Skip to main content
Erschienen in: BMC Infectious Diseases 1/2018

Open Access 01.12.2018 | Research article

Epidemiology of HBoV1 infection and relationship with meteorological conditions in hospitalized pediatric patients with acute respiratory illness: a 7-year study in a subtropical region

verfasst von: Wen-Kuan Liu, Qian Liu, De-Hui Chen, Wei-Ping Tan, Yong Cai, Shu-Yan Qiu, Duo Xu, Chi Li, Xiao Li, Zheng-Shi Lin, Rong Zhou

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2018

Abstract

Background

Human bocavirus 1 (HBoV1) is an important cause of acute respiratory illness (ARI), yet the epidemiology and effect of meteorological conditions on infection is not fully understood. To investigate the distribution of HBoV1 and determine the effect of meteorological conditions, hospitalized pediatric patients were studied in a subtropical region of China.

Methods

Samples from 11,399 hospitalized pediatric patients (≤14 years old), with ARI were tested for HBoV1 and other common respiratory pathogens using real-time PCR, between July 2009 and June 2016. In addition, local meteorological data were collected.

Results

Of the 11,399 patients tested, 5606 (49.2%) were positive for at least one respiratory pathogen. Two hundred forty-eight of 11,399 (2.2%) were positive for HBoV1 infection. Co-infection was common in HBoV1-positive patients (45.2%, 112/248). A significant difference in the prevalence of HBoV1 was found in patients in different age groups (p < 0.001), and the peak prevalence was found in patients aged 7–12 months (4.7%, 56/1203). Two HBoV1 prevalence peaks were found in summer (between June and September) and winter (between November and December). The prevalence of HBoV1 was significantly positively correlated with mean temperature and negatively correlated with mean relative humidity, and the mean temperature in the preceding month had better explanatory power than the current monthly temperature.

Conclusions

This study provides a better understanding of the characteristics of HBoV1 infection in children in subtropical regions. Data from this study provide useful information for the future control and prevention of HBoV1 infections.
Hinweise
Wen-Kuan Liu and Qian Liu contributed equally to this work.

Background

Human bocavirus 1 (HBoV1), which belongs to family Parvoviridae, was firstly identified in respiratory secretions of children with respiratory tract disease in 2005 [1, 2]. HBoV1 has been confirmed as an important respiratory pathogen and is found in respiratory infections in children and adults worldwide. The prevalence of HBoV1 nucleic acid detection varies from 1.5 to 33% in patients with acute respiratory illness (ARI), according to different studies [37]. Serological and nucleic acid test results are generally consistent [811], showing HBoV1 infection is very common. HBoV1 can cause both upper respiratory illness (URI) and lower respiratory illness (LRI) [1218]. Infection with HBoV1 can lead to development of a cough, rhinitis, fever and other common clinical symptoms [15, 19]. In some cases, it can cause respiratory distress, hypoxia, wheezing and other severe respiratory symptoms [18, 20]. Clinical diagnosis is mainly pneumonia, bronchitis, pneumothorax, mediastinal emphysema and otitis media and other complications [1822]. In some cases, patients develop severe respiratory injury symptoms, which can be fatal [21, 23]. HBoV1 can be detected in fecal samples [24], blood samples [25, 26], urine [27, 28], cerebrospinal fluid [2931], river water [32] and sewage [33, 34], indicating that HBoV1 may be associate with a variety of diseases. Current in vitro studies modeling tissue-like airway epithelial cells cultures show HBoV1 infection can lead to disruption of the tight-junction barrier, loss of cilia and epithelial cell hypertrophy [3537], similar to lung injury tissue changes in vivo. There is currently no vaccine or specific treatment for this virus; prevention and treatment of HBoV1-related diseases still require further research. The prevalence of respiratory viruses is associated with many factors, including local climate, which may impact the survival and spread of the viruses [38]. Studying the epidemiology of HBoV1 and its relationship with meteorological conditions will improve diagnosis, treatment, control and prevention of this virus.
In this study, we investigated the epidemiology of HBoV1 infection in children (≤14 years old) hospitalized with ARI in a subtropical region in China over a 7-year period. In addition, we collected climate data to determine if there was a relationship between HBoV1 prevalence and meteorological conditions. This study will add to existing epidemiological data on HBoV1 and its relationship with climate conditions in subtropical regions and will play a positive role in HBoV1 control and prevention.

Methods

Respiratory sample and meteorological data collection

The study sites were three tertiary hospitals in Guangzhou, southern China (Longitude: E112° 57′ to E114 03′; Latitude N22° 26′ to N23° 56′). Inclusion criteria were pediatric patients (≤14 years old) who presented with at least two of the following symptoms: cough, pharyngeal discomfort, nasal obstruction, rhinitis, dyspnea or who were diagnosed with pneumonia by chest radiography during the previous week. Chest radiography was conducted according to the clinical situation of the patient. Throat swab samples were collected from the enrolled patients between July 2009 and June 2016 for routine screening for respiratory viruses, Mycoplasma pneumoniae (MP), and Chlamydophila pneumoniae (CP). The samples were refrigerated at 2–8 °C in viral transport medium, transported on ice and analyzed immediately or stored at − 80 °C before analysis, as described previously [15, 39].
Meteorological data for Guangzhou, were collected from July 2009 to June 2016, from the China Meteorological Administration, including the monthly mean temperature (°C), mean relative humidity (%), rainfall (mm), mean wind speed (m/s), mean air pressure (hPa), mean vapor pressure (hPa), sunshine duration (h).

Real-time PCR for HBoV1 and common respiratory pathogen detection

DNA and RNA were extracted from the respiratory samples using the QIAamp DNA Mini Kit and QIAamp Viral RNA Mini Kit (Qiagen, Shanghai, China), respectively, in accordance with the manufacturer’s protocols. Taqman real-time PCR for HBoV1 was designed based on the conserved region of the NP1 gene, as described previously [15]. Common respiratory pathogens, including respiratory syncytial virus (RSV), influenza A virus (InfA), influenza B virus (InfB), four types of parainfluenza (PIV1–4), adenovirus (ADV), enterovirus (EV), human metapneumovirus (HMPV), four strains of human coronavirus (HCoV-229E, OC43, NL63 and HKU1), human rhinovirus (HRV), MP and CP were detected simultaneously as previously reported [40].

Statistical analysis

Data were analyzed using Chi-squared test and Fisher’s exact test in SPSS 19.0 (SPSS Inc., Chicago, IL, USA). Correlation with climate data was analyzed using multiple linear regression analysis. All tests were two-tailed and a p value < 0.05 was considered as statistically significant.

Results

Patients and HBoV1 distribution

Eleven thousand three hundred ninety-nine pediatric patients (≤14 years old) hospitalized with ARI were enrolled in the study between July 2009 and June 2016. The male-to-female ratio was 1.82:1 (7361:4038) and the median age was 1.75 years (interquartile range 0.75–3.83). Overall, 86.5% (9857/11399) of patients were under the age of 5 years. All the 11,399 patients were tested for all 18 pathogens mentioned, and 5606 (49.2%) were positive for one or more of those pathogens (Table 1), and had a median age of 1.50 years (interquartile range 0.67–3.00). The male-to-female ratioes were 1.94: 1 (3698:1908) in pathogen-positive patients and 1.72: 1 (3663:2130) in pathogen-negative patients (p = 0.002).
Table 1
Distribution of respiratory pathogens in 11,399 pediatric patients hospitalized with acute respiratory illness
Pathogen
HBoV1
infA
infB
RSV
EV
HRVa
ADV
PIV1
PIV2
PIV3
PIV4
229E
OC43
NL63
HKU1
HMPV
MP
CP
Positive rate, %
HBoV1
248
13
4
29
15
17
14
4
3
10
1
0
9
3
1
7
14
0
2.2
infA
 
839
34
95
41
8
23
9
7
11
0
7
38
4
4
12
46
1
7.4
infB
  
300
25
9
6
4
1
1
6
0
0
9
0
1
5
15
2
2.6
RSV
   
1690
73
45
38
9
13
14
3
10
29
10
3
16
38
8
14.8
EV
    
498
16
24
14
2
13
1
4
10
6
1
10
21
5
4.4
HRVa
     
402
14
3
2
12
2
2
11
1
1
3
21
6
5.0
ADV
      
621
5
3
7
2
3
14
5
2
9
36
3
5.4
PIV1
       
116
2
2
0
2
5
1
0
1
9
0
1.0
PIV2
        
72
3
0
2
9
0
0
2
3
0
0.6
PIV3
         
296
0
1
15
1
1
3
15
1
2.6
PIV4
          
25
1
1
0
0
0
3
0
0.2
229E
           
64
14
2
0
3
3
0
0.6
OC43
            
346
2
1
14
27
3
3.0
NL63
             
60
1
1
3
1
0.5
HKU1
              
38
1
3
1
0.3
HMP
               
321
9
0
2.8
MP
                
760
2
6.7
CP
                 
77
0.7
Single infection
136
546
203
1314
286
261
458
67
35
203
13
26
185
28
19
243
531
51
40.4
Co-infection
112
293
97
376
212
141
163
49
37
93
12
38
161
32
19
78
229
26
8.8
Data are number in each group, except where specifically stated. HBoV1 human bocavirus 1, InfA influenza A virus, InfB influenza B virus, RSV respiratory syncytial virus, EV enterovirus, HRV human rhinovirus, PIV1–4 parainfluenza 1–4, ADV adenovirus, HMPV human metapneumovirus, 229E human coronavirus 229E, OC43 human coronavirus OC43, NL63 human coronavirus NL63, HKU1 human coronavirus HKU1, MP Mycoplasma pneumoniae, CP Chlamydophila pneumoniae. aHRV was detected since January 2012, and a total of 8084 cases were collected
Two hundred forty-eight of 11,399 patients (2.2%) tested positive for HBoV1 infection. Of the HBoV1-positive patients, 112 (45.2%) were co-infected with other pathogens, most frequently with RSV (11.7%, 29/248) (Table 1). The median age was 1 year (interquartile range 0.75–1.83). The male-to-female ratio was 2.54:1 (178:70) in HBoV1-positive patients and 1.81:1 (7183:3968) in HBoV1-negative patients (p = 0.019).

Age distribution of HBoV1-positive patients

To clarify the age distribution of HBoV1, patients were divided into seven age groups; 0–3 months, 4–6 months, 7–12 months, 1–2 years, 3–5 years, 6–10 years and 11–14 years old. There was a significant difference in the prevalence of HBoV1 in patients in different age groups (p < 0.001) and the peak prevalence was found in patients aged 7–12 months (4.7%, 56/1203) (Fig. 1).

Seasonal distribution of HBoV1

In this study, we monitored the prevalence of HBoV1 in patients (≤14 years old) hospitalized with ARI from July 2009 and June 2016. Overall, there were two main prevalence peaks in each year. The large peaks of the epidemic were between June and September of each year, including September 2009 (12.8%, 20/156), June 2010 (12.3%, 10/81), June 2011 (9.6%, 10/104), August 2012 (7.0%, 10/142), August 2013 (4.8%, 10/208) and September 2014 (3.4%, 5/148). The small prevalence peaks were between November and December of each year, including December 2009 (4.6%, 5/108), December 2010 (3.0%, 3/101), December 2011 (5.3%, 7/132), November 2012 (3.1%, 5/160) and December 2013 (1.5%, 3/200). Conversely, in 2015 the large and small prevalence peaks were November 2015 (5.8%, 7/121) and July (3.4%, 4/119), respectively. There was no obvious cut off between the large and small prevalence peaks in 2014 (Fig. 2). The same temporal distribution was observed between the monthly distribution of HBoV1 and proportion of positive samples (Fig. 2).

Correlation between HBoV1 epidemics and meteorological conditions

We collected meteorological data for Guangzhou, including monthly mean temperature, mean relative humidity, rainfall, mean wind speed, mean air pressure, mean vapor pressure and sunshine duration for a 7-year period, to explore the correlation between meteorological conditions and prevalence of HBoV1.
Guangzhou, which is located in southern China (longitude 112° 57′ to 114° 3′, latitude 22° 26′ to 23° 56′), has a maritime subtropical monsoon climate. Between July 2009 and June 2016, the mean temperature was 21.8 ± 5.8 °C (mean ± standard deviation), humidity was 77.2 ± 7.3%, sunshine duration was 132.7 ± 59.5 h, wind speed was 2.2 ± 0.6 m/s, rainfall was 175.2 ± 165.9 mm, air pressure was 1005.6 ± 6.0 hPa and vapor pressure was 21.3 h ± 7.4 hPa. Between 2009 and 2016, the mean temperature from May to September was greater than 25 °C (Fig. 3).
For multiple linear regression analysis of HBoV1 prevalence and meteorological conditions correlation, independent variables of mean air pressure (adjusted R2 = 0.793, p < 0.001) and mean vapor pressure (adjusted R2 = 0.929, p < 0.001), which linearly associated with mean temperature, and rainfall (adjusted R2 = 0.278, p < 0.001), which strongly correlated with mean relative humidity, were excluded. The independent variables for the final multiple linear regression analysis included mean temperature, mean relative humidity, mean wind speed and sunshine hours. The effect of temperature had a delay therefore mean temperature in the preceding month (mean temperature 1 month before) was also included as an independent variable in the analysis (Table 2). Both regression models were established (p < 0.001) and the adjusted R2 values were 0.373 and 0.231 in the mean temperature in the preceding month model and the current monthly temperature model, respectively. HBoV1 prevalence was positively correlated with temperature (coefficient = 0.259 in the current temperature model (p = 0.002), coefficient = 0.328 in mean temperature in the preceding month model (p < 0.001)). Conversely, HBoV1 prevalence was negatively correlated with relative humidity (coefficient = − 0.126 in the current temperature model (p = 0.024), coefficient = − 0.083 in the temperature delay model (p = 0.039)) (Table 2).
Table 2
Multiple linear regression analysis of the correlation between HBoV1 prevalence and meteorological factors in Guangzhou from July 2009 to June 2016
Meteorological factors
Correlation coefficient
p value
Mean temperature (°C)
0.259
0.002
Mean relative humidity (%)
−0.126
0.024
Mean wind speed (m/s)
−0.190
0.736
Sunshine duration (h)
−0.006
0.426
The regression model adjusted R2 = 0.231, p < 0.001
Mean temperature in the preceding month (°C)
0.328
< 0.001
Mean relative humidity (%)
−0.083
0.039
Mean wind speed (m/s)
−0.453
0.317
Sunshine duration (h)
−0.014
0.051
Multiple linear regression analysis was performed using HBoV1 monthly prevalence as the dependent variable, monthly mean temperature (or mean temperature in the preceding month), mean relative humidity, mean wind speed and sunshine duration as the independent variables
Data captured in bold are highly significant

Discussion

ARI is one of the most common human diseases, predominantly caused by different respiratory viruses [41, 42]. One of these viruses, HBoV1 infection, causes global epidemics, has a high public health burden and circulates with different patterns in different areas [37, 43]. In general, the prevalence of viruses varies because of factors such as geographical location, climatic conditions, population and social activity [38]. Epidemiology of HBoV1 in temperate regions has been described in more detail and a high incidence of infection has been observed in children under the age of 2 years in winter and spring [15, 16, 39, 44].
To describe the epidemiology of HBoV1 in Guangzhou, we collected throat swabs from 11,399 children (≤14 years old), hospitalized with ARI and monitored HBoV1 and other common respiratory pathogens over a 7-year period (Table 1).
In the current study, 86.5% (9857/11399) of patients were under the age of 5 years, with a median age of 1.75 years, indicating that infants and young children were most at risk of ARI, consistent with previous reports [45, 46]. Overall, 49.2% (5606/11399) of patients tested positive for one or more respiratory pathogens, 2.2% (248/11399) of patients were tested with HBoV1 infection (Table 1). A higher prevalence of HBoV1 was detected in male patients compared with female patients (p = 0.019), consistent with previous reports [15, 16, 39, 44].
Co-infection with HBoV1 and other pathogens is common [14, 15]. In our study, 45.2% (112/248) of HBoV1-positive patients also tested positive for other pathogens (Table 1). This may be partly caused by coinciding epidemics of HBoV1 and other pathogens. In our study, the HBoV1 seasonal distribution and total positive pathogen distribution were consistent, confirming this inference (Fig. 2). Current research shows that HBoV1 infection can lead to the collapse of the first line of defense of airway epithelium [3537], which may lead to a higher susceptibility to other pathogens, explaining the high rate of co-infection. Whether co-infection leads to more severe disease is currently unknown and more research is needed to determine this. The characteristics of the HBoV1 infection are likely to be a good model for studying the effects of co-infections.
In this study, there was a significant difference in prevalence of HBoV1 in patients of different ages (p < 0.001). The majority of HBoV1 infections occurred in patients under 2 years old and the peak frequency of HBoV1 infection occurred in patients aged 7–12 months (Fig. 1), consistent with previous serological and epidemiological reports on the virus [811, 15, 16, 39, 44]. This might be because children’s immune systems are still under development and maternal antibodies gradually disappear in this age group. The distribution of HBoV1 in patients of different ages will provide important reference for future vaccines and new drug research and development, as well as providing important data for disease prevention and control.
Many factors affect the epidemiology of pathogens, such as geographical location and local climate. Guangzhou, a central city and main transport hub in southern China, is located in a subtropical region. Guangzhou is hot and has high annual rainfall, long summers, short winters and the annual precipitation and high temperature are almost in the same period (Fig. 3). In this study, two HBoV1 peaks were observed (Fig. 2). The large prevalence peaks of HBoV1 infection occurred between June and September of each year, which are the summer months in Guangzhou, with mean temperatures of higher than 25 °C (Fig. 3). Small peaks of HBoV1 infection occurred in winter, between November and December of each year. This seasonal distribution is similar to the prevalence in subtropical regions reported previously [47], but different from the HBoV1 epidemics in temperate regions, which mostly occur in winter and spring [15, 16, 39, 44], as well as from tropical regions, such as India, where no obvious epidemic season has been found [48].
To analyze the correlation between HBoV1 prevalence and meteorological conditions, multiple linear regression analysis was performed, with HBoV1 monthly prevalence as the dependent variable and mean temperature (or mean temperature in the preceding month), mean relative humidity, mean wind speed and sunshine duration as the independent variables (Table 2). Both regression models were established (p < 0.001) and the adjusted R2 value (0.373) of the temperature dorp 1 month model was greater than the adjusted R2 value (0.231) of the current monthly temperature model, indicating that the temperature dorp 1 month model had better explanatory power than the current monthly temperature model. Both of the models showed that the prevalence of HBoV1 was significantly correlated with temperature and relative humidity (Table 2). In detail, HBoV1 prevalence was positively correlated with temperature, that is consistent with previous reports [47, 49]. Conversely, HBoV1 prevalence was negatively correlated with relative humidity, this was different from a previous report in Suzhou [47], which may be related to Guangzhou high humidity (mean monthly relative humidity was 77.2 ± 7.3%) (Fig. 3). It is common for pathogen prevalence to fluctuate over time because of a variety factors. In this study, HBoV1 prevalence was relatively low in 2013 to 2014. It might be partly related to the relatively higher mean relative humidity during this period (Fig. 3). Climate conditions may impact the survival and spread of respiratory viruses, however no significant linear relationship between HBoV1 infection and wind speed or sunshine duration were found in this study (p > 0.05) (Table 2).
Some limitations of this study should be noted. First, because our study mainly focused on HBoV1 circulation in hospitalized patients with ARI, HBoV1 in outpatients and the asymptomatic population were not included. Second, many factors can affect virus epidemics, meteorological data analysis alone may not serve as a final conclusive interpretation. Third, the study was only conducted in three hospitals and may not be representative of the overall population.

Conclusions

Our study has provided a better understanding of the epidemiology of HBoV1 in subtropical regions, specifically correlations with climate data; these data will be helpful for future control and prevention of HBoV1 infections.

Acknowledgements

We thank the study volunteers for their generous participation. We thank Yinghua Zhou, Haiping Huang, Jing Zhang and Jing Ma for their technical assistance.

Funding

This study was supported by National Natural Science Foundation of China (31500143); Guangzhou Science and Technology Program key projects (201803040004, 201704020225); The State Major Infectious Disease Research Program (2017ZX10103011-003, 2018ZX10102001); Natural Science Foundation of Guangdong Province (2016A030313572). The sponsors of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
The study was approved by The First Affiliated Hospital of Guangzhou Medical University Ethics Committee for research on human beings. The next of kin (>18 years old), caretakers, or guardians gave signed informed consent on behalf of the minors/children for participation in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102(36):12891–6.CrossRefPubMedPubMedCentral Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102(36):12891–6.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Qiu J, Soderlund-Venermo M, Young NS. Human Parvoviruses. Clin Microbiol Rev. 2017;30(1):43–113.CrossRefPubMed Qiu J, Soderlund-Venermo M, Young NS. Human Parvoviruses. Clin Microbiol Rev. 2017;30(1):43–113.CrossRefPubMed
3.
Zurück zum Zitat Bicer S, Giray T, Col D, Erdag GC, Vitrinel A, Gurol Y, Celik G, Kaspar C, Kucuk O. Virological and clinical characterizations of respiratory infections in hospitalized children. Ital J Pediatr. 2013;39:22.CrossRefPubMedPubMedCentral Bicer S, Giray T, Col D, Erdag GC, Vitrinel A, Gurol Y, Celik G, Kaspar C, Kucuk O. Virological and clinical characterizations of respiratory infections in hospitalized children. Ital J Pediatr. 2013;39:22.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Moreno B, Abrego L, Carrera JP, Franco D, Gaitan M, Castillo J, Pascale JM, Arbiza J. Detection of human bocavirus type 1 infection in Panamanian children with respiratory illness. J Med Virol. 2016;88(3):389–94.CrossRefPubMed Moreno B, Abrego L, Carrera JP, Franco D, Gaitan M, Castillo J, Pascale JM, Arbiza J. Detection of human bocavirus type 1 infection in Panamanian children with respiratory illness. J Med Virol. 2016;88(3):389–94.CrossRefPubMed
5.
Zurück zum Zitat Li L, Zhu T, Chen ZR, Yan YD, He LP, Xu HM, Shao XJ, Yin F, Ji W. Detection of human bocavirus in nasopharyngeal aspirates versus in broncho-alveolar lavage fluids in children with lower respiratory tract infections. J Med Virol. 2016;88(2):211–5.CrossRefPubMed Li L, Zhu T, Chen ZR, Yan YD, He LP, Xu HM, Shao XJ, Yin F, Ji W. Detection of human bocavirus in nasopharyngeal aspirates versus in broncho-alveolar lavage fluids in children with lower respiratory tract infections. J Med Virol. 2016;88(2):211–5.CrossRefPubMed
6.
Zurück zum Zitat Garcia-Garcia ML, Calvo C, Pozo F, Perez-Brena P, Quevedo S, Bracamonte T, Casas I. Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection. Pediatr Infect Dis J. 2008;27(4):358–60.CrossRefPubMed Garcia-Garcia ML, Calvo C, Pozo F, Perez-Brena P, Quevedo S, Bracamonte T, Casas I. Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection. Pediatr Infect Dis J. 2008;27(4):358–60.CrossRefPubMed
7.
Zurück zum Zitat Martin ET, Taylor J, Kuypers J, Magaret A, Wald A, Zerr D, Englund JA. Detection of bocavirus in saliva of children with and without respiratory illness. J Clin Microbiol. 2009;47(12):4131–2.CrossRefPubMedPubMedCentral Martin ET, Taylor J, Kuypers J, Magaret A, Wald A, Zerr D, Englund JA. Detection of bocavirus in saliva of children with and without respiratory illness. J Clin Microbiol. 2009;47(12):4131–2.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Kantola K, Hedman L, Tanner L, Simell V, Makinen M, Partanen J, Sadeghi M, Veijola R, Knip M, Ilonen J, et al. B-cell responses to human Bocaviruses 1-4: new insights from a childhood follow-up study. PLoS One. 2015;10(9):e0139096.CrossRefPubMedPubMedCentral Kantola K, Hedman L, Tanner L, Simell V, Makinen M, Partanen J, Sadeghi M, Veijola R, Knip M, Ilonen J, et al. B-cell responses to human Bocaviruses 1-4: new insights from a childhood follow-up study. PLoS One. 2015;10(9):e0139096.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kahn JS, Kesebir D, Cotmore SF, D’Abramo A Jr, Cosby C, Weibel C, Tattersall P. Seroepidemiology of human bocavirus defined using recombinant virus-like particles. J Infect Dis. 2008;198(1):41–50.CrossRefPubMed Kahn JS, Kesebir D, Cotmore SF, D’Abramo A Jr, Cosby C, Weibel C, Tattersall P. Seroepidemiology of human bocavirus defined using recombinant virus-like particles. J Infect Dis. 2008;198(1):41–50.CrossRefPubMed
10.
Zurück zum Zitat Kantola K, Hedman L, Arthur J, Alibeto A, Delwart E, Jartti T, Ruuskanen O, Hedman K, Soderlund-Venermo M. Seroepidemiology of human bocaviruses 1-4. J Infect Dis. 2011;204(9):1403–12.CrossRefPubMedPubMedCentral Kantola K, Hedman L, Arthur J, Alibeto A, Delwart E, Jartti T, Ruuskanen O, Hedman K, Soderlund-Venermo M. Seroepidemiology of human bocaviruses 1-4. J Infect Dis. 2011;204(9):1403–12.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Li H, He M, Zeng P, Gao Z, Bian G, Yang C, Li W. The genomic and seroprevalence of human bocavirus in healthy Chinese plasma donors and plasma derivatives. Transfusion. 2015;55(1):154–63.CrossRefPubMed Li H, He M, Zeng P, Gao Z, Bian G, Yang C, Li W. The genomic and seroprevalence of human bocavirus in healthy Chinese plasma donors and plasma derivatives. Transfusion. 2015;55(1):154–63.CrossRefPubMed
12.
Zurück zum Zitat Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, De Donno A, Bagordo F, Zizza A. Human bocavirus: current knowledge and future challenges. World J Gastroenterol. 2016;22(39):8684–97.CrossRefPubMedPubMedCentral Guido M, Tumolo MR, Verri T, Romano A, Serio F, De Giorgi M, De Donno A, Bagordo F, Zizza A. Human bocavirus: current knowledge and future challenges. World J Gastroenterol. 2016;22(39):8684–97.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Pekcan S, Gokturk B, Uygun Kucukapan H, Arslan U, Findik D. Spontaneous pneumomediastinum as a complication in human bocavirus infection. Pediatr Int. 2014;56(5):793–5.CrossRefPubMed Pekcan S, Gokturk B, Uygun Kucukapan H, Arslan U, Findik D. Spontaneous pneumomediastinum as a complication in human bocavirus infection. Pediatr Int. 2014;56(5):793–5.CrossRefPubMed
14.
Zurück zum Zitat Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Soderlund-Venermo M. Human bocavirus-the first 5 years. Rev Med Virol. 2012;22(1):46–64.CrossRefPubMed Jartti T, Hedman K, Jartti L, Ruuskanen O, Allander T, Soderlund-Venermo M. Human bocavirus-the first 5 years. Rev Med Virol. 2012;22(1):46–64.CrossRefPubMed
15.
Zurück zum Zitat Liu WK, Chen DH, Liu Q, Liang HX, Yang ZF, Qin S, Zhou R. Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China. BMC Infect Dis. 2011;11:345.CrossRefPubMedPubMedCentral Liu WK, Chen DH, Liu Q, Liang HX, Yang ZF, Qin S, Zhou R. Detection of human bocavirus from children and adults with acute respiratory tract illness in Guangzhou, southern China. BMC Infect Dis. 2011;11:345.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Ghietto LM, Majul D, Ferreyra Soaje P, Baumeister E, Avaro M, Insfran C, Mosca L, Camara A, Moreno LB, Adamo MP. Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection. Arch Virol. 2015;160(1):117–27.CrossRefPubMed Ghietto LM, Majul D, Ferreyra Soaje P, Baumeister E, Avaro M, Insfran C, Mosca L, Camara A, Moreno LB, Adamo MP. Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection. Arch Virol. 2015;160(1):117–27.CrossRefPubMed
17.
Zurück zum Zitat Lu QB, Wo Y, Wang HY, Huang DD, Zhao J, Zhang XA, Zhang YY, Liu EM, Liu W, Cao WC. Epidemic and molecular evolution of human bocavirus in hospitalized children with acute respiratory tract infection. Eur J Clin Microbiol Infect Dis. 2015;34(1):75–81.CrossRefPubMed Lu QB, Wo Y, Wang HY, Huang DD, Zhao J, Zhang XA, Zhang YY, Liu EM, Liu W, Cao WC. Epidemic and molecular evolution of human bocavirus in hospitalized children with acute respiratory tract infection. Eur J Clin Microbiol Infect Dis. 2015;34(1):75–81.CrossRefPubMed
18.
Zurück zum Zitat Arnott A, Vong S, Rith S, Naughtin M, Ly S, Guillard B, Deubel V, Buchy P. Human bocavirus amongst an all-ages population hospitalised with acute lower respiratory infections in Cambodia. Influenza Other Respir Viruses. 2013;7(2):201–10.CrossRefPubMed Arnott A, Vong S, Rith S, Naughtin M, Ly S, Guillard B, Deubel V, Buchy P. Human bocavirus amongst an all-ages population hospitalised with acute lower respiratory infections in Cambodia. Influenza Other Respir Viruses. 2013;7(2):201–10.CrossRefPubMed
19.
Zurück zum Zitat Flores CJ, Vizcaya AC, Araos BR, Montecinos PL, Godoy MP, Valiente-Echeverria F, Perret PC, Valenzuela CP, Hirsch BT, Ferres GM. Human bocavirus in Chile: clinical characteristics and epidemiological profile in children with acute respiratory tract infections. Rev Chil Infectol. 2011;28(6):504–11.CrossRef Flores CJ, Vizcaya AC, Araos BR, Montecinos PL, Godoy MP, Valiente-Echeverria F, Perret PC, Valenzuela CP, Hirsch BT, Ferres GM. Human bocavirus in Chile: clinical characteristics and epidemiological profile in children with acute respiratory tract infections. Rev Chil Infectol. 2011;28(6):504–11.CrossRef
20.
Zurück zum Zitat Zhou L, Zheng S, Xiao Q, Ren L, Xie X, Luo J, Wang L, Huang A, Liu W, Liu E. Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children. BMC Infect Dis. 2014;14:424.CrossRefPubMedPubMedCentral Zhou L, Zheng S, Xiao Q, Ren L, Xie X, Luo J, Wang L, Huang A, Liu W, Liu E. Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children. BMC Infect Dis. 2014;14:424.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Ursic T, Steyer A, Kopriva S, Kalan G, Krivec U, Petrovec M. Human bocavirus as the cause of a life-threatening infection. J Clin Microbiol. 2011;49(3):1179–81.CrossRefPubMedPubMedCentral Ursic T, Steyer A, Kopriva S, Kalan G, Krivec U, Petrovec M. Human bocavirus as the cause of a life-threatening infection. J Clin Microbiol. 2011;49(3):1179–81.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Beder LB, Hotomi M, Ogami M, Yamauchi K, Shimada J, Billal DS, Ishiguro N, Yamanaka N. Clinical and microbiological impact of human bocavirus on children with acute otitis media. Eur J Pediatr. 2009;168(11):1365–72.CrossRefPubMed Beder LB, Hotomi M, Ogami M, Yamauchi K, Shimada J, Billal DS, Ishiguro N, Yamanaka N. Clinical and microbiological impact of human bocavirus on children with acute otitis media. Eur J Pediatr. 2009;168(11):1365–72.CrossRefPubMed
23.
Zurück zum Zitat Korner RW, Soderlund-Venermo M, van Koningsbruggen-Rietschel S, Kaiser R, Malecki M, Schildgen O. Severe human bocavirus infection, Germany. Emerg Infect Dis. 2011;17(12):2303–5.CrossRefPubMedPubMedCentral Korner RW, Soderlund-Venermo M, van Koningsbruggen-Rietschel S, Kaiser R, Malecki M, Schildgen O. Severe human bocavirus infection, Germany. Emerg Infect Dis. 2011;17(12):2303–5.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Zhang DM, Ma MM, Wen WT, Zhu X, Xu L, He ZJ, He X, Wu JH, Hu YW, Zheng Y, et al. Clinical epidemiology and molecular profiling of human bocavirus in faecal samples from children with diarrhoea in Guangzhou, China. Epidemiol Infect. 2015;143(11):2315–29. Zhang DM, Ma MM, Wen WT, Zhu X, Xu L, He ZJ, He X, Wu JH, Hu YW, Zheng Y, et al. Clinical epidemiology and molecular profiling of human bocavirus in faecal samples from children with diarrhoea in Guangzhou, China. Epidemiol Infect. 2015;143(11):2315–29.
25.
Zurück zum Zitat Allander T, Jartti T, Gupta S, Niesters HG, Lehtinen P, Osterback R, Vuorinen T, Waris M, Bjerkner A, Tiveljung-Lindell A, et al. Human bocavirus and acute wheezing in children. Clin Infect Dis. 2007;44(7):904–10.CrossRefPubMed Allander T, Jartti T, Gupta S, Niesters HG, Lehtinen P, Osterback R, Vuorinen T, Waris M, Bjerkner A, Tiveljung-Lindell A, et al. Human bocavirus and acute wheezing in children. Clin Infect Dis. 2007;44(7):904–10.CrossRefPubMed
26.
Zurück zum Zitat Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S. Prevalence and clinical aspects of human bocavirus infection in children. Clin Microbiol Infect. 2010;16(6):633–9.CrossRefPubMed Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S. Prevalence and clinical aspects of human bocavirus infection in children. Clin Microbiol Infect. 2010;16(6):633–9.CrossRefPubMed
27.
Zurück zum Zitat Pozo F, Garcia-Garcia ML, Calvo C, Cuesta I, Perez-Brena P, Casas I. High incidence of human bocavirus infection in children in Spain. J Clin Virol. 2007;40(3):224–8.CrossRefPubMed Pozo F, Garcia-Garcia ML, Calvo C, Cuesta I, Perez-Brena P, Casas I. High incidence of human bocavirus infection in children in Spain. J Clin Virol. 2007;40(3):224–8.CrossRefPubMed
28.
Zurück zum Zitat Wang K, Wang W, Yan H, Ren P, Zhang J, Shen J, Deubel V. Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J Clin Virol. 2010;47(2):148–55.CrossRefPubMed Wang K, Wang W, Yan H, Ren P, Zhang J, Shen J, Deubel V. Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. J Clin Virol. 2010;47(2):148–55.CrossRefPubMed
29.
Zurück zum Zitat Mori D, Ranawaka U, Yamada K, Rajindrajith S, Miya K, Perera HK, Matsumoto T, Dassanayake M, Mitui MT, Mori H, et al. Human bocavirus in patients with encephalitis, Sri Lanka, 2009-2010. Emerg Infect Dis. 2013;19(11):1859–62.CrossRefPubMedPubMedCentral Mori D, Ranawaka U, Yamada K, Rajindrajith S, Miya K, Perera HK, Matsumoto T, Dassanayake M, Mitui MT, Mori H, et al. Human bocavirus in patients with encephalitis, Sri Lanka, 2009-2010. Emerg Infect Dis. 2013;19(11):1859–62.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Yu JM, Chen QQ, Hao YX, Yu T, Zeng SZ, Wu XB, Zhang B, Duan ZJ. Identification of human bocaviruses in the cerebrospinal fluid of children hospitalized with encephalitis in China. J Clin Virol. 2013;57(4):374–7.CrossRefPubMed Yu JM, Chen QQ, Hao YX, Yu T, Zeng SZ, Wu XB, Zhang B, Duan ZJ. Identification of human bocaviruses in the cerebrospinal fluid of children hospitalized with encephalitis in China. J Clin Virol. 2013;57(4):374–7.CrossRefPubMed
31.
Zurück zum Zitat Mitui MT, Tabib SM, Matsumoto T, Khanam W, Ahmed S, Mori D, Akhter N, Yamada K, Kabir L, Nishizono A, et al. Detection of human bocavirus in the cerebrospinal fluid of children with encephalitis. Clin Infect Dis. 2012;54(7):964–7.CrossRefPubMed Mitui MT, Tabib SM, Matsumoto T, Khanam W, Ahmed S, Mori D, Akhter N, Yamada K, Kabir L, Nishizono A, et al. Detection of human bocavirus in the cerebrospinal fluid of children with encephalitis. Clin Infect Dis. 2012;54(7):964–7.CrossRefPubMed
32.
Zurück zum Zitat Hamza IA, Jurzik L, Wilhelm M, Uberla K. Detection and quantification of human bocavirus in river water. J Gen Virol. 2009;90(Pt 11):2634–7.CrossRefPubMed Hamza IA, Jurzik L, Wilhelm M, Uberla K. Detection and quantification of human bocavirus in river water. J Gen Virol. 2009;90(Pt 11):2634–7.CrossRefPubMed
33.
Zurück zum Zitat Rasanen S, Lappalainen S, Kaikkonen S, Hamalainen M, Salminen M, Vesikari T. Mixed viral infections causing acute gastroenteritis in children in a waterborne outbreak. Epidemiol Infect. 2010;138(9):1227–34.CrossRefPubMed Rasanen S, Lappalainen S, Kaikkonen S, Hamalainen M, Salminen M, Vesikari T. Mixed viral infections causing acute gastroenteritis in children in a waterborne outbreak. Epidemiol Infect. 2010;138(9):1227–34.CrossRefPubMed
34.
Zurück zum Zitat Blinkova O, Rosario K, Li L, Kapoor A, Slikas B, Bernardin F, Breitbart M, Delwart E. Frequent detection of highly diverse variants of cardiovirus, cosavirus, bocavirus, and circovirus in sewage samples collected in the United States. J Clin Microbiol. 2009;47(11):3507–13.CrossRefPubMedPubMedCentral Blinkova O, Rosario K, Li L, Kapoor A, Slikas B, Bernardin F, Breitbart M, Delwart E. Frequent detection of highly diverse variants of cardiovirus, cosavirus, bocavirus, and circovirus in sewage samples collected in the United States. J Clin Microbiol. 2009;47(11):3507–13.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Deng X, Yan Z, Luo Y, Xu J, Cheng F, Li Y, Engelhardt JF, Qiu J. In vitro modeling of human bocavirus 1 infection of polarized primary human airway epithelia. J Virol. 2013;87(7):4097–102.CrossRefPubMedPubMedCentral Deng X, Yan Z, Luo Y, Xu J, Cheng F, Li Y, Engelhardt JF, Qiu J. In vitro modeling of human bocavirus 1 infection of polarized primary human airway epithelia. J Virol. 2013;87(7):4097–102.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Huang Q, Deng X, Yan Z, Cheng F, Luo Y, Shen W, Lei-Butters DC, Chen AY, Li Y, Tang L, et al. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. PLoS Pathog. 2012;8:e1002899.CrossRefPubMedPubMedCentral Huang Q, Deng X, Yan Z, Cheng F, Luo Y, Shen W, Lei-Butters DC, Chen AY, Li Y, Tang L, et al. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. PLoS Pathog. 2012;8:e1002899.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Deng X, Li Y, Qiu J. Human bocavirus 1 infects commercially available primary human airway epithelium cultures productively. J Virol Methods. 2014;195:112–9.CrossRefPubMed Deng X, Li Y, Qiu J. Human bocavirus 1 infects commercially available primary human airway epithelium cultures productively. J Virol Methods. 2014;195:112–9.CrossRefPubMed
38.
Zurück zum Zitat du Prel JB, Puppe W, Grondahl B, Knuf M, Weigl JA, Schaaff F, Schmitt HJ. Are meteorological parameters associated with acute respiratory tract infections? Clin Infect Dis. 2009;49(6):861–8.CrossRefPubMed du Prel JB, Puppe W, Grondahl B, Knuf M, Weigl JA, Schaaff F, Schmitt HJ. Are meteorological parameters associated with acute respiratory tract infections? Clin Infect Dis. 2009;49(6):861–8.CrossRefPubMed
39.
Zurück zum Zitat Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Chen MX, Qiu SY, Yang ZY, Zhou R. Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study. PLoS One. 2014;9(5):e96674.CrossRefPubMedPubMedCentral Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Chen MX, Qiu SY, Yang ZY, Zhou R. Epidemiology of acute respiratory infections in children in Guangzhou: a three-year study. PLoS One. 2014;9(5):e96674.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Huang WB, Qin S, Yang ZF, Zhou R. Epidemiology and clinical presentation of the four human parainfluenza virus types. BMC Infect Dis. 2013;13:28.CrossRefPubMedPubMedCentral Liu WK, Liu Q, Chen DH, Liang HX, Chen XK, Huang WB, Qin S, Yang ZF, Zhou R. Epidemiology and clinical presentation of the four human parainfluenza virus types. BMC Infect Dis. 2013;13:28.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381(9875):1405–16.CrossRefPubMed Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE. Global burden of childhood pneumonia and diarrhoea. Lancet. 2013;381(9875):1405–16.CrossRefPubMed
42.
Zurück zum Zitat Luksic I, Kearns PK, Scott F, Rudan I, Campbell H, Nair H. Viral etiology of hospitalized acute lower respiratory infections in children under 5 years of age -- a systematic review and meta-analysis. Croat Med J. 2013;54(2):122–34.CrossRefPubMedPubMedCentral Luksic I, Kearns PK, Scott F, Rudan I, Campbell H, Nair H. Viral etiology of hospitalized acute lower respiratory infections in children under 5 years of age -- a systematic review and meta-analysis. Croat Med J. 2013;54(2):122–34.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Schlaberg R, Ampofo K, Tardif KD, Stockmann C, Simmon KE, Hymas W, Flygare S, Kennedy B, Blaschke A, Eilbeck K, et al. Human Bocavirus capsid messenger RNA detection in children with pneumonia. J Infect Dis. 2017;216(6):688–96.CrossRefPubMedPubMedCentral Schlaberg R, Ampofo K, Tardif KD, Stockmann C, Simmon KE, Hymas W, Flygare S, Kennedy B, Blaschke A, Eilbeck K, et al. Human Bocavirus capsid messenger RNA detection in children with pneumonia. J Infect Dis. 2017;216(6):688–96.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Martin ET, Kuypers J, McRoberts JP, Englund JA, Zerr DM. Human Bocavirus-1 primary infection and shedding in infants. J Infect Dis. 2015;212(4):516–24. Martin ET, Kuypers J, McRoberts JP, Englund JA, Zerr DM. Human Bocavirus-1 primary infection and shedding in infants. J Infect Dis. 2015;212(4):516–24.
45.
Zurück zum Zitat Fox JD. Respiratory virus surveillance and outbreak investigation. J Clin Virol. 2007;40(Suppl 1):S24–30.CrossRefPubMed Fox JD. Respiratory virus surveillance and outbreak investigation. J Clin Virol. 2007;40(Suppl 1):S24–30.CrossRefPubMed
46.
Zurück zum Zitat Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98.CrossRefPubMedPubMedCentral Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Chen ZR, Mize M, Wang YQ, Yan YD, Zhu CH, Wang Y, Ji W. Clinical and epidemiological profiles of lower respiratory tract infection in hospitalized children due to human bocavirus in a subtropical area of China. J Med Virol. 2014;86(12):2154–62.CrossRefPubMed Chen ZR, Mize M, Wang YQ, Yan YD, Zhu CH, Wang Y, Ji W. Clinical and epidemiological profiles of lower respiratory tract infection in hospitalized children due to human bocavirus in a subtropical area of China. J Med Virol. 2014;86(12):2154–62.CrossRefPubMed
48.
Zurück zum Zitat Bharaj P, Sullender WM, Kabra SK, Broor S. Human bocavirus infection in children with acute respiratory tract infection in India. J Med Virol. 2010;82(5):812–6.CrossRefPubMed Bharaj P, Sullender WM, Kabra SK, Broor S. Human bocavirus infection in children with acute respiratory tract infection in India. J Med Virol. 2010;82(5):812–6.CrossRefPubMed
49.
Zurück zum Zitat do Amaral de Leon C, Amantea SL, Pilger DA, Cantarelli V. Clinical and epidemiologic profile of lower respiratory tract infections associated with human bocavirus. Pediatr Pulmonol. 2013;48(11):1112–8.CrossRefPubMed do Amaral de Leon C, Amantea SL, Pilger DA, Cantarelli V. Clinical and epidemiologic profile of lower respiratory tract infections associated with human bocavirus. Pediatr Pulmonol. 2013;48(11):1112–8.CrossRefPubMed
Metadaten
Titel
Epidemiology of HBoV1 infection and relationship with meteorological conditions in hospitalized pediatric patients with acute respiratory illness: a 7-year study in a subtropical region
verfasst von
Wen-Kuan Liu
Qian Liu
De-Hui Chen
Wei-Ping Tan
Yong Cai
Shu-Yan Qiu
Duo Xu
Chi Li
Xiao Li
Zheng-Shi Lin
Rong Zhou
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2018
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3225-3

Weitere Artikel der Ausgabe 1/2018

BMC Infectious Diseases 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.