
BLV glycoprotein
Sensitive Specific detection of BLV Large scale titration Less expensive
Rapid
Affected by pH and temperature Hemagglutination activity reduced by trypsin, potassium periodate, and neuraminidase
Fukai et al., 1999 [51]
RIA
Serum
Antibodies (p24)
Sensitive Able to detect BLV during the early period of infection
Cannot be used for mass screening
Levy et al., 1977 [54]
Nguyen et al., 1993 [57]
Proviral DNA detection
Single PCR; Semi-nested PCR; Nested PCR
Blood PBMC Tumor sample Buffy coat Milk somatic cells
Semen Saliva Nasal secretions
Provirus
Direct, fast, sensitive A variety of samples can be used BLV detection during the early phase of infection or in the presence of colostrum antibodies
Can detect new infections, before the development of antibodies to BLV
Unable to detect BLV when the proviral load is too low
Cross contamination occurs easily Requires specific primers Requires equipment (PCR machine) False negatives in the presence of PCR inhibitory substances in samples Requires internal control Needs confirmatory testing, such as sequencing
Monti et al., 2005 [49]
Kurdi et al., 1999 [50]
Zaghawa et al., 2002 [52]
Tajima et al., 1998 [64]
Tajima et al., 2003 [61]
Real-time PCR
Blood PBMC Tumor sample Buffy coat Milk
Somatic cells Semen Saliva Nasal secretions
Provirus
Direct, fast, sensitive Low risk of contamination A variety of samples can be used Distinguishes EBL from SBL BLV can be detected during the early phase of infection or in the presence of colostrum antibodies Quantitative measurement of proviral load
Requires internal control Requires positive controls of different concentrations Requires specific primers and probes Require equipment (real-time PCR machine) Expensive
Complicated sample preparation procedure
Somura et al., 2014 [68]
Lew et al., 2004 [69]
Jimba et al., 2010 [70]
Jimba et al., 2012 [43]
Tawfeeq et al., 2013 [67]
Brym et al., 2013 [66]
Takeshima et al., 2015 [71]
Direct blood-based PCR
Blood
Provirus
Cost-effective No need for DNA purification Low risk of contamination
Unable to detect BLV when the proviral load is too low
Results in failure if there are mismatches between the PCR primers and BLV sequences Relatively low sensitivity
Nishimori et al., 2016 [72]
Takeshima et al., 2016 [73]
AGID agar gel immunodiffusion, BLV bovine leukemia virus, EBL enzootic bovine leukosis, ELISA enzyme-linked immunosorbent assay, PHA passive hemagglutination assay, RIA radio immunoassay

Serological tests

For indirect BLV diagnostic methods, particularly antibody-based tests, antibodies recognizing the p24 capsid protein encoded by the gag gene and the extracellular gp51 protein encoded by env-gp51 are targeted. This is because antibodies against these proteins are produced shortly after BLV infection, can be detected 2–3 weeks post-infection, and remain detectable for the life of the host animal [43]. In addition, the p24 capsid protein is a major target for host immune responses, inducing high antibody titers [44], and gp51 invokes the expression of massive amounts of specific antibodies in infected animals [24, 45, 46]. Therefore, antibodies against these proteins are targeted for BLV diagnostics using conventional serological techniques such as agar gel immunodiffusion (AGID) [43, 4750], passive hemagglutination assay (PHA) [43, 51], enzyme-linked immunosorbent assay (ELISA) [43, 49, 50, 52, 53], and radio immunoassay (RIA) [54]. Most of these serological methods aim to detect antibodies in bovine serum and milk, and the supernatants of BLV-infected cell cultures. AGID is relatively inexpensive and can be used to screen many serum samples simultaneously; however, it is not sufficiently sensitive [55] and it is not suitable for analysis of milk samples. ELISA is a highly sensitive and easily implemented procedure, and can be used to analyze both serum and milk samples; however, it requires a number of controls and produces both false-negative result in serum samples from cattle in the early phase of infection [55] and false-positive results in calves that contain maternally-derived antibodies [56]. PHA aims to detect BLV glycoproteins, but, PHA test efficiency is sensitive to pH, temperature, and trypsin. RIA is suitable for diagnosing BLV soon after animals are exposed, but not suitable for the purpose of mass screening [57]. Overall, these antibody-based detection methods cannot be used to test calves less than 6 months old, due to the presence of maternal antibodies, which may trigger false-positive results [58].

Proviral DNA detection

BLV can integrate into dispersed sites within the host genome [59] and appears to be transcriptionally silent in vivo [6062] and remain in cellular genomes, even in the absence of detectable BLV antibodies. Indeed, transcription of the BLV genome in fresh tumor or peripheral blood mononuclear cell samples from infected individuals is almost undetectable by conventional techniques [60, 63]. Interestingly, one copy of the full-length proviral genome can be detected in BLV-infected cattle throughout the course of the disease [64]. Another study also demonstrated that BLV-induced tumors and BLV-infected cells contain provirus, with approximately four copies of proviral DNA in each tumor [65]. Hence, in addition to the routine diagnosis of BLV infection using the conventional serological techniques described above, nucleic acid-based PCR methods can greatly accelerate the detection of BLV prevalence.
A variety of PCR methods, including standard PCR [49, 50], nested PCR [33, 52, 64], real-time quantitative PCR (qPCR) [43, 6671], and direct blood-based PCR [72, 73], have been extensively applied worldwide for BLV detection (Table 1). A variety of genes in the BLV genome are targeted for detection of BLV infection prevalence by direct diagnostic PCR methods, including the LTR region [43, 70, 71, 7377], and the gag [78], pol [69, 79, 80], env [55, 79], and tax [68, 79] genes.
Importantly, the BLV provirus copy number is generally very low compared with that of host genes therefore, the majority of PCR systems designed to detect BLV used a nested design [64, 74, 76]. These nested assays are extremely sensitive, but also obtain false-positive results due to DNA contamination. However, the method requires expensive real-time PCR machines and reagents and involves difficult sample preparation protocols. Recently, a novel blood-based PCR system that amplifies target DNA regions without a requirement for DNA isolation and purification was developed [72, 73]. The assay can detect BLV provirus with high specificity and at low cost, facilitating timely identification of BLV-infected cattle.
As discussed above, PCR-based genome screening methods for diagnosis of BLV broaden the range of samples that can be used, increase testing sensitivity, specificity, and efficiency, and are less time consuming. PCR also allows the detection of BLV infection in cattle several weeks before it is possible to detect antibodies [81]; however, PCR-based provirus screening involves complicated sample preparation processes, which can lead to false-positive results if cross contamination occurs. In addition, PCR-based BLV detection methods require specific laboratory facilities, including PCR machines, and the design of specific primers and probes is also necessary. The CoCoMo algorithm, is a method used to design degenerate primer sets that amplify all available sequences within a target region. Recently, the BLV-CoCoMo-qPCR assay was developed to measure the BLV proviral load with extremely high sensitivity and to amplify both known and novel BLV variants [43, 70, 71]. This assay enabled us to demonstrate that the proviral load correlates not only with BLV infection capacity but also with BLV disease progression [43, 82], and identification of risk factor associated with increased BLV proviral load in infected cattle [82, 83] and detection of BLV provirus in nasal secretion and saliva samples [84].

Other methods

In addition to the techniques described above, other BLV diagnostic approaches, including detection of viral proteins by western blotting [21, 31, 33, 85], a syncytium formation assay [85], and detection of BLV antigens by indirect immunofluorescent assay [47], have also been described.

BLV genotyping and identification of ten distinct genotypes

Studies of BLV genotypes for phylogenetic and epidemiological analyses have primarily focused on the env gene, the env gp51 gene in particular, because of its biological functions. The extracellular gp51 protein has key roles in the viral lifecycle and is indispensable for viral entry into host cells [20, 86]. In addition, because of the surface localization of the gp51 glycoprotein, it is also the target of neutralizing antibodies [87]. The conformational epitopes, F, G, and H, located in the N-terminal half of gp51, are important in syncytium formation and viral infectivity [87, 88]. Therefore, the env gp51 sequence region is frequently used for BLV phylogenetic analysis.
Over the years, a number of methods have been applied for BLV genotyping, as summarized in Table 2. In the early days of BLV genotyping, researchers clustered or genotyped BLV strains from different geographical regions based on restriction fragment length polymorphisms (RFLP) of PCR-products, generated using various restriction enzymes [86, 8996]. BLV clusters and genotypes were named after the geographical region of sample isolation, such as “Argentine type” or “Australian type”, or with reference to phylogenetic clustering (e.g., “cluster one”). A total of seven BLV clusters/genotypes were determined by PCR-RFLP [91]; however, PCR-RFLP genotyping studies were not consistent or comprehensive.
Table 2
Summary of BLV genotyping methods
Genotyping method
Amplified BLV region
Amplicon size (bp)
Enzymes
Phylogenetic approaches
Classification result
Reference
PCR-RFLP
Partial env-gp51 region
444
BamHI, BglI, HaeIII, BclI, PvuII, DraI, HindIII, HpaII, StuI, TaqI
 
7 groups: A, B, C, D, E, F, G
Fechner et al., 1997 [90]
Licursi et al., 2002 [91]
Asfaw et al., 2005 [95]
RFLP + sequencing
Partial gp51 sequencing
400–444
BamHI, BclI, PvuII, GmbH
NJ; MP; ML
RFLP-based type: Australian type, Argentine type, Belgium type, Japanese type; Sequence-based type: Argentine cluster, European cluster, Japan and German isolate cluster; groups I–IV; or genotypes 1–8
Monti et al., 2005 [49]
Felmer et al., 2005 [93]
Camargos et al., 2007 [122]
PCR-sequencing
Partial gp51 sequencing
346–444
 
NJ; ML; BI
Japanese group, Argentine group, European group; or genotypes 1–8
Camargos et al., 2002 [121]
Licursi et al., 2003 [92]
Matsumura et al., 2011 [98]
Rola-Luszczak et al., 2013 [99]
Polat et al., 2015 [74]
Ochirkhuu et al., 2016 [77]
Polat et al., 2016 [75, 76]
 
Sequencing of partial or full gp51 gene sequences
444–903
 
NJ; ML; BI
Up to 10 BLV genotypes
Moratorio et al., 2010 [126]
Balic et al., 2012 [97]
Lee et al., 2015 [100]
Lee et al., 2016 [101]
 
Sequencing of env (full gp51 and/or gp30 genes)
up to 1548
 
NJ; ML; BI
Consensus cluster, US Californian cluster, European cluster, Costa Rican cluster; or genotypes 1–10
Zhao et al., 2007 [109]
Rodriguez et al., 2009 [96]
Yang et al., 2016 [131]
Full BLV genome sequencing
BLV complete genome
8714
 
ML
genotypes −1, −2, −4, −6, −9, and −10
Polat et al., 2016 [75, 76]
BI Bayesian inference, BLV bovine leukemia virus, NJ neighbor-joining, ML maximum-likelihood, MP maximum-parsimony, RFLP restriction fragment length polymorphism
In 2007, Rodriguez et al. reported sequencing of the env gene (all of gp51 and part of gp30) of 28 BLV field strains, performed phylogenetic analysis of these sequences in comparison with published sequence data representative of established genetic groups by neighbor-joining, maximum likelihood, and Bayesian inference methods, and assigned BLV sequences into seven genotypes [97]. Subsequently, a new genotype, genotype-8, was identified in BLV samples from Croatia by Balic et al. [98], who concluded that BLV may be more divergent than previously thought, speculating that additional genotypes might be discovered in the future. Indeed, the presence of eight BLV genotypes was later confirmed in different geographical locations [74, 77, 99101]. Finally, in 2016, the novel BLV genotypes, genotype-9 and -10, were discovered in Bolivia [75], Thailand [102], and Myanmar [76], a totaling ten BLV genotype clusters (Fig. 2). Previously, almost all phylogenetic studies of BLV genotypes focused on the partial or entire env gene. However, for the first time in their study [75, 76], Polat et al. successfully concluded the existence of genotypes-1, −2, −4, −6, −9 and −10 among ten BLV genotypes (Fig. 3) by phylogenetic analysis using complete sequences of BLV strains newly determined by next generation sequencing and sequencing cloned, overlapping PCR products in their studies, and using complete BLV genome sequences available in the database (NCBI & DDBJ). These phylogenetic analysis of complete BLV genomes demonstrated that each BLV genotype encodes specific amino acid substitutions in both structural and non-structural gene regions.

BLV prevalence

BLV has spread to all continents via the trade in breeding animals, and is prevalent in cattle worldwide. BLV infection levels vary between and within countries, as shown in Table 3 (data obtained on March 17th, 2017; updated and detailed information is available at http://​www.​oie.​int/​wahis_​2/​public/​wahid.​php/​Diseaseinformati​on/​statuslist) [17, 103]. BLV eradication programs and control measures have been established in European Community member countries since the second half of the twentieth century, and eradication programs have been very successful in the majority of western Europe [104107]; indeed, some countries, including Denmark, Finland, Switzerland, Estonia, The Netherlands and Poland, are completely free of BLV [104, 108110]. Despite the majority of countries in Western Europe being free from disease, EBL still exists in eastern European nations, including Poland, Ukraine, and Croatia [98, 100, 111113]. In addition, in Italy, Portugal, Belarus, Latvia, Greece, Romania, and Bulgaria, BLV is present, although disease is either absent or limited to specific areas [103].
Table 3
Detailed information on BLV infection levels worldwide
Geographical division
Country
Within country
BLV prevalencea
References
Europe
Andorra
Nationwide
BLV-free, 1994
OIE, 2009 [103]
Cyprus
Nationwide
BLV-free, 1995
OIE, 2009 [103]
Czech Republic
Nationwide
BLV-free, 2010
OIE, 2009 [103]
Denmark
Nationwide
BLV-free, 1990
OIE, 2009 [103]
Estonia
Nationwide
BLV-free, 2013
OIE, 2009 [103]
Finland
Nationwide
BLV-free, 2008
OIE, 2009 [103]
Ireland
Nationwide
BLV-free, 1999
OIE, 2009 [103]
Norway
Nationwide
BLV-free, 2002
OIE, 2009 [103]
Spain
Nationwide
BLV-free, 1994
OIE, 2009 [103]
Switzerland
Nationwide
BLV-free, 2005
OIE, 2009 [103]
Sweden
Nationwide
BLV-free, 2007
OIE, 2009 [103]
Slovenia
Nationwide
BLV-free, 2006
OIE, 2009 [103]
UK
Nationwide
BLV-free, 1996
OIE, 2009 [103]
The Netherlands
Nationwide
BLV-free, 2009
OIE, 2012 [17]
Poland
 
BLV-free, 2017
EFSA Panel on Animal Health and Welfare, 2017 [110]
Ukraine
 
Present
OIE, 2012 [17]; Rola-Luszczak et al., 2013 [100]
Croatia
 
Present
OIE, 2012 [17]; Balik et al., 2012
Italy
 
Present
OIE, 2009 [103]; Molteni et al., 1996 [144]
Portugal
 
Present
OIE, 2009 [103]
Belarus
 
Present
OIE, 2012 [17]; Rola-Luszczak et al., 2013 [100]
Latvia
 
Present
OIE, 2009 [103]
Romania
 
Restricted to certain area
OIE, 2009 [103]
Bulgaria
 
Present
OIE, 2009 [103]
Greece
 
Present
OIE, 2009 [103]
Oceania
Australia
 
BLV-free in dairy cattle, 2013
EPAHW, 2015 [113]
New Zealand
 
BLV-free, 2008
Chethanond, 1999 [114]
North America
USA
 
83.9% dairy cattle; 39% beef cattle, 2007
APHIS, 2008 [115]
Canada
Nationwide
89% at herd level
APHIS, 2008 [115]
 
Nationwide
78% at herd level, 1998–2003
Nekouei, 2015 [13]
 
Saskatchewan
37.2% at individual level, 2001
VanLeeuwen et al., 2001 [116]
 
Maritime
20.8% at individual and 70.0% at herd level, 1998–1999
VanLeeuwen et al., 2005 [117]
 
Maritime
30.4% at individual and 90.8% at herd level, 2013
Nekouei, 2015 [118]
Mexico
Nationwide
36.1% of dairy and 4.0% of beef cattle, 1983
Suzan et al., 1983 [119]
South America
Brazil
 
17.1% to 60.8%, 1980–1989 and 1992–1995
Sammara et al., 1997 [120] ; D’Angelino et al., 1998 [121]
Argentina
Buenos Aires
77.4% at individual and 90.9% at herd level, 2007
Polat et al., 2016 [75]
 
Multiple regions
32.85% at individual and 84% at herd level, 1998–1999
Trono et al., 2001 [124]
Chile
Southern region
27.9% at individual level, 2009
Polat et al., 2016 [75]
Bolivia
Multiple regions
30.7% at individual level, 2008
Polat et al., 2016 [75]
Peru
Multiple regions
42.3% at individual level, 2008
Polat et al., 2016 [75]
 
Multiple regions
31.0% at individual level, 1983
Ch, 1983 [125]
Venezuela
Nationwide
33.3% at individual level, 1978
Marin et al., 1978 [126]
Uruguay
 
Present
Moratorio et al., 2010 [127]
Paraguay
Asuncion
54.7% at individual level, 2008
Polat et al., 2016 [75]
Colombia
Narino
19.8% at individual level, 2013
Benavides et al., 2013 [131]
Africa
South Africa
 
BLV-free, 2012
OIE, 2012 [17]
Tunisia
 
BLV-free, 2005
OIE, 2009 [103]
Egypt
 
BLV-free, 1997
OIE, 2009 [103]
Asia
Kazakhstan
 
BLV-free, 2007
OIE, 2009 [103]
Kyrgyzstan
 
BLV-free, 2008
OIE, 2009 [103]
China
 
49.1% of dairy and 1.6% of beef cattle, 2013–2014
Yang et al., 2016 [132]
Japan
Nationwide
40.9% of dairy and 28.7% of beef cattle, 2009–2011
Murakami et al., 2013 [136]
 
Nationwide
79.1% of dairy herd, 2007
Kobayashi et al., 2010 [134]
 
Nationwide
28.6% overall; 34.7% of dairy, 16.3% of beef, and 7.9% of fattening beef cattle, 2007
Murakami et al., 2011 [135]
 
Nationwide
73.3% at individual cattle, 2012–2014
Ohno et al., 2015 [83]
Mongolia
 
3.9% of dairy cattle, 2014
Ochirkhuu et al., 2016 [77]
Cambodia
 
5.3% of draught cattle, 2000
Meas et al., 2000 [137]
Taiwan
 
5.8% of dairy cattle, 1986
Wang et al., 1991 [48]
Iran
Nationwide
Between 22.1% to 25.4%, 2012–2014
Nekoei et al., 2015 [138]; Mousavi et al., 2014 [139].
 
Khorasan Razavi
29.8% of dairy cattle, 2009
Mousavi et al., 2014 [139].
 
Khorasan Shomali
1.5% of dairy cattle, 2009
Mousavi et al., 2014 [139].
Thailand
 
58.7% of cattle, 2013–2014
Lee et al., 2016 [102]
Philippines
 
4.8% to 9.7% of cattle, 2010–2012
Polat et al., 2015 [74]
Myanmar
 
9.1% at individual level 2016
Polat et al., 2016 [76]
Korea
 
54.2% of dairy cattle and 86.8% of dairy herds; 0.14% of beef cattle, 2014
Lee et al., 2015 [101]
Middle East
Israeli
 
5% at individual level
Trainin & Brenner, 2005 [140]
Saudi Arabia
 
20.2% of dairy cattle, 1990
Hafez et al., 1990 [141]
Turkey
 
48.3% of dairy herd
Burgu et al., 2005 [142]
BLV prevalence in this table shows BLV infection in certain specific period. Therefore, there might be a change in BLV prevalence in different times
APHIS Animal and Plant Health Inspection Service, BLV bovine leukemia virus, EFSA European Food Safety Authority, EPAHW European Panal on Animal Health and Welfare, OIE The World Organisation for Animal Health
Note: aBLV prevalence in each sample collection year; however, no information about sample collection year was provided in some cases
Nationwide BLV eradication and control programs were introduced in Australia and New Zealand in 1983 and 1996, respectively, and 99.7% of Australian dairy herds were declared free from EBL in December 2013, while those in New Zealand have been free from BLV-induced EBL since 2008 [113, 114].
In North America, an epidemiological study of BLV prevalence in US dairy cattle conducted by the Department of Agriculture’s National Animal Health Monitoring System demonstrated that 83.9% of dairy cattle were BLV-positive at herd level and 39% of beef herds had at least one BLV-infected animal [115]. In Canada, studies of BLV prevalence revealed that up to 37.2% of cows and 89% of herds were BLV-positive [116118]. BLV is also present in both beef and dairy cattle in Mexico [119]; however, disease is either absent or limited to specific areas [17] (accessed on 22 Dec 2016).
In South America, relatively high levels of BLV prevalence have been observed, and BLV-induced leukosis is present in the majority of countries. In Brazil, BLV prevalence varies among states, with infection rates ranging from 17.1% to 60.8% [120123]. Individual and herd level BLV prevalence in Argentina are as high as 77.4% and 90.9%, respectively [75, 95, 124]. Moreover, individual infection rates between 19.8% and 54.7% have been reported in Chile, Bolivia, Peru, Venezuela, Uruguay, Paraguay, and Columbia [75, 94, 125131].
BLV infection is widespread in Chinese dairy farms. Infection rates are up to 49.1% among individual dairy cattle, while 1.6% of beef cattle are BLV-positive [132]. Moreover, serological tests revealed that 20.1% of yaks in China were BLV-positive [133]. Epidemiological studies in Japan revealed varying levels of BLV prevalence throughout the country, based on different detection methods [83, 134136], and BLV infection rates of 40.9% of dairy and 28.7% of beef cattle, with infection rates in animals over 2-years-old reaching 78% in dairy herds and 69% in beef cattle herds [136]. Less than 6% of cattle were infected with BLV in Mongolia (3.9%) [77], Cambodia (5.3%) [137], and Taiwan (5.8%) [48], while a serological survey in Iran revealed that the prevalence of BLV was between 22.1% and 25.4% in that country [138, 139]. Lee et al. [102] demonstrated an average prevalence of BLV of 58.7% in Thailand, reaching maxima of 87.8% and 100% of cattle when assayed using PCR and ELISA, respectively. In Korea, 54.2% of dairy cattle and 86.8% of dairy herds were BLV-positive, whereas only 0.14% of beef cattle were infected with BLV [101]. BLV infection levels in The Philippines ranged from 4.8% to 9.7% [74] while it was 9.1% in Myanmar [76]. BLV infections in Middle Eastern countries are relatively low. The prevalence of BLV infection is approximately 5% in Israel [140], while in Saudi Arabia, 20.2% of dairy cattle tested as BLV-positive [141]. Compared to these countries, BLV infection rates in Turkey are higher, with 48.3% of dairy herds including sero-positive animals [142].

Distribution of BLV genotypes worldwide

As mentioned above, phylogenetic analyses of whole genome (Fig. 3) and env gp51 sequences (Fig. 2) of BLV strain showed that BLV can be classified into ten genotypes. Three genotypes of BLV, namely genotype-1, genotype-4 and genotype-6, were mainly detected from across the world, as shown in Table 4. Genotype-1 is the most dominant genotype of BLV and is distributed across almost all continents, including Europe, America, Asia, and Australia. In particularly, genotype-1 spread to South and North America, and these continents still have a high prevalence of BLV infection. In addition, genotype-1 continues to spread worldwide, including Asian countries. The second most widely distributed genotype is genotype-4, which is primarily detected in Europe and some American countries. However, it is only found in Mongolia among Asian nations. Interestingly, although genotype-4 used to exist in Europe, it decreased because of BLV eradication in European countries. Genotype 6 may have come from South America and spread to South Asia by animal trading. Of the other genotypes, genotype-2 is restricted to South American countries and is only found in Japan among Asian nations, while genotype-8 is restricted to Europe. Genotypes-5 (in Brazil and Costa Rica) and −10 (in Thailand and Myanmar) are only observed in geographically proximal areas, where there may be an exchange of animals across national boundaries [76, 102]. By contrast, genotypes-7 is distributed across geographically dispersed regions [74, 77].
Table 4
Worldwide geographical distribution of the ten known BLV genotypes based on env-gp51 sequences
Geographical division
Country
Genotype
Reference
1
2
3
4
5
6
7
8
9
 
Europe
Belarus
   
4
      
Rola-Luszczak et al., 2013 [99]
Russia
   
4
  
7
8
  
Rola-Luszczak et al., 2013 [99]
Ukraine
   
4
  
7
8
  
Rola-Luszczak et al., 2013 [99]
Croatia
       
8
  
Balic et al., 2012 [97]
Poland
   
4
  
7
   
Rola-Luszczak et al., 2013 [99]
Belgium
   
4
      
Mamoun et al., 1990 [85]; Zhao & Buehring, 2007 [142]
France
  
3
4
      
Mamoun et al., 1990 [85]
Germany
1
  
4
      
Fechner et al., 1997 [90]
Italy
      
7
   
Molteni et al., 1996 [143]
Australia
Australia
1
         
Coulston et al., 1990 [89]
America
USA
1
 
3
4
      
Derse et al., 1985 [144]; Mamoun et al., 1990 [85]; Zhao & Buehring, 2007 [142]
Caribbean
1
         
Yang et al., 2016 [145]
Costa Rica
1
   
5
     
Zhao & Buehring, 2007 [142]
Argentina
1
2
 
4
 
6
    
Dube et al., 2000 [146]; Licursi et al., 2003 [92]; Monti et al., 2005 [94]; Dube et al., 2009 [147]; Rodriguez et al., 2009 [96]
Brazil
1
2
  
5
6
7
   
Camargos et al., 2002 [121]; Camargos et al., 2007 [122]; Moratorio et al., 2010 [126]
Chile
   
4
  
7
   
Felmer et al., 2005 [93]
Bolivia
1
2
   
6
  
9
 
Polat et al., 2016 [75]
Peru
1
2
   
6
    
Polat et al., 2016 [75]
Paraguay
1
2
   
6
    
Polat et al., 2016 [75]
Uruguay
1
         
Moratorio et al., 2010 [126]
Asia
Korea
1
 
3
       
Lim et al., 2009 [148]; Lee et al., 2015 [100]
Japan
1
2
3
       
Licursi et al., 2003 [92]; Zhao & Buehring, 2007 [142]; Matsumura et al., 2011 [98]; Inoue et al., 2011 [149]
Philippines
1
    
6
    
Polat et al., 2015 [74]
Thailand
1
    
6
   
10
Lee et al., 2016 [101]
Myanmar
         
10
Polat et al., 2016 [76]
Mongolia
1
  
4
  
7
   
Ochirkhuu et al., 2016 [77]
Jordan
1
    
6
    
Ababneh et al., 2016 [150]
In detail, in Europe, a total of five different BLV genotypes have been detected (genotypes −1, −3, −4, −7, and −8): genotype-4 in Belarus [100] and Belgium [86, 143]; genotypes-4, −7, and −8 in Russia and Ukraine [100]; genotype-8 in Croatia [98]; genotypes −4 and −7 in Poland [100]; genotypes −3 and −4 in France [86]; genotypes −1 and −4 in Germany [91]; and genotype-7 in Italy [144]. In Australia, only genotype-1 was detected [90]. In North America, genotypes −1, −3, and −4 have been detected in the USA [86, 143, 145], and genotype-1 was reported in the Caribbean [146]. In Central America, genotypes −1 and −5 were detected in Costa Rica [143]. A variety of BLV genotypes (−1, −2, −4, −5, −7, and −9) were detected in South America: genotypes −1, −2, −4, and −6 in Argentina [93, 95, 97, 147, 148]; genotypes −1, −2, −5, −6, and −7 in Brazil [122, 123, 127]; genotypes −4 and −7 in Chile [94]; genotypes −1, −2, −6, and −9 in Bolivia [75]; genotypes −1, −2, and −6 in Peru and Paraguay [75]; and genotype-1 in Uruguay [126]. In Asia, a total of seven BLV genotypes have been confirmed (−1, −2, −3, −4, −6, −7, and −10): genotypes −1 and −3 in Korea [101, 149]; genotypes −1, −2, and −3 in Japan [93, 99, 143, 150]; genotypes −1 and −6 in The Philippines [74]; genotypes −1, −6, and −10 in Thailand [102]; genotypes −1, −4, and −7 in Mongolia [77]; genotype-10 in Myanmar [76]; and genotypes −1 and −6 in Jordan [151].
Based on the European Food Safety Authority panel on animal health and welfare, BLV-induced EBL may have originated and spread widely from an area of Memel in East Prussia (now Klaipeda in Lithuania) [113, 152]. The worldwide distribution of the disease occurred due to the introduction of cattle from European countries into herds in other countries free of the disease, and also through the international trade of bred animals [113]. Interestingly, genotype-4 existed primarily in East Prussia as shown in Table 4. Then, infected cattle were reintroduced into some European countries; for example, BLV was introduced into the UK via bred animals from Canada in 1968 and 1973 [113]. As detailed in some previous publications, the widespread distribution of BLV genotypes within and between distant geographical locations may be driven by the spread of virus through the movement of live animal populations, associated with human migration and animal domestication, and also with viral transmission during close contact between individual animals [97].

Future prospects

It appears that at least ten different BLV genotypes of BLV strains are circulating in various geographical locations worldwide. The completion of whole genome sequencing of these BLV strains has revealed that BLV genomes contain a number of unique genotype specific substitutions not only in the env region, but also in the LTR, Gag, Pro, Pol, Tax, Rex, R3, G4, and miRNA encoding regions, distinguishing each genotype [75]. However, the BLV genome sequences of strains from different geographic origins, especially the important sites on the regulation of viral replication of BLV, are relatively stable and highly conserved among BLV strains, assigned to different genotypes. By contrast, several groups recently reported that the expression or pathogenesis of BLV does not depend on strains, but rather, is related with the specific site of mutation in their BLV genome [153, 154]. These results clearly demonstrate that BLV strain should be determined by full genome sequencing. However, although BLV is present worldwide, BLV genotyping studies are limited to certain areas, as shown in Table 4. Therefore, the accumulation of the full genome sequencing of BLV strains, assigned to different genotypes worldwide may define the genotype-dependent pathogenesis and association between genetic variability in each genotype and its infectivity, and differences in its functions in the future.

Conclusion

BLV is the etiologic agent of EBL, which is the most common neoplastic disease in cattle. It infects cattle worldwide, thereby imposing a severe economic burden on the dairy cattle industry. In this review, we summarized currently available detailed information on BLV infection worldwide, and indicated that BLV has spread to most countries except for some countries which are completely free of BLV by successful BLV eradication. We also outlined at least ten different BLV genotypes circulating in various geographical locations worldwide and the distribution of these BLV genotypes worldwide. This should be useful information to those investigating BLV for the potential development of diagnostic methods and vaccines, and for reducing the incidence of BLV in herds.

Acknowledgments

We thank our collaborators for kindly assisting with the large-scale sampling from many farms in the Philippine, Myanmar, South America (Argentina, Peru, Paraguay, Chile and Bolivia) and Japan.

Funding

The studies on BLV were supported by Grants-in-Aid for Scientific Research [A (08021470), A (16H02590), B (10004294), and C (25450405)] from the Japan Society for the Promotion of Science (JSPS), by a grant from Integration Research for Agriculture and Interdisciplinary Fields in Japan (14538311), and by a grant from the Project of the NARO Bio-oriented Technology Research Advancement Institution (the special scheme project on regional developing strategy) (Grant No. 16817983)].

Availability of data and materials

Not applicable
Not applicable
Not applicable

Competing interests

The authors declare that they have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Kettmann R, Portetelle D, Mammerickx M, Cleuter Y, Dekegel D, Galoux M, Ghysdael J, Burny A, Chantrenne H. Bovine leukemia virus: an exogenous RNA oncogenic virus. Proc Natl Acad Sci U S A. 1976;73:1014–8.PubMedPubMedCentralCrossRef Kettmann R, Portetelle D, Mammerickx M, Cleuter Y, Dekegel D, Galoux M, Ghysdael J, Burny A, Chantrenne H. Bovine leukemia virus: an exogenous RNA oncogenic virus. Proc Natl Acad Sci U S A. 1976;73:1014–8.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328.PubMedPubMedCentralCrossRef Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol. 2013;4:328.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, De The H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol. 2012;3:333.PubMedPubMedCentralCrossRef Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, De The H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol. 2012;3:333.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Kirkland PD, Rodwell BJ. Enzootic Bovine Leukosis. Australia and New Zealand Standard Diagnostic Procedures. 2005:1–14. Kirkland PD, Rodwell BJ. Enzootic Bovine Leukosis. Australia and New Zealand Standard Diagnostic Procedures. 2005:1–14.
6.
Zurück zum Zitat Williams DL, Barta O, Amborski GF. Molecular studies of T-lymphocytes from cattle infected with bovine leukemia virus. Vet Immunol Immunopathol. 1988;19:307–23.PubMedCrossRef Williams DL, Barta O, Amborski GF. Molecular studies of T-lymphocytes from cattle infected with bovine leukemia virus. Vet Immunol Immunopathol. 1988;19:307–23.PubMedCrossRef
7.
Zurück zum Zitat Stott ML, Thurmond MC, Dunn SJ, Osburn BI, Stott JL. Integrated bovine leukosis proviral DNA in T helper and T cytotoxic/suppressor lymphocytes. J Gen Virol. 1991;72(Pt 2):307–15.PubMedCrossRef Stott ML, Thurmond MC, Dunn SJ, Osburn BI, Stott JL. Integrated bovine leukosis proviral DNA in T helper and T cytotoxic/suppressor lymphocytes. J Gen Virol. 1991;72(Pt 2):307–15.PubMedCrossRef
8.
Zurück zum Zitat Schwartz I, Bensaid A, Polack B, Perrin B, Berthelemy M, Levy D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J Virol. 1994;68:4589–96.PubMedPubMedCentral Schwartz I, Bensaid A, Polack B, Perrin B, Berthelemy M, Levy D. In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. J Virol. 1994;68:4589–96.PubMedPubMedCentral
9.
Zurück zum Zitat Mirsky ML, Olmstead CA, Da Y, Lewin HA. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages of infection. J Virol. 1996;70:2178–83.PubMedPubMedCentral Mirsky ML, Olmstead CA, Da Y, Lewin HA. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages of infection. J Virol. 1996;70:2178–83.PubMedPubMedCentral
10.
Zurück zum Zitat Wu D, Takahashi K, Murakami K, Tani K, Koguchi A, Asahina M, Goryo M, Aida Y, Okada K. B-1a, B-1b and conventional B cell lymphoma from enzootic bovine leukosis. Vet Immunol Immunopathol. 1996;55:63–72.PubMedCrossRef Wu D, Takahashi K, Murakami K, Tani K, Koguchi A, Asahina M, Goryo M, Aida Y, Okada K. B-1a, B-1b and conventional B cell lymphoma from enzootic bovine leukosis. Vet Immunol Immunopathol. 1996;55:63–72.PubMedCrossRef
11.
Zurück zum Zitat Panei CJ, Takeshima SN, Omori T, Nunoya T, Davis WC, Ishizaki H, Matoba K, Aida Y. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet Res. 2013;9:95.PubMedPubMedCentralCrossRef Panei CJ, Takeshima SN, Omori T, Nunoya T, Davis WC, Ishizaki H, Matoba K, Aida Y. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet Res. 2013;9:95.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Aida Y, Okada K, Amanuma H. Phenotype and ontogeny of cells carrying a tumor-associated antigen that is expressed on bovine leukemia virus-induced lymphosarcoma. Cancer Res. 1993;53:429–37.PubMed Aida Y, Okada K, Amanuma H. Phenotype and ontogeny of cells carrying a tumor-associated antigen that is expressed on bovine leukemia virus-induced lymphosarcoma. Cancer Res. 1993;53:429–37.PubMed
13.
Zurück zum Zitat Nekouei O, VanLeeuwen J, Stryhn H, Kelton D, Keefe G. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med. 2016;133:1–9.PubMedCrossRef Nekouei O, VanLeeuwen J, Stryhn H, Kelton D, Keefe G. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev Vet Med. 2016;133:1–9.PubMedCrossRef
14.
Zurück zum Zitat Sandev N, Koleva M, Binev R, Ilieva D. Influence of enzootic bovine leukosis virus upon the incidence of subclinical mastitis in cows at a different stage of infection. Veterinarski Archiv. 2004;76:411–6. Sandev N, Koleva M, Binev R, Ilieva D. Influence of enzootic bovine leukosis virus upon the incidence of subclinical mastitis in cows at a different stage of infection. Veterinarski Archiv. 2004;76:411–6.
15.
Zurück zum Zitat Bartlett PC, Norby B, Byrem TM, Parmelee A, Ledergerber JT, Erskine RJ. Bovine leukemia virus and cow longevity in Michigan dairy herds. J Dairy Sci. 2013;96:1591–7.PubMedCrossRef Bartlett PC, Norby B, Byrem TM, Parmelee A, Ledergerber JT, Erskine RJ. Bovine leukemia virus and cow longevity in Michigan dairy herds. J Dairy Sci. 2013;96:1591–7.PubMedCrossRef
16.
Zurück zum Zitat Ferrer JF, Marshak RR, Abt DA, Kenyon SJ. Persistent lymphocytosis in cattle: its cause, nature and relation to lymphosarcoma. Ann Rech Vet. 1978;9:851–7.PubMed Ferrer JF, Marshak RR, Abt DA, Kenyon SJ. Persistent lymphocytosis in cattle: its cause, nature and relation to lymphosarcoma. Ann Rech Vet. 1978;9:851–7.PubMed
17.
Zurück zum Zitat OIE. Manual of diagnostic tests and vaccines for terrestrial animals: chapter 2.4.11. Enzootic Bovine Leukosis. Seventh Edition edn. France: World organization for animal health; 2012. OIE. Manual of diagnostic tests and vaccines for terrestrial animals: chapter 2.4.11. Enzootic Bovine Leukosis. Seventh Edition edn. France: World organization for animal health; 2012.
18.
Zurück zum Zitat Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985;82:677–81.PubMedPubMedCentralCrossRef Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci U S A. 1985;82:677–81.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Sagata N, Yasunaga T, Ohishi K, Tsuzuku-Kawamura J, Onuma M, Ikawa Y. Comparison of the entire genomes of bovine leukemia virus and human T-cell leukemia virus and characterization of their unidentified open reading frames. EMBO J. 1984;3:3231–7.PubMedPubMedCentral Sagata N, Yasunaga T, Ohishi K, Tsuzuku-Kawamura J, Onuma M, Ikawa Y. Comparison of the entire genomes of bovine leukemia virus and human T-cell leukemia virus and characterization of their unidentified open reading frames. EMBO J. 1984;3:3231–7.PubMedPubMedCentral
20.
Zurück zum Zitat Callebaut I, Voneche V, Mager A, Fumiere O, Krchnak V, Merza M, Zavada J, Mammerickx M, Burny A, Portetelle D. Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol. 1993;67:5321–7.PubMedPubMedCentral Callebaut I, Voneche V, Mager A, Fumiere O, Krchnak V, Merza M, Zavada J, Mammerickx M, Burny A, Portetelle D. Mapping of B-neutralizing and T-helper cell epitopes on the bovine leukemia virus external glycoprotein gp51. J Virol. 1993;67:5321–7.PubMedPubMedCentral
21.
Zurück zum Zitat Inabe K, Nishizawa M, Tajima S, Ikuta K, Aida Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J Virol. 1999;73:1293–301.PubMedPubMedCentral Inabe K, Nishizawa M, Tajima S, Ikuta K, Aida Y. The YXXL sequences of a transmembrane protein of bovine leukemia virus are required for viral entry and incorporation of viral envelope protein into virions. J Virol. 1999;73:1293–301.PubMedPubMedCentral
22.
Zurück zum Zitat Jewell NA, Mansky LM. The beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol. 2000;81:1889–99.PubMedCrossRef Jewell NA, Mansky LM. The beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol. 2000;81:1889–99.PubMedCrossRef
24.
Zurück zum Zitat Bai L, Otsuki H, Sato H, Kohara J, Isogai E, Takeshima SN, Aida Y. Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle. Retrovirology. 2015;12:106.PubMedPubMedCentralCrossRef Bai L, Otsuki H, Sato H, Kohara J, Isogai E, Takeshima SN, Aida Y. Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle. Retrovirology. 2015;12:106.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Copeland TD, Morgan MA, Oroszlan S. Complete amino acid sequence of the nucleic acid-binding protein of bovine leukemia virus. FEBS Lett. 1983;156:37–40.PubMedCrossRef Copeland TD, Morgan MA, Oroszlan S. Complete amino acid sequence of the nucleic acid-binding protein of bovine leukemia virus. FEBS Lett. 1983;156:37–40.PubMedCrossRef
26.
Zurück zum Zitat Mager A, Masengo R, Mammerickx M, Letesson JJ. T cell proliferative response to bovine leukaemia virus (BLV): identification of T cell epitopes on the major core protein (p24) in BLV-infected cattle with normal haematological values. J Gen Virol. 1994;75(Pt 9):2223–31.PubMedCrossRef Mager A, Masengo R, Mammerickx M, Letesson JJ. T cell proliferative response to bovine leukaemia virus (BLV): identification of T cell epitopes on the major core protein (p24) in BLV-infected cattle with normal haematological values. J Gen Virol. 1994;75(Pt 9):2223–31.PubMedCrossRef
27.
Zurück zum Zitat Willems L, Kerkhofs P, Attenelle L, Burny A, Portetelle D, Kettmann R. The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J Gen Virol. 1997;78(Pt 3):637–40.PubMedCrossRef Willems L, Kerkhofs P, Attenelle L, Burny A, Portetelle D, Kettmann R. The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J Gen Virol. 1997;78(Pt 3):637–40.PubMedCrossRef
28.
Zurück zum Zitat Katoh I, Yasunaga T, Yoshinaka Y. Bovine leukemia virus RNA sequences involved in dimerization and specific gag protein binding: close relation to the packaging sites of avian, murine, and human retroviruses. J Virol. 1993;67:1830–9.PubMedPubMedCentral Katoh I, Yasunaga T, Yoshinaka Y. Bovine leukemia virus RNA sequences involved in dimerization and specific gag protein binding: close relation to the packaging sites of avian, murine, and human retroviruses. J Virol. 1993;67:1830–9.PubMedPubMedCentral
29.
Zurück zum Zitat Willems L, Heremans H, Chen G, Portetelle D, Billiau A, Burny A, Kettmann R. Cooperation between bovine leukaemia virus transactivator protein and ha-ras oncogene product in cellular transformation. EMBO J. 1990;9:1577–81.PubMedPubMedCentral Willems L, Heremans H, Chen G, Portetelle D, Billiau A, Burny A, Kettmann R. Cooperation between bovine leukaemia virus transactivator protein and ha-ras oncogene product in cellular transformation. EMBO J. 1990;9:1577–81.PubMedPubMedCentral
30.
Zurück zum Zitat Willems L, Grimonpont C, Heremans H, Rebeyrotte N, Chen G, Portetelle D, Burny A, Kettmann R. Mutations in the bovine leukemia-virus tax protein can abrogate the long terminal repeat-directed Transactivating activity without concomitant loss of transforming potential. Proc Natl Acad Sci U S A. 1992;89:3957–61.PubMedPubMedCentralCrossRef Willems L, Grimonpont C, Heremans H, Rebeyrotte N, Chen G, Portetelle D, Burny A, Kettmann R. Mutations in the bovine leukemia-virus tax protein can abrogate the long terminal repeat-directed Transactivating activity without concomitant loss of transforming potential. Proc Natl Acad Sci U S A. 1992;89:3957–61.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Tajima S, Aida Y. The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. J Virol. 2000;74:10939–49.PubMedPubMedCentralCrossRef Tajima S, Aida Y. The region between amino acids 245 and 265 of the bovine leukemia virus (BLV) tax protein restricts transactivation not only via the BLV enhancer but also via other retrovirus enhancers. J Virol. 2000;74:10939–49.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Felber BK, Derse D, Athanassopoulos A, Campbell M, Pavlakis GN. Cross-activation of the Rex proteins of HTLV-I and BLV and of the rev protein of HIV-1 and nonreciprocal interactions with their RNA responsive elements. New Biol. 1989;1:318–28.PubMed Felber BK, Derse D, Athanassopoulos A, Campbell M, Pavlakis GN. Cross-activation of the Rex proteins of HTLV-I and BLV and of the rev protein of HIV-1 and nonreciprocal interactions with their RNA responsive elements. New Biol. 1989;1:318–28.PubMed
33.
Zurück zum Zitat Tajima S, Takahashi M, Takeshima SN, Konnai S, Yin SA, Watarai S, Tanaka Y, Onuma M, Okada K, Aida Y. A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. J Virol. 2003;77:1894–903.PubMedPubMedCentralCrossRef Tajima S, Takahashi M, Takeshima SN, Konnai S, Yin SA, Watarai S, Tanaka Y, Onuma M, Okada K, Aida Y. A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. J Virol. 2003;77:1894–903.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect. 2004;6:584–95.PubMedCrossRef Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect. 2004;6:584–95.PubMedCrossRef
35.
Zurück zum Zitat Takahashi M, Tajima S, Okada K, Davis WC, Aida Y. Involvement of bovine leukemia virus in induction and inhibition of apoptosis. Microbes Infect. 2005;7:19–28.PubMedCrossRef Takahashi M, Tajima S, Okada K, Davis WC, Aida Y. Involvement of bovine leukemia virus in induction and inhibition of apoptosis. Microbes Infect. 2005;7:19–28.PubMedCrossRef
36.
Zurück zum Zitat Tajima S, Aida Y. Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. J Virol. 2002;76:2557–62.PubMedPubMedCentralCrossRef Tajima S, Aida Y. Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. J Virol. 2002;76:2557–62.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Willems L, Kerkhofs P, Dequiedt F, Portetelle D, Mammerickx M, Burny A, Kettmann R. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc Natl Acad Sci U S A. 1994;91:11532–6.PubMedPubMedCentralCrossRef Willems L, Kerkhofs P, Dequiedt F, Portetelle D, Mammerickx M, Burny A, Kettmann R. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc Natl Acad Sci U S A. 1994;91:11532–6.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Florins A, Gillet N, Boxus M, Kerkhofs P, Kettmann R, Willems L. Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol. 2007;81:10195–200.PubMedPubMedCentralCrossRef Florins A, Gillet N, Boxus M, Kerkhofs P, Kettmann R, Willems L. Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol. 2007;81:10195–200.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Rosewick N, Momont M, Durkin K, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortreux F, Wattel E, Burny A, et al. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A. 2013;110:2306–11.PubMedPubMedCentralCrossRef Rosewick N, Momont M, Durkin K, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortreux F, Wattel E, Burny A, et al. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A. 2013;110:2306–11.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Gillet NA, Hamaidia M, de Brogniez A, Gutierrez G, Renotte N, Reichert M, Trono K, Willems L. Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to Oncogenesis in vivo. PLoS Pathog. 2016;12:e1005588.PubMedPubMedCentralCrossRef Gillet NA, Hamaidia M, de Brogniez A, Gutierrez G, Renotte N, Reichert M, Trono K, Willems L. Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to Oncogenesis in vivo. PLoS Pathog. 2016;12:e1005588.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Van Driessche B, Rodari A, Delacourt N, Fauquenoy S, Vanhulle C, Burny A, Rohr O, Van Lint C. Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the bovine leukemia virus genome. Sci Rep. 2016;6:31125.PubMedPubMedCentralCrossRef Van Driessche B, Rodari A, Delacourt N, Fauquenoy S, Vanhulle C, Burny A, Rohr O, Van Lint C. Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the bovine leukemia virus genome. Sci Rep. 2016;6:31125.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Jimba M, Takeshima SN, Murakami H, Kohara J, Kobayashi N, Matsuhashi T, Ohmori T, Nunoya T, Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet Res. 2012;8:167.PubMedPubMedCentralCrossRef Jimba M, Takeshima SN, Murakami H, Kohara J, Kobayashi N, Matsuhashi T, Ohmori T, Nunoya T, Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet Res. 2012;8:167.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Walker PJ, Molloy JB, Rodwell BJ. A protein immunoblot test for detection of bovine leukemia virus p24 antibody in cattle and experimentally infected sheep. J Virol Methods. 1987;15:201–11.PubMedCrossRef Walker PJ, Molloy JB, Rodwell BJ. A protein immunoblot test for detection of bovine leukemia virus p24 antibody in cattle and experimentally infected sheep. J Virol Methods. 1987;15:201–11.PubMedCrossRef
45.
Zurück zum Zitat Portetelle D, Bruck C, Mammerickx M, Burny A. In animals infected by bovine leukemia virus (BLV) antibodies to envelope glycoprotein gp51 are directed against the carbohydrate moiety. Virology. 1980;105:223–33.PubMedCrossRef Portetelle D, Bruck C, Mammerickx M, Burny A. In animals infected by bovine leukemia virus (BLV) antibodies to envelope glycoprotein gp51 are directed against the carbohydrate moiety. Virology. 1980;105:223–33.PubMedCrossRef
46.
Zurück zum Zitat Bai L, Takeshima SN, Isogai E, Kohara J, Aida Y. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine. 2015;33:7194–202.PubMedCrossRef Bai L, Takeshima SN, Isogai E, Kohara J, Aida Y. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine. 2015;33:7194–202.PubMedCrossRef
47.
Zurück zum Zitat Aida Y, Miyasaka M, Okada K, Onuma M, Kogure S, Suzuki M, Minoprio P, Levy D, Ikawa Y. Further phenotypic characterization of target cells for bovine leukemia virus experimental infection in sheep. Am J Vet Res. 1989;50:1946–51.PubMed Aida Y, Miyasaka M, Okada K, Onuma M, Kogure S, Suzuki M, Minoprio P, Levy D, Ikawa Y. Further phenotypic characterization of target cells for bovine leukemia virus experimental infection in sheep. Am J Vet Res. 1989;50:1946–51.PubMed
48.
Zurück zum Zitat Wang CT. Bovine leukemia virus infection in Taiwan: epidemiological study. J Vet Med Sci. 1991;53:395–8.PubMedCrossRef Wang CT. Bovine leukemia virus infection in Taiwan: epidemiological study. J Vet Med Sci. 1991;53:395–8.PubMedCrossRef
49.
Zurück zum Zitat Monti GE, Frankena K, Engel B, Buist W, Tarabla HD, de Jong MC. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle. J Vet Diagn Investig. 2005;17:451–7.CrossRef Monti GE, Frankena K, Engel B, Buist W, Tarabla HD, de Jong MC. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle. J Vet Diagn Investig. 2005;17:451–7.CrossRef
50.
Zurück zum Zitat Kurdi A, Blankenstein P, Marquardt O, Ebner D. Serologic and virologic investigations on the presence of BLV infection in a dairy herd in Syria. Berl Munch Tierarztl Wochenschr. 1999;112:18–23.PubMed Kurdi A, Blankenstein P, Marquardt O, Ebner D. Serologic and virologic investigations on the presence of BLV infection in a dairy herd in Syria. Berl Munch Tierarztl Wochenschr. 1999;112:18–23.PubMed
51.
Zurück zum Zitat Fukai K, Sato M, Kawara M, Hoshi Z, Ueno S, Chyou N, Akashi H. A case of an embryo transfer calf infected with bovine leukemia virus from the recipient cow. Zentralbl Veterinarmed B. 1999;46:511–5.PubMed Fukai K, Sato M, Kawara M, Hoshi Z, Ueno S, Chyou N, Akashi H. A case of an embryo transfer calf infected with bovine leukemia virus from the recipient cow. Zentralbl Veterinarmed B. 1999;46:511–5.PubMed
52.
Zurück zum Zitat Zaghawa A, Beier D, Abd El-Rahim IH, Karim I, El-ballal S, Conraths FJ, Marquardt O. An outbreak of enzootic bovine leukosis in upper Egypt: clinical, laboratory and molecular-epidemiological studies. J Vet Med B Infect Dis Vet Public Health. 2002;49:123–9.PubMedCrossRef Zaghawa A, Beier D, Abd El-Rahim IH, Karim I, El-ballal S, Conraths FJ, Marquardt O. An outbreak of enzootic bovine leukosis in upper Egypt: clinical, laboratory and molecular-epidemiological studies. J Vet Med B Infect Dis Vet Public Health. 2002;49:123–9.PubMedCrossRef
53.
Zurück zum Zitat Schoepf KC, Kapaga AM, Msami HM, Hyera JM. Serological evidence of the occurrence of enzootic bovine leukosis (EBL) virus infection in cattle in Tanzania. Trop Anim Health Prod. 1997;29:15–9.PubMedCrossRef Schoepf KC, Kapaga AM, Msami HM, Hyera JM. Serological evidence of the occurrence of enzootic bovine leukosis (EBL) virus infection in cattle in Tanzania. Trop Anim Health Prod. 1997;29:15–9.PubMedCrossRef
54.
Zurück zum Zitat Levy D, Deshayes L, Parodi AL, Levy JP, Stephenson JR, Devare SG, Gilden RV. Bovine leukemia virus specific antibodies among French cattle. II. Radioimmunoassay with the major structural protein (BLV p24). Int J Cancer. 1977;20:543–50.PubMedCrossRef Levy D, Deshayes L, Parodi AL, Levy JP, Stephenson JR, Devare SG, Gilden RV. Bovine leukemia virus specific antibodies among French cattle. II. Radioimmunoassay with the major structural protein (BLV p24). Int J Cancer. 1977;20:543–50.PubMedCrossRef
55.
Zurück zum Zitat Naif HM, Brandon RB, Daniel RCW, Lavin MF. Bovine leukemia Proviral DNA detection in cattle using the polymerase chain-reaction. Vet Microbiol. 1990;25:117–29.PubMedCrossRef Naif HM, Brandon RB, Daniel RCW, Lavin MF. Bovine leukemia Proviral DNA detection in cattle using the polymerase chain-reaction. Vet Microbiol. 1990;25:117–29.PubMedCrossRef
56.
Zurück zum Zitat Burridge MJ, Thurmond MC, Miller JM, Schmerr MJ, Van Der Maaten MJ. Fall in antibody titer to bovine leukemia virus in the periparturient period. Can J Comp Med. 1982;46:270–1.PubMedPubMedCentral Burridge MJ, Thurmond MC, Miller JM, Schmerr MJ, Van Der Maaten MJ. Fall in antibody titer to bovine leukemia virus in the periparturient period. Can J Comp Med. 1982;46:270–1.PubMedPubMedCentral
57.
Zurück zum Zitat Nguyen VK, Maes RF. Evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to bovine leukemia virus in serum and milk. J Clin Microbiol. 1993;31:979–81.PubMedPubMedCentral Nguyen VK, Maes RF. Evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to bovine leukemia virus in serum and milk. J Clin Microbiol. 1993;31:979–81.PubMedPubMedCentral
58.
Zurück zum Zitat Ohshima K, Morimoto N, Kagawa Y, Numakunai S, Hirano T, Kayano HA. Survey for maternal antibodies to bovine leukemia virus (BLV) in calves born to cows infected with BLV. Nihon Juigaku Zasshi. 1984;46:583–6.PubMedCrossRef Ohshima K, Morimoto N, Kagawa Y, Numakunai S, Hirano T, Kayano HA. Survey for maternal antibodies to bovine leukemia virus (BLV) in calves born to cows infected with BLV. Nihon Juigaku Zasshi. 1984;46:583–6.PubMedCrossRef
59.
Zurück zum Zitat Kettmann R, Meunier-Rotival M, Cortadas J, Cuny G, Ghysdael J, Mammerickx M, Burny A, Bernardi G. Integration of bovine leukemia virus DNA in the bovine genome. Proc Natl Acad Sci U S A. 1979;76:4822–6.PubMedPubMedCentralCrossRef Kettmann R, Meunier-Rotival M, Cortadas J, Cuny G, Ghysdael J, Mammerickx M, Burny A, Bernardi G. Integration of bovine leukemia virus DNA in the bovine genome. Proc Natl Acad Sci U S A. 1979;76:4822–6.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Kettmann R, Deschamps J, Cleuter Y, Couez D, Burny A, Marbaix G. Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences. Proc Natl Acad Sci U S A. 1982;79:2465–9.PubMedPubMedCentralCrossRef Kettmann R, Deschamps J, Cleuter Y, Couez D, Burny A, Marbaix G. Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences. Proc Natl Acad Sci U S A. 1982;79:2465–9.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Tajima S, Tsukamoto M, Aida Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J Virol. 2003;77:4423–30.PubMedPubMedCentralCrossRef Tajima S, Tsukamoto M, Aida Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J Virol. 2003;77:4423–30.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Tajima S, Aida Y. Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes Infect. 2005;7:1211–6.PubMedCrossRef Tajima S, Aida Y. Induction of expression of bovine leukemia virus (BLV) in blood taken from BLV-infected cows without removal of plasma. Microbes Infect. 2005;7:1211–6.PubMedCrossRef
63.
Zurück zum Zitat Kettmann R, Cleuter Y, Mammerickx M, Meunier-Rotival M, Bernardi G, Burny A, Chantrenne H. Genomic integration of bovine leukemia provirus: comparison of persistent lymphocytosis with lymph node tumor form of enzootic. Proc Natl Acad Sci U S A. 1980;77:2577–81.PubMedPubMedCentralCrossRef Kettmann R, Cleuter Y, Mammerickx M, Meunier-Rotival M, Bernardi G, Burny A, Chantrenne H. Genomic integration of bovine leukemia provirus: comparison of persistent lymphocytosis with lymph node tumor form of enzootic. Proc Natl Acad Sci U S A. 1980;77:2577–81.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Tajima S, Ikawa Y, Aida Y. Complete bovine leukemia virus (BLV) provirus is conserved in BLV-infected cattle throughout the course of B-cell lymphosarcoma development. J Virol. 1998;72:7569–76.PubMedPubMedCentral Tajima S, Ikawa Y, Aida Y. Complete bovine leukemia virus (BLV) provirus is conserved in BLV-infected cattle throughout the course of B-cell lymphosarcoma development. J Virol. 1998;72:7569–76.PubMedPubMedCentral
65.
Zurück zum Zitat Burny A, Cleuter Y, Kettmann R, Mammerickx M, Marbaix G, Portetelle D, Vandenbroeke A, Willems L, Thomas R. Bovine leukemia - facts and hypotheses derived from the study of an infectious cancer. Vet Microbiol. 1988;17:197–218.PubMedCrossRef Burny A, Cleuter Y, Kettmann R, Mammerickx M, Marbaix G, Portetelle D, Vandenbroeke A, Willems L, Thomas R. Bovine leukemia - facts and hypotheses derived from the study of an infectious cancer. Vet Microbiol. 1988;17:197–218.PubMedCrossRef
66.
Zurück zum Zitat Brym P, Rusc A, Kaminski S. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet Immunol Immunopathol. 2013;153:302–7.PubMedCrossRef Brym P, Rusc A, Kaminski S. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet Immunol Immunopathol. 2013;153:302–7.PubMedCrossRef
67.
Zurück zum Zitat Tawfeeq MM, Horiuchi N, Kobayashi Y, Furuoka H, Inokuma H. Evaluation of gene expression in peripheral blood cells as a potential biomarker for enzootic bovine Leukosis. J Vet Med Sci. 2013;75:1213–7.PubMedCrossRef Tawfeeq MM, Horiuchi N, Kobayashi Y, Furuoka H, Inokuma H. Evaluation of gene expression in peripheral blood cells as a potential biomarker for enzootic bovine Leukosis. J Vet Med Sci. 2013;75:1213–7.PubMedCrossRef
68.
Zurück zum Zitat Somura Y, Sugiyama E, Fujikawa H, Murakami K. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection. Arch Virol. 2014;159:2693–7.PubMedCrossRef Somura Y, Sugiyama E, Fujikawa H, Murakami K. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection. Arch Virol. 2014;159:2693–7.PubMedCrossRef
69.
Zurück zum Zitat Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5’Taq nuclease assays with fluorescent 3’minor groove binder-DNA probes. J Virol Methods. 2004;116:1–9.PubMedCrossRef Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5’Taq nuclease assays with fluorescent 3’minor groove binder-DNA probes. J Virol Methods. 2004;116:1–9.PubMedCrossRef
70.
Zurück zum Zitat Jimba M, Takeshima SN, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology. 2010;7:91.PubMedPubMedCentralCrossRef Jimba M, Takeshima SN, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology. 2010;7:91.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Takeshima SN, Kitamura-Muramatsu Y, Yuan Y, Polat M, Saito S, Aida Y. BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve. Arch Virol. 2015;160:1325–32.PubMedCrossRef Takeshima SN, Kitamura-Muramatsu Y, Yuan Y, Polat M, Saito S, Aida Y. BLV-CoCoMo-qPCR-2: improvements to the BLV-CoCoMo-qPCR assay for bovine leukemia virus by reducing primer degeneracy and constructing an optimal standard curve. Arch Virol. 2015;160:1325–32.PubMedCrossRef
72.
Zurück zum Zitat Nishimori A, Konnai S, Ikebuchi R, Okagawa T, Nakahara A, Murata S, Ohashi K. Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection. J Vet Med Sci. 2016;78:791–6.PubMedPubMedCentralCrossRef Nishimori A, Konnai S, Ikebuchi R, Okagawa T, Nakahara A, Murata S, Ohashi K. Direct polymerase chain reaction from blood and tissue samples for rapid diagnosis of bovine leukemia virus infection. J Vet Med Sci. 2016;78:791–6.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Takeshima SN, Watanuki S, Ishizaki H, Matoba K, Aida Y. Development of a direct blood-based PCR system to detect BLV provirus using CoCoMo primers. Arch Virol. 2016;161:1539–46.PubMedCrossRef Takeshima SN, Watanuki S, Ishizaki H, Matoba K, Aida Y. Development of a direct blood-based PCR system to detect BLV provirus using CoCoMo primers. Arch Virol. 2016;161:1539–46.PubMedCrossRef
74.
Zurück zum Zitat Polat M, Ohno A, Takeshima SN, Kim J, Kikuya M, Matsumoto Y, Mingala CN, Onuma M, Aida Y. Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch Virol. 2015;160:285–96.PubMedCrossRef Polat M, Ohno A, Takeshima SN, Kim J, Kikuya M, Matsumoto Y, Mingala CN, Onuma M, Aida Y. Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch Virol. 2015;160:285–96.PubMedCrossRef
75.
Zurück zum Zitat Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, et al. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology. 2016;13:4.PubMedPubMedCentralCrossRef Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, et al. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology. 2016;13:4.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol. 2016. Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol. 2016.
77.
Zurück zum Zitat Ochirkhuu N, Konnai S, Odbileg R, Nishimori A, Okagawa T, Murata S, Ohashi K. Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch Virol. 2016;161:985–91.PubMedCrossRef Ochirkhuu N, Konnai S, Odbileg R, Nishimori A, Okagawa T, Murata S, Ohashi K. Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch Virol. 2016;161:985–91.PubMedCrossRef
78.
Zurück zum Zitat Dus Santos MJ, Trono K, Lager I, Wigdorovitz A. Development of a PCR to diagnose BLV genome in frozen semen samples. Vet Microbiol. 2007;119:10–8.PubMedCrossRef Dus Santos MJ, Trono K, Lager I, Wigdorovitz A. Development of a PCR to diagnose BLV genome in frozen semen samples. Vet Microbiol. 2007;119:10–8.PubMedCrossRef
79.
Zurück zum Zitat Martin D, Arjona A, Soto I, Barquero N, Viana M, Gomez-Lucia E. Comparative study of PCR as a direct assay and ELISA and AGID as indirect assays for the detection of bovine leukaemia virus. J Vet Med B Infect Dis Vet Public Health. 2001;48:97–106.PubMedCrossRef Martin D, Arjona A, Soto I, Barquero N, Viana M, Gomez-Lucia E. Comparative study of PCR as a direct assay and ELISA and AGID as indirect assays for the detection of bovine leukaemia virus. J Vet Med B Infect Dis Vet Public Health. 2001;48:97–106.PubMedCrossRef
80.
Zurück zum Zitat Heenemann K, Lapp S, Teifke JP, Fichtner D, Mettenleiter TC, Vahlenkamp TW. Development of a bovine leukemia virus polymerase gene-based real-time polymerase chain reaction and comparison with an envelope gene-based assay. J Vet Diagn Investig. 2012;24:649–55.CrossRef Heenemann K, Lapp S, Teifke JP, Fichtner D, Mettenleiter TC, Vahlenkamp TW. Development of a bovine leukemia virus polymerase gene-based real-time polymerase chain reaction and comparison with an envelope gene-based assay. J Vet Diagn Investig. 2012;24:649–55.CrossRef
81.
Zurück zum Zitat Kelly EJ, Jackson MK, Marsolais G, Morrey JD, Callan RJ. Early detection of bovine leukemia virus in cattle by use of the polymerase chain reaction. Am J Vet Res. 1993;54:205–9.PubMed Kelly EJ, Jackson MK, Marsolais G, Morrey JD, Callan RJ. Early detection of bovine leukemia virus in cattle by use of the polymerase chain reaction. Am J Vet Res. 1993;54:205–9.PubMed
82.
Zurück zum Zitat Miyasaka T, Takeshima SN, Jimba M, Matsumoto Y, Kobayashi N, Matsuhashi T, Sentsui H, Aida Y. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese black cattle. Tissue Antigens. 2013;81:72–82.PubMedCrossRef Miyasaka T, Takeshima SN, Jimba M, Matsumoto Y, Kobayashi N, Matsuhashi T, Sentsui H, Aida Y. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese black cattle. Tissue Antigens. 2013;81:72–82.PubMedCrossRef
83.
Zurück zum Zitat Ohno A, Takeshima SN, Matsumoto Y, Aida Y. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res. 2015;210:283–90.PubMedCrossRef Ohno A, Takeshima SN, Matsumoto Y, Aida Y. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res. 2015;210:283–90.PubMedCrossRef
84.
Zurück zum Zitat Yuan Y, Kitamura-Muramatsu Y, Saito S, Ishizaki H, Nakano M, Haga S, Matoba K, Ohno A, Murakami H, Takeshima SN, Aida Y. Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-qPCR-2: comparison with blood samples from the same cattle. Virus Res. 2015;210:248–54.PubMedCrossRef Yuan Y, Kitamura-Muramatsu Y, Saito S, Ishizaki H, Nakano M, Haga S, Matoba K, Ohno A, Murakami H, Takeshima SN, Aida Y. Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-qPCR-2: comparison with blood samples from the same cattle. Virus Res. 2015;210:248–54.PubMedCrossRef
85.
Zurück zum Zitat Inabe K, Ikuta K, Aida Y. Transmission and propagation in cell culture of virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology. 1998;245:53–64.PubMedCrossRef Inabe K, Ikuta K, Aida Y. Transmission and propagation in cell culture of virus produced by cells transfected with an infectious molecular clone of bovine leukemia virus. Virology. 1998;245:53–64.PubMedCrossRef
86.
Zurück zum Zitat Mamoun RZ, Morisson M, Rebeyrotte N, Busetta B, Couez D, Kettmann R, Hospital M, Guillemain B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol. 1990;64:4180–8.PubMedPubMedCentral Mamoun RZ, Morisson M, Rebeyrotte N, Busetta B, Couez D, Kettmann R, Hospital M, Guillemain B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol. 1990;64:4180–8.PubMedPubMedCentral
87.
Zurück zum Zitat Portetelle D, Couez D, Bruck C, Kettmann R, Mammerickx M, Van der Maaten M, Brasseur R, Burny A. Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology 1989; 169:27-33. Portetelle D, Couez D, Bruck C, Kettmann R, Mammerickx M, Van der Maaten M, Brasseur R, Burny A. Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology 1989; 169:27-33.
88.
Zurück zum Zitat Bruck C, Mathot S, Portetelle D, Berte C, Franssen JD, Herion P, Burny A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology. 1982;122:342–52.PubMedCrossRef Bruck C, Mathot S, Portetelle D, Berte C, Franssen JD, Herion P, Burny A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology. 1982;122:342–52.PubMedCrossRef
89.
Zurück zum Zitat Kettmann R, Couez D, Burny A. Restriction endonuclease mapping of linear unintegrated proviral DNA of bovine leukemia virus. J Virol. 1981;38:27–33.PubMedPubMedCentral Kettmann R, Couez D, Burny A. Restriction endonuclease mapping of linear unintegrated proviral DNA of bovine leukemia virus. J Virol. 1981;38:27–33.PubMedPubMedCentral
90.
Zurück zum Zitat Coulston J, Naif H, Brandon R, Kumar S, Khan S, Daniel RC, Lavin MF. Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: comparison with other isolates. J Gen Virol. 1990;71:1737–46.PubMedCrossRef Coulston J, Naif H, Brandon R, Kumar S, Khan S, Daniel RC, Lavin MF. Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: comparison with other isolates. J Gen Virol. 1990;71:1737–46.PubMedCrossRef
91.
Zurück zum Zitat Fechner H, Blankenstein P, Looman AC, Elwert J, Geue L, Albrecht C, Kurg A, Beier D, Marquardt O, Ebner D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology. 1997;237:261–9.PubMedCrossRef Fechner H, Blankenstein P, Looman AC, Elwert J, Geue L, Albrecht C, Kurg A, Beier D, Marquardt O, Ebner D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology. 1997;237:261–9.PubMedCrossRef
92.
Zurück zum Zitat Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonzalez ET, Sentsui H. Genetic heterogeneity among bovine leukemia virus genotypes and its relation to humoral responses in hosts. Virus Res. 2002;86:101–10.PubMedCrossRef Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonzalez ET, Sentsui H. Genetic heterogeneity among bovine leukemia virus genotypes and its relation to humoral responses in hosts. Virus Res. 2002;86:101–10.PubMedCrossRef
93.
Zurück zum Zitat Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonzalez ET, Sentsui H. Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan. Vet Microbiol. 2003;96:17–23.PubMedCrossRef Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonzalez ET, Sentsui H. Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan. Vet Microbiol. 2003;96:17–23.PubMedCrossRef
94.
Zurück zum Zitat Felmer R, Munoz G, Zuniga J, Recabal M. Molecular analysis of a 444 bp fragment of the bovine leukaemia virus gp51 env gene reveals a high frequency of non-silent point mutations and suggests the presence of two subgroups of BLV in Chile. Vet Microbiol. 2005;108:39–47.PubMedCrossRef Felmer R, Munoz G, Zuniga J, Recabal M. Molecular analysis of a 444 bp fragment of the bovine leukaemia virus gp51 env gene reveals a high frequency of non-silent point mutations and suggests the presence of two subgroups of BLV in Chile. Vet Microbiol. 2005;108:39–47.PubMedCrossRef
95.
Zurück zum Zitat Monti G, Schrijver R, Beier D. Genetic diversity and spread of bovine leukaemia virus isolates in argentine dairy cattle. Arch Virol. 2005;150:443–58.PubMedCrossRef Monti G, Schrijver R, Beier D. Genetic diversity and spread of bovine leukaemia virus isolates in argentine dairy cattle. Arch Virol. 2005;150:443–58.PubMedCrossRef
96.
Zurück zum Zitat Asfaw Y, Tsuduku S, Konishi M, Murakami K, Tsuboi T, Wu D, Sentsui H. Distribution and superinfection of bovine leukemia virus genotypes in Japan. Arch Virol. 2005;150:493–505.PubMedCrossRef Asfaw Y, Tsuduku S, Konishi M, Murakami K, Tsuboi T, Wu D, Sentsui H. Distribution and superinfection of bovine leukemia virus genotypes in Japan. Arch Virol. 2005;150:493–505.PubMedCrossRef
97.
Zurück zum Zitat Rodriguez SM, Golemba MD, Campos RH, Trono K, Jones LR. Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J Gen Virol. 2009;90:2788–97.PubMedCrossRef Rodriguez SM, Golemba MD, Campos RH, Trono K, Jones LR. Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J Gen Virol. 2009;90:2788–97.PubMedCrossRef
98.
Zurück zum Zitat Balic D, Lojkic I, Periskic M, Bedekovic T, Jungic A, Lemo N, Roic B, Cac Z, Barbic L, Madic J. Identification of a new genotype of bovine leukemia virus. Arch Virol. 2012;157:1281–90.PubMedCrossRef Balic D, Lojkic I, Periskic M, Bedekovic T, Jungic A, Lemo N, Roic B, Cac Z, Barbic L, Madic J. Identification of a new genotype of bovine leukemia virus. Arch Virol. 2012;157:1281–90.PubMedCrossRef
99.
Zurück zum Zitat Matsumura K, Inoue E, Osawa Y, Okazaki K. Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res. 2011;155:343–8.PubMedCrossRef Matsumura K, Inoue E, Osawa Y, Okazaki K. Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res. 2011;155:343–8.PubMedCrossRef
100.
Zurück zum Zitat Rola-Luszczak M, Pluta A, Olech M, Donnik I, Petropavlovskiy M, Gerilovych A, Vinogradova I, Choudhury B, Kuzmak J. The molecular characterization of bovine leukaemia virus isolates from Eastern Europe and Siberia and its impact on phylogeny. PLoS One. 2013;8:e58705.PubMedPubMedCentralCrossRef Rola-Luszczak M, Pluta A, Olech M, Donnik I, Petropavlovskiy M, Gerilovych A, Vinogradova I, Choudhury B, Kuzmak J. The molecular characterization of bovine leukaemia virus isolates from Eastern Europe and Siberia and its impact on phylogeny. PLoS One. 2013;8:e58705.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Lee E, Kim EJ, Joung HK, Kim BH, Song JY, Cho IS, Lee KK, Shin YK. Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates. Virol J. 2015;12:64.PubMedPubMedCentralCrossRef Lee E, Kim EJ, Joung HK, Kim BH, Song JY, Cho IS, Lee KK, Shin YK. Sequencing and phylogenetic analysis of the gp51 gene from Korean bovine leukemia virus isolates. Virol J. 2015;12:64.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol. 2016;41:245–54.PubMedCrossRef Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol. 2016;41:245–54.PubMedCrossRef
103.
Zurück zum Zitat OIE. World animal health infromation database-version: 1.4. Paris France: World organisation for animal Health; 2009. OIE. World animal health infromation database-version: 1.4. Paris France: World organisation for animal Health; 2009.
104.
Zurück zum Zitat Nuotio L, Rusanen H, Sihvonen L, Neuvonen E. Eradication of enzootic bovine leukosis from Finland. Prev Vet Med. 2003;59:43–9.PubMedCrossRef Nuotio L, Rusanen H, Sihvonen L, Neuvonen E. Eradication of enzootic bovine leukosis from Finland. Prev Vet Med. 2003;59:43–9.PubMedCrossRef
105.
Zurück zum Zitat Acaite J, Tamosiunas V, Lukauskas K, Milius J, Pieskus J. The eradication experience of enzootic bovine leukosis from Lithuania. Prev Vet Med. 2007;82:83–9.PubMedCrossRef Acaite J, Tamosiunas V, Lukauskas K, Milius J, Pieskus J. The eradication experience of enzootic bovine leukosis from Lithuania. Prev Vet Med. 2007;82:83–9.PubMedCrossRef
106.
Zurück zum Zitat Kautzsch S, Schluter H. Prognosis and economic-aspects relating to control of enzootic bovine Leukosis. Monatsh Veterinarmed 1990; 45:41-45. Kautzsch S, Schluter H. Prognosis and economic-aspects relating to control of enzootic bovine Leukosis. Monatsh Veterinarmed 1990; 45:41-45.
107.
Zurück zum Zitat Maresca C, Costarelli S, Dettori A, Felici A, Iscaro C, Feliziani F. Enzootic bovine leukosis: report of eradication and surveillance measures in Italy over an 8-year period (2005-2012). Prev Vet Med. 2015;119:222–6.PubMedCrossRef Maresca C, Costarelli S, Dettori A, Felici A, Iscaro C, Feliziani F. Enzootic bovine leukosis: report of eradication and surveillance measures in Italy over an 8-year period (2005-2012). Prev Vet Med. 2015;119:222–6.PubMedCrossRef
108.
Zurück zum Zitat Gottschau A, Willeberg P, Franti CE, Flensburg JC. The effect of a control program for enzootic bovine leukosis. Changes in herd prevalence in Denmark, 1969-1978. Am J Epidemiol. 1990;131:356–64.PubMedCrossRef Gottschau A, Willeberg P, Franti CE, Flensburg JC. The effect of a control program for enzootic bovine leukosis. Changes in herd prevalence in Denmark, 1969-1978. Am J Epidemiol. 1990;131:356–64.PubMedCrossRef
109.
Zurück zum Zitat Stark KD. Animal health monitoring and surveillance in Switzerland. Aust Vet J. 1996;73:96–7.PubMedCrossRef Stark KD. Animal health monitoring and surveillance in Switzerland. Aust Vet J. 1996;73:96–7.PubMedCrossRef
110.
Zurück zum Zitat EFSA Panel on Animal Health and Welfare, More SJ, Bøtner A, Butterworth A, Calistri P, Depner K, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): enzootic bovine leukosis (EBL). EFSA J. 2017;15(8):1–28. EFSA Panel on Animal Health and Welfare, More SJ, Bøtner A, Butterworth A, Calistri P, Depner K, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): enzootic bovine leukosis (EBL). EFSA J. 2017;15(8):1–28.
111.
Zurück zum Zitat Zhao XR, Jimenez C, Sentsui H, Buehring GC. Sequence polymorphisms in the long terminal repeat of bovine leukemia virus: evidence for selection pressures in regulatory sequences. Virus Res 2007; 124:113–124. Zhao XR, Jimenez C, Sentsui H, Buehring GC. Sequence polymorphisms in the long terminal repeat of bovine leukemia virus: evidence for selection pressures in regulatory sequences. Virus Res 2007; 124:113–124.
112.
Zurück zum Zitat Sandev N, Illieva D, Rusenova N, Marasheva V. Prevalence of enzootic Bobivne Leukosis in Bulgaria. Bulletin UASVM Veterinary Medicine. 2015;72:43–6. Sandev N, Illieva D, Rusenova N, Marasheva V. Prevalence of enzootic Bobivne Leukosis in Bulgaria. Bulletin UASVM Veterinary Medicine. 2015;72:43–6.
113.
Zurück zum Zitat European Panal on Animal Health and Welfare (EPAHW). Scientific opinion on enzootic bovine leukosis. EFSA J. 2015;13:63. European Panal on Animal Health and Welfare (EPAHW). Scientific opinion on enzootic bovine leukosis. EFSA J. 2015;13:63.
114.
Zurück zum Zitat Chethanond U-S. The epidemiology of enzootic bovine leukosis in diary cattle in New Zealand. Massey University; 1999. Chethanond U-S. The epidemiology of enzootic bovine leukosis in diary cattle in New Zealand. Massey University; 1999.
115.
Zurück zum Zitat APHIS. Bovine Leukosis Virus (BLV) on U.S.Dairy Operations, 2007. United states department of agriculture; 2008. APHIS. Bovine Leukosis Virus (BLV) on U.S.Dairy Operations, 2007. United states department of agriculture; 2008.
116.
Zurück zum Zitat VanLeeuwen JA, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence of infection with Mycobacterium Avium subspecies paratuberculosis, bovine leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle. Can Vet J. 2001;42:193–8.PubMedPubMedCentral VanLeeuwen JA, Keefe GP, Tremblay R, Power C, Wichtel JJ. Seroprevalence of infection with Mycobacterium Avium subspecies paratuberculosis, bovine leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle. Can Vet J. 2001;42:193–8.PubMedPubMedCentral
117.
Zurück zum Zitat VanLeeuwen JA, Forsythe L, Tiwari A, Chartier R. Seroprevalence of antibodies against bovine leukemia virus, bovine viral diarrhea virus, Mycobacterium Avium subspecies paratuberculosis, and Neospora caninum in dairy cattle in Saskatchewan. Can Vet J. 2005;46:56–8.PubMedPubMedCentral VanLeeuwen JA, Forsythe L, Tiwari A, Chartier R. Seroprevalence of antibodies against bovine leukemia virus, bovine viral diarrhea virus, Mycobacterium Avium subspecies paratuberculosis, and Neospora caninum in dairy cattle in Saskatchewan. Can Vet J. 2005;46:56–8.PubMedPubMedCentral
118.
Zurück zum Zitat Nekouei OA. Study of prevalence, risk factors, and lifetime impacts of infection with bovine keukemia virus in the Canadian dairy industry. University of Prince Edward Island, Atlanti veterinary college, department of. Health Management. 2015; Nekouei OA. Study of prevalence, risk factors, and lifetime impacts of infection with bovine keukemia virus in the Canadian dairy industry. University of Prince Edward Island, Atlanti veterinary college, department of. Health Management. 2015;
119.
Zurück zum Zitat Suzan VM, Onuma M, Aguilar RE, Murakami Y. Prevalence of bovine Herpesvirus-1, Para-Influenza-3, bovine rotavirus, bovine viral diarrhea, bovine Adenovirus-7, bovine leukemia-virus and bluetongue virus-antibodies in cattle in Mexico. Jap J Vet Res. 1983;31:125–32. Suzan VM, Onuma M, Aguilar RE, Murakami Y. Prevalence of bovine Herpesvirus-1, Para-Influenza-3, bovine rotavirus, bovine viral diarrhea, bovine Adenovirus-7, bovine leukemia-virus and bluetongue virus-antibodies in cattle in Mexico. Jap J Vet Res. 1983;31:125–32.
120.
Zurück zum Zitat Samara SI, Lima EG, Nascimento AA. Monitoring of enzootic bovine leukosis in dairy cattle from the Pitangueiras region in São Paulo, Brazil. Braz J Vet Res Anim Sci. 1997;34:349–51.CrossRef Samara SI, Lima EG, Nascimento AA. Monitoring of enzootic bovine leukosis in dairy cattle from the Pitangueiras region in São Paulo, Brazil. Braz J Vet Res Anim Sci. 1997;34:349–51.CrossRef
121.
Zurück zum Zitat D'Angelino JL, Garcia M, Birgel EH. Epidemiological study of enzootic bovine leukosis in Brazil. Trop Anim Health Prod. 1998;30:13–5.PubMedCrossRef D'Angelino JL, Garcia M, Birgel EH. Epidemiological study of enzootic bovine leukosis in Brazil. Trop Anim Health Prod. 1998;30:13–5.PubMedCrossRef
122.
Zurück zum Zitat Camargos MF, Stancek D, Rocha MA, Lessa LM, Reis JK, Leite RC. Partial sequencing of env gene of bovine leukaemia virus from Brazilian samples and phylogenetic analysis. J Vet Med B Infect Dis Vet Public Health. 2002;49:325–31.PubMedCrossRef Camargos MF, Stancek D, Rocha MA, Lessa LM, Reis JK, Leite RC. Partial sequencing of env gene of bovine leukaemia virus from Brazilian samples and phylogenetic analysis. J Vet Med B Infect Dis Vet Public Health. 2002;49:325–31.PubMedCrossRef
123.
Zurück zum Zitat Camargos MF, Pereda A, Stancek D, Rocha MA, dos Reis JK, Greiser-Wilke I, Leite RC. Molecular characterization of the env gene from Brazilian field isolates of bovine leukemia virus. Virus Genes. 2007;34:343–50.PubMedCrossRef Camargos MF, Pereda A, Stancek D, Rocha MA, dos Reis JK, Greiser-Wilke I, Leite RC. Molecular characterization of the env gene from Brazilian field isolates of bovine leukemia virus. Virus Genes. 2007;34:343–50.PubMedCrossRef
124.
Zurück zum Zitat Trono KG, Perez-Filgueira DM, Duffy S, Borca MV, Carrillo C. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol. 2001;83:235–48.PubMedCrossRef Trono KG, Perez-Filgueira DM, Duffy S, Borca MV, Carrillo C. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol. 2001;83:235–48.PubMedCrossRef
125.
Zurück zum Zitat Bovine CAH. Leukaemia virus infection in Peru. Trop Anim Health Prod. 1983;15:61.CrossRef Bovine CAH. Leukaemia virus infection in Peru. Trop Anim Health Prod. 1983;15:61.CrossRef
126.
Zurück zum Zitat Marín C, de López NM, Alvarez L, Lozano O, España W, Castaños H, León A. Epidemiology of bovine leukemia in Venezuela. Ann Rech Vet. 1978;9:4. Marín C, de López NM, Alvarez L, Lozano O, España W, Castaños H, León A. Epidemiology of bovine leukemia in Venezuela. Ann Rech Vet. 1978;9:4.
127.
Zurück zum Zitat Moratorio G, Obal G, Dubra A, Correa A, Bianchi S, Buschiazzo A, Cristina J, Pritsch O. Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol. 2010;155:481–9.PubMedCrossRef Moratorio G, Obal G, Dubra A, Correa A, Bianchi S, Buschiazzo A, Cristina J, Pritsch O. Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol. 2010;155:481–9.PubMedCrossRef
128.
Zurück zum Zitat Rama G, Moratorio G, Greif G, Obal G, Bianchi S, Tomé L, Carrion F, Meikle A, Pritsch O. Development of a real time PCR assay using SYBR Green chemistry for bovine leukemia virus detection. Retrovirology. 2011: 8. Rama G, Moratorio G, Greif G, Obal G, Bianchi S, Tomé L, Carrion F, Meikle A, Pritsch O. Development of a real time PCR assay using SYBR Green chemistry for bovine leukemia virus detection. Retrovirology. 2011: 8.
129.
Zurück zum Zitat Alfonso R, Almansa JE, Barrera JD. Serological prevalence and evaluation of risk factors of enzootic bovine leukosis in the Sabana de Bogota region and the Ubate and Chiquinquira valleys of Colombia. Revue Scientifique Et Technique De L Office International Des Epizooties. 1998;17:723–32.CrossRef Alfonso R, Almansa JE, Barrera JD. Serological prevalence and evaluation of risk factors of enzootic bovine leukosis in the Sabana de Bogota region and the Ubate and Chiquinquira valleys of Colombia. Revue Scientifique Et Technique De L Office International Des Epizooties. 1998;17:723–32.CrossRef
130.
Zurück zum Zitat Hernández-Herrera DY, Posso-Terranova A, Benavides J, Muñoz-Flórez J, Giovambattista G, Álvarez-Franco L. Bovine leukosis virus detection in Creole Colombian breeds using nested-PCR. ACTA AGRONÓMICA. 2011;60:311–7. Hernández-Herrera DY, Posso-Terranova A, Benavides J, Muñoz-Flórez J, Giovambattista G, Álvarez-Franco L. Bovine leukosis virus detection in Creole Colombian breeds using nested-PCR. ACTA AGRONÓMICA. 2011;60:311–7.
131.
Zurück zum Zitat Benavides B, Quevedo D, Cruz M. Epidemiological study of bovine leukemia virus in dairy cows in six herds in the municipality of Pasto Nariño. Revista Lasallista de Investigación. 2013;10:18–26. Benavides B, Quevedo D, Cruz M. Epidemiological study of bovine leukemia virus in dairy cows in six herds in the municipality of Pasto Nariño. Revista Lasallista de Investigación. 2013;10:18–26.
132.
Zurück zum Zitat Yang Y, Fan W, Mao Y, Yang Z, Lu G, Zhang R, Zhang H, Szeto C, Wang C. Bovine leukemia virus infection in cattle of China: association with reduced milk production and increased somatic cell score. J Dairy Sci. 2016;99:3688–97.PubMedCrossRef Yang Y, Fan W, Mao Y, Yang Z, Lu G, Zhang R, Zhang H, Szeto C, Wang C. Bovine leukemia virus infection in cattle of China: association with reduced milk production and increased somatic cell score. J Dairy Sci. 2016;99:3688–97.PubMedCrossRef
133.
Zurück zum Zitat Ma JG, Zheng WB, Zhou DH, Qin SY, Yin MY, Zhu XQ, Hu GX. First Report of Bovine Leukemia Virus Infection in Yaks (Bos mutus) in China. Biomed Res Int. 2016:9170167. Ma JG, Zheng WB, Zhou DH, Qin SY, Yin MY, Zhu XQ, Hu GX. First Report of Bovine Leukemia Virus Infection in Yaks (Bos mutus) in China. Biomed Res Int. 2016:9170167.
134.
Zurück zum Zitat Kobayashi S, Tsutsui T, Yamamoto T, Hayama Y, Kameyama K, Konishi M, Murakami K. Risk factors associated with within-herd transmission of bovine leukemia virus on dairy farms in Japan. BMC Vet Res. 2010;6:1.PubMedPubMedCentralCrossRef Kobayashi S, Tsutsui T, Yamamoto T, Hayama Y, Kameyama K, Konishi M, Murakami K. Risk factors associated with within-herd transmission of bovine leukemia virus on dairy farms in Japan. BMC Vet Res. 2010;6:1.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Murakami K, Kobayashi S, Konishi M, Kameyama K, Yamamoto T, Tsutsui T. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Vet Microbiol. 2011;148:84–8.PubMedCrossRef Murakami K, Kobayashi S, Konishi M, Kameyama K, Yamamoto T, Tsutsui T. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Vet Microbiol. 2011;148:84–8.PubMedCrossRef
136.
Zurück zum Zitat Murakami K, Kobayashi S, Konishi M, Kameyama K, Tsutsui T. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009-2011. J Vet Med Sci. 2013;75:1123–6.PubMedCrossRef Murakami K, Kobayashi S, Konishi M, Kameyama K, Tsutsui T. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009-2011. J Vet Med Sci. 2013;75:1123–6.PubMedCrossRef
137.
Zurück zum Zitat Meas S, Ohashi K, Tum S, Chhin M, Te K, Miura K, Sugimoto C, Onuma M. Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. J Vet Med Sci. 2000;62:779–81.PubMedCrossRef Meas S, Ohashi K, Tum S, Chhin M, Te K, Miura K, Sugimoto C, Onuma M. Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. J Vet Med Sci. 2000;62:779–81.PubMedCrossRef
138.
Zurück zum Zitat Nekoei S, Hafshejani TT, Doosti A, Khamesipour F. Molecular detection of bovine leukemia virus in peripheral blood of Iranian cattle, camel and sheep. Pol J Vet Sci. 2015;18:703–7.PubMed Nekoei S, Hafshejani TT, Doosti A, Khamesipour F. Molecular detection of bovine leukemia virus in peripheral blood of Iranian cattle, camel and sheep. Pol J Vet Sci. 2015;18:703–7.PubMed
139.
Zurück zum Zitat Mousavi S, Haghparast A, Mohammadi G, Tabatabaeizadeh SE. Prevalence of bovine leukemia virus (BLV) infection in the northeast of Iran. Vet Res Forum. 2014;5:135–9.PubMedPubMedCentral Mousavi S, Haghparast A, Mohammadi G, Tabatabaeizadeh SE. Prevalence of bovine leukemia virus (BLV) infection in the northeast of Iran. Vet Res Forum. 2014;5:135–9.PubMedPubMedCentral
140.
Zurück zum Zitat Trainin Z, Brenner J. The direct and indirect economic impacts of bovine leukemia virus infection on dairy cattle. Israel Journal of Veterinary Medicine. 2005;60:90–105. Trainin Z, Brenner J. The direct and indirect economic impacts of bovine leukemia virus infection on dairy cattle. Israel Journal of Veterinary Medicine. 2005;60:90–105.
141.
Zurück zum Zitat Hafez SM, Sharif M, Al-Sukayran A, Dela-Cruz D. Preliminary studies on enzootic bovine leukosis in Saudi dairy farms. Dtsch Tierarztl Wochenschr. 1990;97:61–3.PubMed Hafez SM, Sharif M, Al-Sukayran A, Dela-Cruz D. Preliminary studies on enzootic bovine leukosis in Saudi dairy farms. Dtsch Tierarztl Wochenschr. 1990;97:61–3.PubMed
142.
Zurück zum Zitat Burgu I, Alkan F, Karaoglu T, Bilge-Dagalp S, Can-Sahna K, Gungor B, Demir B. Control and eradication programme of enzootic bovine leucosis (EBL) from selected dairy herds in Turkey. Dtsch Tierarztl Wochenschr. 2005;112:271–4.PubMed Burgu I, Alkan F, Karaoglu T, Bilge-Dagalp S, Can-Sahna K, Gungor B, Demir B. Control and eradication programme of enzootic bovine leucosis (EBL) from selected dairy herds in Turkey. Dtsch Tierarztl Wochenschr. 2005;112:271–4.PubMed
143.
Zurück zum Zitat Zhao X, Buehring GC. Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape. Virology. 2007;366:150–65.PubMedCrossRef Zhao X, Buehring GC. Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape. Virology. 2007;366:150–65.PubMedCrossRef
144.
Zurück zum Zitat Molteni E, Agresti A, Meneveri R, Marozzi A, Malcovati M, Bonizzi L, Poli G, Ginelli E. Molecular characterization of a variant of proviral bovine leukaemia virus (BLV). Zentralbl Veterinarmed B. 1996;43:201–11.PubMedCrossRef Molteni E, Agresti A, Meneveri R, Marozzi A, Malcovati M, Bonizzi L, Poli G, Ginelli E. Molecular characterization of a variant of proviral bovine leukaemia virus (BLV). Zentralbl Veterinarmed B. 1996;43:201–11.PubMedCrossRef
145.
Zurück zum Zitat Derse D, Diniak AJ, Casey JW, Deininger PL. Nucleotide sequence and structure of integrated bovine leukemia virus long terminal repeats. Virology. 1985;141:162–6.PubMedCrossRef Derse D, Diniak AJ, Casey JW, Deininger PL. Nucleotide sequence and structure of integrated bovine leukemia virus long terminal repeats. Virology. 1985;141:162–6.PubMedCrossRef
146.
Zurück zum Zitat Yang Y, Kelly PJ, Bai J, Zhang R, Wang C. First molecular characterization of bovine leukemia virus infections in the Caribbean. PLoS One. 2016;11:e0168379.PubMedPubMedCentralCrossRef Yang Y, Kelly PJ, Bai J, Zhang R, Wang C. First molecular characterization of bovine leukemia virus infections in the Caribbean. PLoS One. 2016;11:e0168379.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Dube S, Dolcini G, Abbott L, Mehta S, Dube D, Gutierrez S, Ceriani C, Esteban E, Ferrer J, Poiesz B. The complete genomic sequence of a BLV strain from a Holstein cow from Argentina. Virology. 2000;277:379–86.PubMedCrossRef Dube S, Dolcini G, Abbott L, Mehta S, Dube D, Gutierrez S, Ceriani C, Esteban E, Ferrer J, Poiesz B. The complete genomic sequence of a BLV strain from a Holstein cow from Argentina. Virology. 2000;277:379–86.PubMedCrossRef
148.
Zurück zum Zitat Dube S, Abbott L, Dube DK, Dolcini G, Gutierrez S, Ceriani C, Juliarena M, Ferrer J, Perzova R, Poiesz BJ. The complete genomic sequence of an in vivo low replicating BLV strain. Virol J. 2009;6:120.PubMedPubMedCentralCrossRef Dube S, Abbott L, Dube DK, Dolcini G, Gutierrez S, Ceriani C, Juliarena M, Ferrer J, Perzova R, Poiesz BJ. The complete genomic sequence of an in vivo low replicating BLV strain. Virol J. 2009;6:120.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Lim SI, Jeong W, Tark DS, Yang DK, Kweon CH. Agar gel immunodiffusion analysis using baculovirus-expressed recombinant bovine leukemia virus envelope glycoprotein (gp51/gp30(T-)). J Vet Sci. 2009;10:331–6.PubMedPubMedCentralCrossRef Lim SI, Jeong W, Tark DS, Yang DK, Kweon CH. Agar gel immunodiffusion analysis using baculovirus-expressed recombinant bovine leukemia virus envelope glycoprotein (gp51/gp30(T-)). J Vet Sci. 2009;10:331–6.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Inoue E, Matsumura K, Maekawa K, Nagatsuka K, Nobuta M, Hirata M, Minagawa A, Osawa Y, Okazaki K. Genetic heterogeneity among bovine leukemia viruses in Japan and their relationship to leukemogenicity. Arch Virol. 2011;156:1137–41.PubMedCrossRef Inoue E, Matsumura K, Maekawa K, Nagatsuka K, Nobuta M, Hirata M, Minagawa A, Osawa Y, Okazaki K. Genetic heterogeneity among bovine leukemia viruses in Japan and their relationship to leukemogenicity. Arch Virol. 2011;156:1137–41.PubMedCrossRef
151.
Zurück zum Zitat Ababneh MM, Al-Rukibat RK, Hananeh WM, Nasar AT, Al-Zghoul MB. Detection and molecular characterization of bovine leukemia viruses from Jordan. Arch Virol. 2012;157:2343–8.PubMedCrossRef Ababneh MM, Al-Rukibat RK, Hananeh WM, Nasar AT, Al-Zghoul MB. Detection and molecular characterization of bovine leukemia viruses from Jordan. Arch Virol. 2012;157:2343–8.PubMedCrossRef
152.
Zurück zum Zitat Rodriguez SM, Florins A, Gillet N, de Brogniez A, Sanchez-Alcaraz MT, Boxus M, Boulanger F, Gutierrez G, Trono K, Alvarez I, et al. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses. 2011;3:1210–48.PubMedPubMedCentralCrossRef Rodriguez SM, Florins A, Gillet N, de Brogniez A, Sanchez-Alcaraz MT, Boxus M, Boulanger F, Gutierrez G, Trono K, Alvarez I, et al. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses. 2011;3:1210–48.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Inoue E, Matsumura K, Soma N, Hirasawa S, Wakimoto M, Arakaki Y, Yoshida T, Osawa Y, Okazaki K. L233P mutation of the tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Vet Microbiol. 2013;167:364–71.PubMedCrossRef Inoue E, Matsumura K, Soma N, Hirasawa S, Wakimoto M, Arakaki Y, Yoshida T, Osawa Y, Okazaki K. L233P mutation of the tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Vet Microbiol. 2013;167:364–71.PubMedCrossRef
154.
Zurück zum Zitat Murakami H, Asano S, Uchiyama J, Sato R, Sakaguchi M, Tsukamoto K. Bovine leukemia virus G4 enhances virus production. Virus Res. 2017;238:213–7.PubMedCrossRef Murakami H, Asano S, Uchiyama J, Sato R, Sakaguchi M, Tsukamoto K. Bovine leukemia virus G4 enhances virus production. Virus Res. 2017;238:213–7.PubMedCrossRef
Metadaten
Titel
Epidemiology and genetic diversity of bovine leukemia virus
verfasst von
Meripet Polat
Shin-nosuke Takeshima
Yoko Aida
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2017
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0876-4

Weitere Artikel der Ausgabe 1/2017

Virology Journal 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.