Skip to main content
Erschienen in:

Open Access 28.10.2024 | Forefront Review

Epiretinal membrane: an overview and update

verfasst von: Ryo Matoba, Yuki Morizane

Erschienen in: Japanese Journal of Ophthalmology | Ausgabe 6/2024

Abstract

Epiretinal membrane (ERM) is a frequently diagnosed macular disease associated with aging, characterized by a fibrous membrane forming on the internal limiting membrane (ILM) and leading to visual dysfunctions such as metamorphopsia. Various hypotheses regarding the pathology of metamorphopsia have been proposed; however, the complete pathophysiologic mechanism underlying ERM remains unclear. Optical coherence tomography (OCT) provides detailed images enabling precise diagnosis and characterization of ERM, with several recent studies using the latest OCT imaging techniques. Surgical removal of ERM is the only treatment option; however, criteria for surgical intervention are not established, complicating the decision-making processes. Furthermore, the debate on whether simultaneous peeling of the ILM during ERM surgery enhances outcomes or poses unnecessary risks is ongoing, with no definite conclusion having yet been reached. This review also focuses on epiretinal proliferation, which is different from ERM and is characteristic of lamellar macular hole (LMH). Recently, diagnostic criteria for LMH and related diseases were proposed. Reports on effective surgical procedures for LMH exist, although more research is needed to confirm the long-term outcomes. Thus, this review article aims to provide an overview and updated knowledge of ERM, LMH, and related diseases.
Hinweise
Corresponding Author: Ryo Matoba
Organizer: Akitaka Tsujikawa, MD

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Epiretinal membrane (ERM) is a common macular disease encountered in daily clinical practice. Epidemiologic studies have shown that that the prevalence of ERM ranges from 4 to 11.8% and that ERM is associated with aging [14]. A translucent fibrous membrane forms on the internal limiting membrane (ILM) of the macula. This membrane can tractionally distort the retina, causing morphologic abnormalities and visual dysfunctions such as metamorphopsia, decreased visual acuity, and macropsia [58]. ERMs are often formed as a result of aging and are termed idiopathic when no specific cause is identified. Conversely, secondary ERMs may develop following diseases such as diabetic retinopathy, uveitis, retinal tears, retinal detachment, retinal vascular occlusions, and retinitis pigmentosa [915]. ERM is diagnosed using ophthalmoscopic findings and optical coherence tomography (OCT), and the only treatment, regardless of the cause, is the surgical removal of the ERM [16]. Thus, ERM is a frequently diagnosed condition with relatively well-established protocols for diagnosis and treatment. However, unresolved challenges, such as an incomplete understanding of the ERM pathophysiology and undefined criteria for surgical intervention, persist. In this review, we aim to discuss the pathophysiology and treatment of ERM and lamellar macula hole (LMH), a related disease to ERM, on the basis of the latest findings from recent imaging studies.

Pathophysiology

The primary cells that comprise the ERM are retinal glial cells such as Müller cells, hyalocytes, retinal pigment epithelial cells, and myofibroblasts [1719]. Although the pathogenesis of idiopathic ERM is not fully elucidated, 2 main hypotheses have been proposed. One is that retinal glial cells, such as Müller cells, migrate onto the retinal surface. This migration is triggered by the cleavage in the ILM caused by strong traction on the area of strong adhesion between the vitreous and retina during posterior vitreous detachment [20]. The second theory is that the residual posterior vitreous cortex is the origin of ERM formation. Owing to vitreoschisis and vitreoretinal traction caused by anomalous posterior vitreous detachment, the vitreous cortex remains on the macula. Hyalocytes in the vitreous remnants are stimulated by various cytokines, such as basic fibroblast growth factor and nerve growth factor, and proliferate and differentiate into myofibroblasts, leading to ERM formation [2124].
In both mechanisms, the production of various growth factors and cytokines is increased, and Müller cells and hyalocytes are transformed into myofibroblasts (an important molecular biologic mechanism in intraocular proliferative diseases, including ERM) [2527]. Consequently, extracellular matrices such as collagen and contractile proteins such as alpha-smooth muscle actin are produced, forming pathologic ERMs with contractile properties.

Diagnosis and imaging analyses

ERM is diagnosed by use of ophthalmoscopy. Typical findings include an irregular reflex in the macular region and retinal folds caused by ERM traction. To diagnose secondary ERM, a detailed history and observation of ocular findings related to secondary ERM, such as peripheral retinal tears and ocular inflammation, is important.
OCT is the most useful tool for ERM diagnosis. On B-scan images, ERMs are observed as hyperreflective linear structures on the retinal surface (Fig. 1a). Retinal folds are often observed as localized depressions on the retinal surface owing to the retinal traction by the ERM. In advanced ERM, the foveal pit disappears, and the inner layers of the retina are seen over the fovea where they do not normally exist (ectopic inner foveal layers) (Fig. 1a) [28]. Additionally, abnormal findings such as cotton-ball signs and foveolar detachment may be present in the outer retina [29, 30]. Thus, B-scan images are useful for evaluating changes in the retinal layer structures due to ERM. Moreover, en face images are beneficial, as they are constructed from 3-dimensional images of the retina and can provide a bird’s eye view of the structure in any layer of the retina. For example, on the en face images flattened along the ILM, the ERM is observed as a hyperreflective membranous lesion at the ILM level (Fig. 1b), and the retinal folds are observed as hyporeflective linear lesions below the ILM level (Fig. 1c) [31]. En face images can accurately detect even subtle ERM by allowing evaluation of the entire macula and can visualize the degree of retinal deformation due to ERM by observation of the retinal folds [7, 8, 13, 3134]. Evaluating ERM from multiple perspectives utilizing the advantages of the B-scan and en face images as described above is important.

Pathology of visual function disturbance

Previous studies have proposed 3 main hypotheses as mechanisms for how ERM causes visual function disturbance: (1) photoreceptor abnormalities, (2) inner retinal layer damage, and (3) Müller cell displacement. The first hypothesis suggests that visual dysfunction is caused by the traction of photoreceptor cells by Müller cells. OCT images of ERM occasionally show abnormalities in the outer retinal layers [29, 30], and “microfolds” are observed in the photoreceptor layer in adaptive optics scanning laser ophthalmoscopy [35], suggesting photoreceptor displacement. Additionally, photoreceptor cells are less sensitive to light from oblique angles (Stiles–Crawford effect) and may be involved in visual impairment [3638]. The second hypothesis is that metamorphopsia is caused by damage to the inner nuclear layer (INL) (including Müller, horizontal, bipolar, and amacrine cells) owing to the retinal traction caused by ERM. The decrease in b-waves and oscillatory potential amplitudes in focal macular electroretinograms [8, 36] and the significant correlation between the degree of metamorphopsia and the INL thickness [5, 39] support this theory. The third hypothesis focuses on the light-guiding function of Müller cells. Müller cells have a funnel-shaped structure on the ILM side and roughly one-to-one contact with cone cells on the photoreceptor side in the fovea [40]. Müller cells act like optical fibers that collect light projected into the retina and transmit it to the cone cells or surrounding rod cells because of their unique structure. Therefore, retinal traction caused by ERM might displace Müller cells toward the fovea. Moreover, the light is transmitted from Müller cells, which are not normally involved in light collection, to the corresponding photoreceptor cells, resulting in metamorphopsia and macropsia [41].

ERM treatment

The only treatment for ERM is the surgical removal of the ERM during vitrectomy to release the traction on the retina [16]. A previous prospective study showed that ERM and ILM peeling improved both best corrected visual acuity (BCVA) and metamorphopsia, as measured by the M-CHARTS (Inami). Specifically, at 12 months postoperatively, the BCVA improved from logMAR 0.33 ± 0.02 to 0.09 ± 0.02; the horizontal M-CHARTS score, from 1.05 ± 0.08 to 0.38 ± 0.06; and the vertical M-CHARTS score, from 0.89 ± 0.07 to 0.41 ± 0.06 [42]. However, clear criteria for surgical indications, which each ophthalmologist determines on the basis of the patient’s subjective symptoms and visual function test results, are lacking. Visual acuity is a useful indicator for evaluating visual dysfunction caused by ERM. However, relying solely on visual acuity to determine the indication for surgery is inappropriate as visual acuity often does not deteriorate in the early stages of ERM but is affected by cataracts. Therefore, metamorphopsia is more useful as an early symptom than visual acuity and is less affected by cataracts. Currently, the Amsler chart and M-CHARTS are commonly used methods for evaluating metamorphopsia (Fig. 2) [43, 44]. The Amsler chart is a 10-cm-square chart with grid lines, where patients are asked to indicate the distortion or waviness of the lines. This method is useful for screening for the presence or absence of metamorphopsia and for self-checking because it is simple and quick to perform. However, being a qualitative test, the Amsler chart cannot quantitatively evaluate the degree of metamorphopsia (Fig. 2a). Conversely, the M-CHARTS is an inspection sheet consisting of a straight line and 19 dotted lines with dot intervals ranging from 0.2 to 2.0 degrees of visual angle. The visual angle of the dotted line that is no longer perceived as distorted is defined as the M-CHARTS score (Fig. 2b). Thus, the M-CHARTS can quantitatively evaluate metamorphopsia, and the M-CHARTS score that interferes with daily life is approximately 0.5 [42, 44, 45]. Additionally, if the horizontal M-CHARTS score is < 0.9 preoperatively, the postoperative horizontal M-CHARTS value will be < 0.5, which may provide a reference for surgery indication acceptance [46].
In contrast to the M-CHARTS, a subjective test, retinal fold depth, an objective parameter, has been proposed as a criterion for ERM surgery [33]. In this report, the maximum fold depth measured using en face OCT images (maximum depth of retinal folds [MDRF]), which is proportional to the retinal traction force, was examined in relation to preoperative and postoperative M-CHARTS scores. The results suggested that the appropriate timing for ERM surgery is when the M-CHARTS scores are higher than 0.5 preoperatively and lower than 0.5 postoperatively; that is, when the MDRF in the parafoveal area is between 69 and 118 μm [33].
When the ERM and ILM are removed, retinal folds disappear the day after surgery [7]. By contrast, visual acuity and metamorphopsia improve slowly over several months after surgery but often do not improve completely [42]. ERM removal does not fully recover the amplitude of the oscillatory potentials in focal macular electroretinograms [47, 48]. The intraretinal cysts and ectopic inner foveal layers remain after ERM surgery [4951]. Therefore, chronic inner retinal layer damage may be involved in the persistent metamorphopsia after ERM surgery.

Controversy in ERM surgery

Consensus on whether to undertake ILM removal during ERM surgery has yet to be reached. The advantages of ILM peeling include (1) complete removal of the ERM and (2) reduction of postoperative ERM recurrence [5255]. Regarding the preventive effect of ILM peeling on ERM recurrence, the rate of ERM recurrence was 2.0% in the ERM and ILM peeling group, as compared with 11.0% in the ERM peeling-only group [56]. However, many concerns about ILM peeling exist. For example, ILM peeling may be harmful to Müller cells because the ILM is the basement membrane. Dissociated optic nerve fiber layers are often observed after ILM peeling [57]; therefore, the retinal nerve fiber might also be damaged by ILM peeling. Furthermore, dyes for ILM staining could induce retinal toxicity. This is especially true for indocyanine green, regarding which several reports on retinal toxicity have been published, whereas brilliant blue G is considered relatively safe [5862]. The impact of ILM peeling on visual acuity remains controversial, with conflicting meta-analyses reporting better outcomes with ERM peeling alone [63], no difference [56], or better outcomes with ERM and ILM peeling [64]. Additionally, patients with glaucoma have worse visual outcomes at 6 months and at the final follow-up after ERM surgery than those of patients without glaucoma [65]. Reports of decreased central sensitivity after ILM peeling in eyes with glaucoma also exist [66, 67]. Therefore, when performing ERM surgery, especially in patients with glaucoma, the surgeon should be careful to determine whether ILM peeling is required and to what extent the ILM is to be peeled.
Preoperative detailed OCT imaging may be important when attempting to remove only the ERM and to preserve the ILM to reduce the risk of adverse effects on glaucoma. A previous report revealed the usefulness of a surgical technique to visualize the spaces between the ERM and ILM gaps (ERM-ILM gaps) on en face OCT images and to avoid unexpected ILM peeling by initiation of membrane peeling at the site of the wide ERM-ILM gap (Fig. 3) [68]. Conversely, when peeling the ILM, keeping the peeled area to the minimum necessary may be one solution to minimize the adverse effects of ILM peeling. Retinal folds outside the parafoveal area (an area of a circle 3 mm in diameter centered on the fovea) did not affect visual acuity or metamorphopsia [7, 32]. Therefore, if only the ILM in the parafoveal area is peeled, the recurrence of ERM on the remaining ILM is unlikely to affect visual functions.

Preretinal tissue resembling ERM: epiretinal proliferation

LMH was first reported as a macular morphology formed by the rupture of the inner wall of cystoid macular edema after cataract surgery [69]. After the advent of OCT, it became possible to observe cross sections of the macula in detail noninvasively, facilitating research on macular diseases, including LMH. Subsequently, many studies have revealed that the preretinal tissue in LMH differs from that of normal ERM, which was termed “dense ERM” or “atypical ERM” [70, 71]. In 2014, Pang and colleagues observed preretinal tissues in LMH in detail using spectral domain OCT and named them lamellar hole-associated epiretinal proliferation (LHEP) [72], and the term LHEP became widely used. Further studies revealed that LHEP is seen in LMH and other macular diseases [73]. This preretinal tissue is now referred to as epiretinal proliferation in the diagnostic criteria for LMH and related diseases based on OCT proposed by Hubschman and colleagues [74].
Epiretinal proliferation comprises a macular pigment-rich membranous tissue that surrounds the LMH. The presence of carotenoids in the epiretinal proliferation has been demonstrated by use of resonance Raman microscopy [75]. Epiretinal proliferation is observed as an isoreflective lesion at the foveal edge on B-scan images as well as a membranous structure on en face OCT images, usually without or with mild retinal folds [31, 34]. Histologic studies have shown that epiretinal proliferation shows high expression of glial fibrillary acidic protein, a glial cell marker, but low expression of α-smooth muscle actin [18, 70, 72]. This finding suggests that epiretinal proliferation is a membranous tissue composed mainly of Müller glial cells migrating from the inner retinal layers and lacking contractile properties, like traction on the retina. Understanding these characteristics and distinguishing between ERM and epiretinal proliferation is clinically crucial, particularly for determining the surgical approach (see the “Treatment of LMH, ERM foveoschisis, and MPH” section below).

Diagnosis of LMH, ERM foveoschisis, and macular pseudohole

The OCT-based diagnostic criteria by Hubschman and colleagues define the mandatory and optional criteria for the diagnosis of 3 diseases: LMH, ERM foveoschisis, and macular pseudohole (MPH) [74]. The mandatory criteria for LMH are (1) irregular foveal contour, (2) foveal cavity with undermined edges, and (3) at least 1 sign of evoking a loss of foveal tissue (thinning of the fovea at its center or around, and pseudo-operculum, which is a small opacity on the detached posterior hyaloid membrane). The optional criteria for LMH are (1) epiretinal proliferation; (2) foveal bump, which is an elevation of retinal tissue on the basis of the foveal cavity; and (3) ellipsoid line disruption. The mandatory criteria for ERM foveoschisis are (1) contractile ERM and (2) foveoschisis at the level of the Henle fiber layer, which is the foveal part of the outer plexiform layer, which is composed of bundles of Müller cells and photoreceptor axons. The optional criteria for ERM foveoschisis are (1) microcystoid spaces in the ILM, (2) retinal thickening, and (3) retinal wrinkling. The mandatory criteria for MPH are (1) foveal center-sparing ERM, (2) retinal thickening, and (3) verticalized or steepened foveal profile. The optional criteria for MPH are (1) microcystoid spaces in the INL and (2) near-normal central foveal thickness. Representative OCT images of LMH, ERM foveoschisis, and MPH are shown in Fig. 4.
An important consideration when diagnosing these 3 diseases is that their pathophysiologies often overlap. A detailed investigation of multiple OCT scans revealed that 34.1% of cases were “mixed types”; that is, different diagnostic criteria were satisfied in different OCT scans [76]. Therefore, a detailed examination of multiple OCT scans in different directions is necessary to accurately evaluate the pathophysiology of LMH and related diseases.

Treatment of LMH, ERM foveoschisis, and MPH

Established treatments for LMH are currently lacking; however, useful surgical procedures have been reported. Considering the pathophysiology, removal of the preretinal tissue is ineffective because LMH pathophysiology does not involve retinal traction. Additionally, a risk of postoperative full-thickness macular holes due to membrane removal exists because the fovea is often thin [77]. Therefore, a technique utilizing epiretinal proliferation, which is composed mainly of Müller cells, has been devised to embed epiretinal proliferation into the foveal cavity, and its usefulness has been demonstrated (Fig. 5) [7882]. The ERM is a thin, semitranslucent membrane that adheres relatively strongly to the retina, whereas epiretinal proliferation is a yellowish-white, relatively thick tissue that can be easily detached from the ILM [83]. Utilizing the epiretinal proliferation to compensate for foveal tissue loss improves the foveal morphology and could restore visual function [78, 79, 81, 82]. Specifically, Takahashi and colleagues reported on 34 eyes with LMH that were treated with epiretinal proliferation embedding and subsequently followed for an average duration of 30.0 ± 17.7 months. They observed improvements in mean logMAR BCVA from 0.31 ± 0.25 to 0.10 ± 0.25 and in central retinal thickness from 123.2 ± 42.6 μm to 191.2 ± 42.6 μm [79]. Furthermore, just sparing epiretinal proliferation without embedding it has the same surgical result [8486]. However, the evidence for the long-term outcome of epiretinal proliferation embedding or sparing surgery is insufficient, and further studies are needed to establish these techniques as the standard surgical treatment for LMH.
Moreover, for ERM foveoschisis and MPH, the only treatment is the surgical removal of the ERM, as both pathologies are retinal traction caused by ERM. The lines of evidence for these diseases are sufficient; hence, the surgical indications and visual prognosis can be similarly considered as ERM, as previously described [8790]. Furthermore, each case should be evaluated from multiple perspectives, including visual acuity, metamorphopsia, and retinal traction, to determine the indication for surgery [91]. The decision whether to peel the ILM is also similar to that for ERM surgery. ILM peeling enables the complete removal of the ERM and reduction of postoperative ERM recurrence. However, potential problems with ILM peeling-induced damage to the Müller cells and retinal nerve fiber layer and retinal toxicity because of ILM staining dyes exist.

Summary

This review has provided an overview and update on ERM, LMH, and related diseases. Figure 6 shows a schematic image summarizing ERM pathogenesis. Future studies should clarify the unresolved aspects of these diseases, including the detailed pathogenesis, surgical indications, and optimal surgical techniques.

Declarations

Conflict of interest

R. Matoba, None; Y. Morizane, None.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Klein R, Klein BE, Wang Q, Moss SE. The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc. 1994;92:403–25.PubMedPubMedCentral Klein R, Klein BE, Wang Q, Moss SE. The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc. 1994;92:403–25.PubMedPubMedCentral
2.
Zurück zum Zitat Mitchell P, Smith W, Chey T, Wang JJ, Chang A. Prevalence and associations of epiretinal membranes: the Blue mountains Eye Study, Australia. Ophthalmology. 1997;104:1033–40.PubMedCrossRef Mitchell P, Smith W, Chey T, Wang JJ, Chang A. Prevalence and associations of epiretinal membranes: the Blue mountains Eye Study, Australia. Ophthalmology. 1997;104:1033–40.PubMedCrossRef
3.
Zurück zum Zitat Miyazaki M, Nakamura H, Kubo M, Kiyohara Y, Iida M, Ishibashi T, et al. Prevalence and risk factors for epiretinal membranes in a Japanese population: the Hisayama study. Graefes Arch Clin Exp Ophthalmol. 2003;241:642–6.PubMedCrossRef Miyazaki M, Nakamura H, Kubo M, Kiyohara Y, Iida M, Ishibashi T, et al. Prevalence and risk factors for epiretinal membranes in a Japanese population: the Hisayama study. Graefes Arch Clin Exp Ophthalmol. 2003;241:642–6.PubMedCrossRef
4.
Zurück zum Zitat Kawasaki R, Wang JJ, Sato H, Mitchell P, Kato T, Kawata S, et al. Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond). 2009;23:1045–51.PubMedCrossRef Kawasaki R, Wang JJ, Sato H, Mitchell P, Kato T, Kawata S, et al. Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond). 2009;23:1045–51.PubMedCrossRef
5.
Zurück zum Zitat Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci. 2012;53:6770–5.PubMedCrossRef Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T. Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci. 2012;53:6770–5.PubMedCrossRef
6.
Zurück zum Zitat Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T. Time course of changes in aniseikonia and foveal microstructure after vitrectomy for epiretinal membrane. Ophthalmology. 2014;121:2255–60.PubMedCrossRef Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T. Time course of changes in aniseikonia and foveal microstructure after vitrectomy for epiretinal membrane. Ophthalmology. 2014;121:2255–60.PubMedCrossRef
7.
Zurück zum Zitat Hirano M, Morizane Y, Kanzaki Y, Kimura S, Hosokawa M, Shiode Y, et al. En face image-based analysis of retinal traction caused by epiretinal membrane and its relationship with visual functions. Retina. 2020;40:1262–71.PubMedCrossRef Hirano M, Morizane Y, Kanzaki Y, Kimura S, Hosokawa M, Shiode Y, et al. En face image-based analysis of retinal traction caused by epiretinal membrane and its relationship with visual functions. Retina. 2020;40:1262–71.PubMedCrossRef
8.
Zurück zum Zitat Kanzaki Y, Matoba R, Kimura S, Hosokawa MM, Shiode Y, Doi S, et al. Epiretinal membrane impairs the inner retinal layer in a traction force-dependent manner. Ophthalmol Sci. 2023;3:100312.PubMedPubMedCentralCrossRef Kanzaki Y, Matoba R, Kimura S, Hosokawa MM, Shiode Y, Doi S, et al. Epiretinal membrane impairs the inner retinal layer in a traction force-dependent manner. Ophthalmol Sci. 2023;3:100312.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Appiah AP, Hirose T. Secondary causes of premacular fibrosis. Ophthalmology. 1989;96:389–92.PubMedCrossRef Appiah AP, Hirose T. Secondary causes of premacular fibrosis. Ophthalmology. 1989;96:389–92.PubMedCrossRef
10.
Zurück zum Zitat Nicholson BP, Zhou M, Rostamizadeh M, Mehta P, Agrón E, Wong W, et al. Epidemiology of epiretinal membrane in a large cohort of patients with uveitis. Ophthalmology. 2014;121:2393–8.PubMedCrossRef Nicholson BP, Zhou M, Rostamizadeh M, Mehta P, Agrón E, Wong W, et al. Epidemiology of epiretinal membrane in a large cohort of patients with uveitis. Ophthalmology. 2014;121:2393–8.PubMedCrossRef
11.
Zurück zum Zitat Fujiwara K, Ikeda Y, Murakami Y, Nakatake S, Tachibana T, Yoshida N, et al. Association between aqueous flare and epiretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2016;57:4282–6.PubMedCrossRef Fujiwara K, Ikeda Y, Murakami Y, Nakatake S, Tachibana T, Yoshida N, et al. Association between aqueous flare and epiretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2016;57:4282–6.PubMedCrossRef
12.
Zurück zum Zitat Liew G, Strong S, Bradley P, Severn P, Moore AT, Webster AR, et al. Prevalence of cystoid macular oedema, epiretinal membrane and cataract in retinitis pigmentosa. Br J Ophthalmol. 2019;103:1163–6.PubMedCrossRef Liew G, Strong S, Bradley P, Severn P, Moore AT, Webster AR, et al. Prevalence of cystoid macular oedema, epiretinal membrane and cataract in retinitis pigmentosa. Br J Ophthalmol. 2019;103:1163–6.PubMedCrossRef
13.
Zurück zum Zitat Matoba R, Kanzaki Y, Doi S, Kanzaki S, Kimura S, Hosokawa MM, et al. Assessment of epiretinal membrane formation using en face optical coherence tomography after rhegmatogenous retinal detachment repair. Graefes Arch Clin Exp Ophthalmol. 2021;259:2503–12.PubMedCrossRef Matoba R, Kanzaki Y, Doi S, Kanzaki S, Kimura S, Hosokawa MM, et al. Assessment of epiretinal membrane formation using en face optical coherence tomography after rhegmatogenous retinal detachment repair. Graefes Arch Clin Exp Ophthalmol. 2021;259:2503–12.PubMedCrossRef
14.
Zurück zum Zitat Fujiwara A, Kanzaki Y, Kimura S, Hosokawa M, Shiode Y, Doi S, et al. En face image-based classification of diabetic macular edema using swept source optical coherence tomography. Sci Rep. 2021;11:7665.PubMedPubMedCentralCrossRef Fujiwara A, Kanzaki Y, Kimura S, Hosokawa M, Shiode Y, Doi S, et al. En face image-based classification of diabetic macular edema using swept source optical coherence tomography. Sci Rep. 2021;11:7665.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Matoba R, Kanzaki Y, Morita T, Kimura S, Hosokawa MM, Shiode Y, et al. Evaluation of epiretinal membrane formation after scleral buckling for treating rhegmatogenous retinal detachment: en face optical coherence tomography image-based study. Graefes Arch Clin Exp Ophthalmol. 2024;262:469–76.PubMedCrossRef Matoba R, Kanzaki Y, Morita T, Kimura S, Hosokawa MM, Shiode Y, et al. Evaluation of epiretinal membrane formation after scleral buckling for treating rhegmatogenous retinal detachment: en face optical coherence tomography image-based study. Graefes Arch Clin Exp Ophthalmol. 2024;262:469–76.PubMedCrossRef
16.
Zurück zum Zitat Matoba R, Morizane Y. Surgical treatment of epiretinal membrane. Acta Med Okayama. 2021;75:403–13.PubMed Matoba R, Morizane Y. Surgical treatment of epiretinal membrane. Acta Med Okayama. 2021;75:403–13.PubMed
17.
Zurück zum Zitat Hiscott PS, Grierson I, McLeod D. Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol. 1984;68:708–15.PubMedPubMedCentralCrossRef Hiscott PS, Grierson I, McLeod D. Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol. 1984;68:708–15.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Compera D, Entchev E, Haritoglou C, Scheler R, Mayer WJ, Wolf A, et al. Lamellar hole-associated epiretinal proliferation in comparison to epiretinal membranes of macular pseudoholes. Am J Ophthalmol. 2015;160:373–e3841.PubMedCrossRef Compera D, Entchev E, Haritoglou C, Scheler R, Mayer WJ, Wolf A, et al. Lamellar hole-associated epiretinal proliferation in comparison to epiretinal membranes of macular pseudoholes. Am J Ophthalmol. 2015;160:373–e3841.PubMedCrossRef
19.
Zurück zum Zitat da Silva RA, Roda VMP, Matsuda M, Siqueira PV, Lustoza-Costa GJ, Wu DC, et al. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2022;260:1435–44.PubMedCrossRef da Silva RA, Roda VMP, Matsuda M, Siqueira PV, Lustoza-Costa GJ, Wu DC, et al. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2022;260:1435–44.PubMedCrossRef
20.
Zurück zum Zitat Foos RY. Vitreoretinal juncture; epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci. 1977;16:416–22.PubMed Foos RY. Vitreoretinal juncture; epiretinal membranes and vitreous. Invest Ophthalmol Vis Sci. 1977;16:416–22.PubMed
21.
Zurück zum Zitat Hikichi T, Takahashi M, Trempe CL, Schepens CL. Relationship between premacular cortical vitreous defects and idiopathic premacular fibrosis. Retina. 1995;15:413–6.PubMedCrossRef Hikichi T, Takahashi M, Trempe CL, Schepens CL. Relationship between premacular cortical vitreous defects and idiopathic premacular fibrosis. Retina. 1995;15:413–6.PubMedCrossRef
22.
Zurück zum Zitat Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.PubMedCrossRef Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol. 2004;242:690–8.PubMedCrossRef
23.
24.
Zurück zum Zitat Stevenson W, Prospero Ponce CM, Agarwal DR, Gelman R, Christoforidis JB. Epiretinal membrane: optical coherence tomography-based diagnosis and classification. Clin Ophthalmol. 2016;10:527–34.PubMedPubMedCentralCrossRef Stevenson W, Prospero Ponce CM, Agarwal DR, Gelman R, Christoforidis JB. Epiretinal membrane: optical coherence tomography-based diagnosis and classification. Clin Ophthalmol. 2016;10:527–34.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Matoba R, Morizane Y, Shiode Y, Hirano M, Doi S, Toshima S, et al. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS ONE. 2017;12:e0181481.PubMedPubMedCentralCrossRef Matoba R, Morizane Y, Shiode Y, Hirano M, Doi S, Toshima S, et al. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS ONE. 2017;12:e0181481.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Kanda A, Noda K, Hirose I, Ishida S. TGF-β-SNAIL axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane. Sci Rep. 2019;9:673.PubMedPubMedCentralCrossRef Kanda A, Noda K, Hirose I, Ishida S. TGF-β-SNAIL axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane. Sci Rep. 2019;9:673.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Boles NC, Fernandes M, Swigut T, Srinivasan R, Schiff L, Rada-Iglesias A, et al. Epigenomic and transcriptomic changes during human RPE EMT in a stem cell model of epiretinal membrane pathogenesis and prevention by nicotinamide. Stem Cell Rep. 2020;14:631–47.CrossRef Boles NC, Fernandes M, Swigut T, Srinivasan R, Schiff L, Rada-Iglesias A, et al. Epigenomic and transcriptomic changes during human RPE EMT in a stem cell model of epiretinal membrane pathogenesis and prevention by nicotinamide. Stem Cell Rep. 2020;14:631–47.CrossRef
28.
Zurück zum Zitat Govetto A, Lalane RA 3rd, Sarraf D, Figueroa MS, Hubschman JP. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol. 2017;175:99–113.PubMedCrossRef Govetto A, Lalane RA 3rd, Sarraf D, Figueroa MS, Hubschman JP. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am J Ophthalmol. 2017;175:99–113.PubMedCrossRef
29.
Zurück zum Zitat Tsunoda K, Watanabe K, Akiyama K, Usui T, Noda T. Highly reflective foveal region in optical coherence tomography in eyes with vitreomacular traction or epiretinal membrane. Ophthalmology. 2012;119:581–7.PubMedCrossRef Tsunoda K, Watanabe K, Akiyama K, Usui T, Noda T. Highly reflective foveal region in optical coherence tomography in eyes with vitreomacular traction or epiretinal membrane. Ophthalmology. 2012;119:581–7.PubMedCrossRef
30.
Zurück zum Zitat Govetto A, Bhavsar KV, Virgili G, Gerber MJ, Freund KB, Curcio CA, et al. Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives. Am J Ophthalmol. 2017;184:167–80.PubMedCrossRef Govetto A, Bhavsar KV, Virgili G, Gerber MJ, Freund KB, Curcio CA, et al. Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives. Am J Ophthalmol. 2017;184:167–80.PubMedCrossRef
31.
Zurück zum Zitat Hirano M, Morizane Y, Kimura S, Hosokawa M, Shiode Y, Doi S, et al. Assessment of lamellar macular hole and macular pseudohole with a combination of en face and radial B-scan optical coherence tomography imaging. Am J Ophthalmol. 2018;188:29–40.PubMedCrossRef Hirano M, Morizane Y, Kimura S, Hosokawa M, Shiode Y, Doi S, et al. Assessment of lamellar macular hole and macular pseudohole with a combination of en face and radial B-scan optical coherence tomography imaging. Am J Ophthalmol. 2018;188:29–40.PubMedCrossRef
32.
Zurück zum Zitat Kanzaki S, Kanzaki Y, Doi S, Matoba R, Kimura S, Hosokawa M, et al. En face image-based analysis of epiretinal membrane formation after surgery for idiopathic epiretinal membrane. Ophthalmol Retina. 2021;5:815–23.PubMedCrossRef Kanzaki S, Kanzaki Y, Doi S, Matoba R, Kimura S, Hosokawa M, et al. En face image-based analysis of epiretinal membrane formation after surgery for idiopathic epiretinal membrane. Ophthalmol Retina. 2021;5:815–23.PubMedCrossRef
33.
Zurück zum Zitat Kanzaki Y, Doi S, Matoba R, Kanzaki S, Kimura S, Hosokawa MM, et al. Objective and quantitative estimation of the optimal timing for epiretinal membrane surgery on the basis of metamorphopsia. Retina. 2022;42:704–11.PubMedCrossRef Kanzaki Y, Doi S, Matoba R, Kanzaki S, Kimura S, Hosokawa MM, et al. Objective and quantitative estimation of the optimal timing for epiretinal membrane surgery on the basis of metamorphopsia. Retina. 2022;42:704–11.PubMedCrossRef
34.
Zurück zum Zitat Mino M, Matoba R, Kanzaki Y, Kimura S, Hosokawa MM, Shiode Y, et al. Quantitative analyses of retinal traction force and metamorphopsia in lamellar macular hole and related diseases. Ophthalmol Sci. 2023;3:100305.PubMedPubMedCentralCrossRef Mino M, Matoba R, Kanzaki Y, Kimura S, Hosokawa MM, Shiode Y, et al. Quantitative analyses of retinal traction force and metamorphopsia in lamellar macular hole and related diseases. Ophthalmol Sci. 2023;3:100305.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ooto S, Hangai M, Takayama K, Sakamoto A, Tsujikawa A, Oshima S, et al. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. Ophthalmology. 2011;118:873–81.PubMedCrossRef Ooto S, Hangai M, Takayama K, Sakamoto A, Tsujikawa A, Oshima S, et al. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. Ophthalmology. 2011;118:873–81.PubMedCrossRef
36.
Zurück zum Zitat Tanikawa A, Horiguchi M, Kondo M, Suzuki S, Terasaki H, Miyake Y. Abnormal focal macular electroretinograms in eyes with idiopathic epimacular membrane. Am J Ophthalmol. 1999;127:559–64.PubMedCrossRef Tanikawa A, Horiguchi M, Kondo M, Suzuki S, Terasaki H, Miyake Y. Abnormal focal macular electroretinograms in eyes with idiopathic epimacular membrane. Am J Ophthalmol. 1999;127:559–64.PubMedCrossRef
37.
Zurück zum Zitat Çekiç Ö, Cakır M, Alagöz N, Yılmaz OF. Retinal thickness change in relation to visual acuity improvement after 23-gauge vitrectomy for idiopathic epimacular membrane. Eye (Lond). 2011;25:180–4.PubMedCrossRef Çekiç Ö, Cakır M, Alagöz N, Yılmaz OF. Retinal thickness change in relation to visual acuity improvement after 23-gauge vitrectomy for idiopathic epimacular membrane. Eye (Lond). 2011;25:180–4.PubMedCrossRef
38.
Zurück zum Zitat Yüksel K, Karaküçük Y, Özkaya A, Pekel G, Baz Ö, Alagöz C, et al. Comparison of photoreceptor outer segment length in diabetic and idiopathic epiretinal membranes. Eye (Lond). 2015;29:1446–52.PubMedCrossRef Yüksel K, Karaküçük Y, Özkaya A, Pekel G, Baz Ö, Alagöz C, et al. Comparison of photoreceptor outer segment length in diabetic and idiopathic epiretinal membranes. Eye (Lond). 2015;29:1446–52.PubMedCrossRef
39.
Zurück zum Zitat Watanabe A, Arimoto S, Nishi O. Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology. 2009;116:1788–93.PubMedCrossRef Watanabe A, Arimoto S, Nishi O. Correlation between metamorphopsia and epiretinal membrane optical coherence tomography findings. Ophthalmology. 2009;116:1788–93.PubMedCrossRef
40.
Zurück zum Zitat Agte S, Junek S, Matthias S, Ulbricht E, Erdmann I, Wurm A, et al. Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J. 2011;101:2611–9.PubMedPubMedCentralCrossRef Agte S, Junek S, Matthias S, Ulbricht E, Erdmann I, Wurm A, et al. Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J. 2011;101:2611–9.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ichikawa Y, Imamura Y, Ishida M. Inner nuclear layer thickness, a biomarker of metamorphopsia in epiretinal membrane, correlates with tangential retinal displacement. Am J Ophthalmol. 2018;193:20–7.PubMedCrossRef Ichikawa Y, Imamura Y, Ishida M. Inner nuclear layer thickness, a biomarker of metamorphopsia in epiretinal membrane, correlates with tangential retinal displacement. Am J Ophthalmol. 2018;193:20–7.PubMedCrossRef
42.
Zurück zum Zitat Kinoshita T, Imaizumi H, Miyamoto H, Okushiba U, Hayashi Y, Katome T, et al. Changes in metamorphopsia in daily life after successful epiretinal membrane surgery and correlation with M-CHARTS score. Clin Ophthalmol. 2015;9:225–33.PubMedPubMedCentralCrossRef Kinoshita T, Imaizumi H, Miyamoto H, Okushiba U, Hayashi Y, Katome T, et al. Changes in metamorphopsia in daily life after successful epiretinal membrane surgery and correlation with M-CHARTS score. Clin Ophthalmol. 2015;9:225–33.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Matsumoto C, Arimura E, Okuyama S, Takada S, Hashimoto S, Shimomura Y. Quantification of metamorphopsia in patients with epiretinal membranes. Invest Ophthalmol Vis Sci. 2003;44:4012–6.PubMedCrossRef Matsumoto C, Arimura E, Okuyama S, Takada S, Hashimoto S, Shimomura Y. Quantification of metamorphopsia in patients with epiretinal membranes. Invest Ophthalmol Vis Sci. 2003;44:4012–6.PubMedCrossRef
45.
Zurück zum Zitat Arimura E, Matsumoto C, Nomoto H, Hashimoto S, Takada S, Okuyama S, et al. Correlations between M-CHARTS and PHP findings and subjective perception of metamorphopsia in patients with macular diseases. Invest Ophthalmol Vis Sci. 2011;52:128–35.PubMedCrossRef Arimura E, Matsumoto C, Nomoto H, Hashimoto S, Takada S, Okuyama S, et al. Correlations between M-CHARTS and PHP findings and subjective perception of metamorphopsia in patients with macular diseases. Invest Ophthalmol Vis Sci. 2011;52:128–35.PubMedCrossRef
46.
Zurück zum Zitat Nakashizuka H, Kitagawa Y, Wakatsuki Y, Tanaka K, Furuya K, Hattori T, et al. Prospective study of vitrectomy for epiretinal membranes in patients with good best-corrected visual acuity. BMC Ophthalmol. 2019;19:183.PubMedPubMedCentralCrossRef Nakashizuka H, Kitagawa Y, Wakatsuki Y, Tanaka K, Furuya K, Hattori T, et al. Prospective study of vitrectomy for epiretinal membranes in patients with good best-corrected visual acuity. BMC Ophthalmol. 2019;19:183.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y. Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2003;44:1652–6.PubMedCrossRef Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y. Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2003;44:1652–6.PubMedCrossRef
48.
Zurück zum Zitat Hibi N, Ueno S, Ito Y, Piao CH, Kondo M, Terasaki H. Relationship between retinal layer thickness and focal macular electroretinogram components after epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2013;54:7207–14.PubMedCrossRef Hibi N, Ueno S, Ito Y, Piao CH, Kondo M, Terasaki H. Relationship between retinal layer thickness and focal macular electroretinogram components after epiretinal membrane surgery. Invest Ophthalmol Vis Sci. 2013;54:7207–14.PubMedCrossRef
49.
Zurück zum Zitat Shiode Y, Morizane Y, Toshima S, Kimura S, Kumase F, Hosokawa M, et al. Surgical outcome of idiopathic epiretinal membranes with intraretinal cystic spaces. PLoS ONE. 2016;11:e0168555.PubMedPubMedCentralCrossRef Shiode Y, Morizane Y, Toshima S, Kimura S, Kumase F, Hosokawa M, et al. Surgical outcome of idiopathic epiretinal membranes with intraretinal cystic spaces. PLoS ONE. 2016;11:e0168555.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Govetto A, Virgili G, Rodriguez FJ, Figueroa MS, Sarraf D, Hubschman JP. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes: surgical results at 12 months. Retina. 2019;39:347–57.PubMedCrossRef Govetto A, Virgili G, Rodriguez FJ, Figueroa MS, Sarraf D, Hubschman JP. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes: surgical results at 12 months. Retina. 2019;39:347–57.PubMedCrossRef
51.
Zurück zum Zitat Kim BH, Kim DI, Bae KW, Park UC. Influence of postoperative ectopic inner foveal layer on visual function after removal of idiopathic epiretinal membrane. PLoS ONE. 2021;16:e0259388.PubMedPubMedCentralCrossRef Kim BH, Kim DI, Bae KW, Park UC. Influence of postoperative ectopic inner foveal layer on visual function after removal of idiopathic epiretinal membrane. PLoS ONE. 2021;16:e0259388.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Schechet SA, DeVience E, Thompson JT. The effect of internal limiting membrane peeling on idiopathic epiretinal membrane surgery, with a review of the literature. Retina. 2017;37:873–80.PubMedCrossRef Schechet SA, DeVience E, Thompson JT. The effect of internal limiting membrane peeling on idiopathic epiretinal membrane surgery, with a review of the literature. Retina. 2017;37:873–80.PubMedCrossRef
53.
Zurück zum Zitat Fallico M, Russo A, Longo A, Pulvirenti A, Avitabile T, Bonfiglio V, et al. Internal limiting membrane peeling versus no peeling during primary vitrectomy for rhegmatogenous retinal detachment: a systematic review and meta-analysis. PLoS ONE. 2018;13:e0201010.PubMedPubMedCentralCrossRef Fallico M, Russo A, Longo A, Pulvirenti A, Avitabile T, Bonfiglio V, et al. Internal limiting membrane peeling versus no peeling during primary vitrectomy for rhegmatogenous retinal detachment: a systematic review and meta-analysis. PLoS ONE. 2018;13:e0201010.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Kim E, Choi Y, Byon I, Lee JE, Park SW. Selective internal limiting membrane peeling for prevention of secondary epiretinal membrane after vitrectomy for rhegmatogenous retinal detachment. Jpn J Ophthalmol. 2024;68:216–24.PubMedCrossRef Kim E, Choi Y, Byon I, Lee JE, Park SW. Selective internal limiting membrane peeling for prevention of secondary epiretinal membrane after vitrectomy for rhegmatogenous retinal detachment. Jpn J Ophthalmol. 2024;68:216–24.PubMedCrossRef
55.
Zurück zum Zitat Imai H, Iwane Y, Kishi M, Sotani Y, Yamada H, Matsumiya W, et al. Color enhancement and achromatization to increase the visibility of indocyanine green-stained internal limiting membrane during digitally assisted vitreoretinal surgery. Jpn J Ophthalmol. 2024;68:105–11.PubMedCrossRef Imai H, Iwane Y, Kishi M, Sotani Y, Yamada H, Matsumiya W, et al. Color enhancement and achromatization to increase the visibility of indocyanine green-stained internal limiting membrane during digitally assisted vitreoretinal surgery. Jpn J Ophthalmol. 2024;68:105–11.PubMedCrossRef
56.
Zurück zum Zitat Azuma K, Ueta T, Eguchi S, Aihara M. Effects of internal limiting membrane peeling combined with removal of idiopathic epiretinal membrane: a systematic review of literature and meta-analysis. Retina. 2017;37:1813–9.PubMedCrossRef Azuma K, Ueta T, Eguchi S, Aihara M. Effects of internal limiting membrane peeling combined with removal of idiopathic epiretinal membrane: a systematic review of literature and meta-analysis. Retina. 2017;37:1813–9.PubMedCrossRef
57.
Zurück zum Zitat Tadayoni R, Paques M, Massin P, Mouki-Benani S, Mikol J, Gaudric A. Dissociated optic nerve fiber layer appearance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–83.PubMedCrossRef Tadayoni R, Paques M, Massin P, Mouki-Benani S, Mikol J, Gaudric A. Dissociated optic nerve fiber layer appearance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology. 2001;108:2279–83.PubMedCrossRef
58.
Zurück zum Zitat Enaida H, Hisatomi T, Goto Y, Hata Y, Ueno A, Miura M, et al. Preclinical investigation of internal limiting membrane staining and peeling using intravitreal brilliant blue G. Retina. 2006;26:623–30.PubMedCrossRef Enaida H, Hisatomi T, Goto Y, Hata Y, Ueno A, Miura M, et al. Preclinical investigation of internal limiting membrane staining and peeling using intravitreal brilliant blue G. Retina. 2006;26:623–30.PubMedCrossRef
59.
Zurück zum Zitat Uemura A, Kanda S, Sakamoto Y, Kita H. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol. 2003;136:252–7.PubMedCrossRef Uemura A, Kanda S, Sakamoto Y, Kita H. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol. 2003;136:252–7.PubMedCrossRef
60.
Zurück zum Zitat Baba T, Hagiwara A, Sato E, Arai M, Oshitari T, Yamamoto S. Comparison of vitrectomy with brilliant blue G or indocyanine green on retinal microstructure and function of eyes with macular hole. Ophthalmology. 2012;119:2609–15.PubMedCrossRef Baba T, Hagiwara A, Sato E, Arai M, Oshitari T, Yamamoto S. Comparison of vitrectomy with brilliant blue G or indocyanine green on retinal microstructure and function of eyes with macular hole. Ophthalmology. 2012;119:2609–15.PubMedCrossRef
61.
Zurück zum Zitat Takayama K, Sato T, Karasawa Y, Sato S, Ito M, Takeuchi M. Phototoxicity of indocyanine green and brilliant blue G under continuous fluorescent illumination on cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2012;53:7389–94.PubMedCrossRef Takayama K, Sato T, Karasawa Y, Sato S, Ito M, Takeuchi M. Phototoxicity of indocyanine green and brilliant blue G under continuous fluorescent illumination on cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2012;53:7389–94.PubMedCrossRef
62.
Zurück zum Zitat Hisatomi T, Notomi S, Tachibana T, Oishi S, Asato R, Yamashita T, et al. Brilliant blue g double staining enhances successful internal limiting membrane peeling with minimal adverse effect by low cellular permeability into live cells. Retina. 2015;35:310–8.PubMedCrossRef Hisatomi T, Notomi S, Tachibana T, Oishi S, Asato R, Yamashita T, et al. Brilliant blue g double staining enhances successful internal limiting membrane peeling with minimal adverse effect by low cellular permeability into live cells. Retina. 2015;35:310–8.PubMedCrossRef
63.
Zurück zum Zitat Liu H, Zuo S, Ding C, Dai X, Zhu X. Comparison of the effectiveness of pars plana vitrectomy with and without internal limiting membrane peeling for idiopathic retinal membrane removal: a meta-analysis. J Ophthalmol. 2015;2015:974568.PubMedPubMedCentral Liu H, Zuo S, Ding C, Dai X, Zhu X. Comparison of the effectiveness of pars plana vitrectomy with and without internal limiting membrane peeling for idiopathic retinal membrane removal: a meta-analysis. J Ophthalmol. 2015;2015:974568.PubMedPubMedCentral
64.
Zurück zum Zitat Chang WC, Lin C, Lee CH, Sung TL, Tung TH, Liu JH. Vitrectomy with or without internal limiting membrane peeling for idiopathic epiretinal membrane: a meta-analysis. PLoS ONE. 2017;12:e0179105.PubMedPubMedCentralCrossRef Chang WC, Lin C, Lee CH, Sung TL, Tung TH, Liu JH. Vitrectomy with or without internal limiting membrane peeling for idiopathic epiretinal membrane: a meta-analysis. PLoS ONE. 2017;12:e0179105.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Peck T, Salabati M, Mahmoudzadeh R, Soares R, Xu D, Myers JS, et al. Epiretinal membrane surgery in eyes with glaucoma: visual outcomes and clinical significance of inner microcystoid changes. Ophthalmol Retina. 2022;6:693–701.PubMedCrossRef Peck T, Salabati M, Mahmoudzadeh R, Soares R, Xu D, Myers JS, et al. Epiretinal membrane surgery in eyes with glaucoma: visual outcomes and clinical significance of inner microcystoid changes. Ophthalmol Retina. 2022;6:693–701.PubMedCrossRef
66.
Zurück zum Zitat Tsuchiya S, Higashide T, Sugiyama K. Visual field changes after vitrectomy with internal limiting membrane peeling for epiretinal membrane or macular hole in glaucomatous eyes. PLoS ONE. 2017;12:e0177526.PubMedPubMedCentralCrossRef Tsuchiya S, Higashide T, Sugiyama K. Visual field changes after vitrectomy with internal limiting membrane peeling for epiretinal membrane or macular hole in glaucomatous eyes. PLoS ONE. 2017;12:e0177526.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Tsuchiya S, Higashide T, Udagawa S, Sugiyama K. Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors. Eye (Lond). 2021;35:919–28.PubMedCrossRef Tsuchiya S, Higashide T, Udagawa S, Sugiyama K. Glaucoma-related central visual field deterioration after vitrectomy for epiretinal membrane: topographic characteristics and risk factors. Eye (Lond). 2021;35:919–28.PubMedCrossRef
68.
Zurück zum Zitat Matoba R, Kanzaki Y, Kimura S, Hosokawa MM, Shiode Y, Morita T, et al. A factor for predicting simultaneous internal limiting membrane peeling during epiretinal membrane removal: swept-source optical coherence tomography-based evaluation of epiretinal membrane adhesion to the retina. Jpn J Ophthalmol. 2023;67:410–6.PubMedCrossRef Matoba R, Kanzaki Y, Kimura S, Hosokawa MM, Shiode Y, Morita T, et al. A factor for predicting simultaneous internal limiting membrane peeling during epiretinal membrane removal: swept-source optical coherence tomography-based evaluation of epiretinal membrane adhesion to the retina. Jpn J Ophthalmol. 2023;67:410–6.PubMedCrossRef
69.
Zurück zum Zitat Gass JD. Lamellar macular hole: a complication of cystoid macular edema after cataract extraction: a clinicopathologic case report. Trans Am Ophthalmol Soc. 1975;73:231–50.PubMed Gass JD. Lamellar macular hole: a complication of cystoid macular edema after cataract extraction: a clinicopathologic case report. Trans Am Ophthalmol Soc. 1975;73:231–50.PubMed
70.
Zurück zum Zitat Parolini B, Schumann RG, Cereda MG, Haritoglou C, Pertile G. Lamellar macular hole: a clinicopathologic correlation of surgically excised epiretinal membranes. Invest Ophthalmol Vis Sci. 2011;52:9074–83.PubMedCrossRef Parolini B, Schumann RG, Cereda MG, Haritoglou C, Pertile G. Lamellar macular hole: a clinicopathologic correlation of surgically excised epiretinal membranes. Invest Ophthalmol Vis Sci. 2011;52:9074–83.PubMedCrossRef
71.
Zurück zum Zitat Frisina R, Parrozzani R, Pilotto E, Midena E. A double inverted flap surgical technique for the treatment of idiopathic lamellar macular hole associated with atypical epiretinal membrane. Ophthalmologica. 2019;242:49–58.PubMedCrossRef Frisina R, Parrozzani R, Pilotto E, Midena E. A double inverted flap surgical technique for the treatment of idiopathic lamellar macular hole associated with atypical epiretinal membrane. Ophthalmologica. 2019;242:49–58.PubMedCrossRef
72.
Zurück zum Zitat Pang CE, Maberley DA, Freund KB, White VA, Rasmussen S, To E, et al. Lamellar hole-associated epiretinal proliferation: a clinicopathologic correlation. Retina. 2016;36:1408–12.PubMedCrossRef Pang CE, Maberley DA, Freund KB, White VA, Rasmussen S, To E, et al. Lamellar hole-associated epiretinal proliferation: a clinicopathologic correlation. Retina. 2016;36:1408–12.PubMedCrossRef
73.
Zurück zum Zitat Itoh Y, Levison AL, Kaiser PK, Srivastava SK, Singh RP, Ehlers JP. Prevalence and characteristics of hyporeflective preretinal tissue in vitreomacular interface disorders. Br J Ophthalmol. 2016;100:399–404.PubMedCrossRef Itoh Y, Levison AL, Kaiser PK, Srivastava SK, Singh RP, Ehlers JP. Prevalence and characteristics of hyporeflective preretinal tissue in vitreomacular interface disorders. Br J Ophthalmol. 2016;100:399–404.PubMedCrossRef
74.
Zurück zum Zitat Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, et al. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. 2020;104:1741–7.PubMedCrossRef Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, et al. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. 2020;104:1741–7.PubMedCrossRef
75.
Zurück zum Zitat Obana A, Sasano H, Okazaki S, Otsuki Y, Seto T, Gohto Y. Evidence of carotenoid in surgically removed lamellar hole-associated epiretinal proliferation. Invest Ophthalmol Vis Sci. 2017;58:5157–63.PubMedCrossRef Obana A, Sasano H, Okazaki S, Otsuki Y, Seto T, Gohto Y. Evidence of carotenoid in surgically removed lamellar hole-associated epiretinal proliferation. Invest Ophthalmol Vis Sci. 2017;58:5157–63.PubMedCrossRef
76.
Zurück zum Zitat Matoba R, Kanzaki Y, Morita T, Masuda Y, Kimura S, Hosokawa MM, et al. Mixed pathophysiologies of lamellar macular holes and related diseases: a multimodal optical coherence tomography-based study. Retina. 2024;44:1785–92.PubMedCrossRef Matoba R, Kanzaki Y, Morita T, Masuda Y, Kimura S, Hosokawa MM, et al. Mixed pathophysiologies of lamellar macular holes and related diseases: a multimodal optical coherence tomography-based study. Retina. 2024;44:1785–92.PubMedCrossRef
77.
Zurück zum Zitat Parisi G, Fallico M, Maugeri A, Barchitta M, Agodi A, Russo A, et al. Primary vitrectomy for degenerative and tractional lamellar macular holes: a systematic review and meta-analysis. PLoS ONE. 2021;16:e0246667.PubMedPubMedCentralCrossRef Parisi G, Fallico M, Maugeri A, Barchitta M, Agodi A, Russo A, et al. Primary vitrectomy for degenerative and tractional lamellar macular holes: a systematic review and meta-analysis. PLoS ONE. 2021;16:e0246667.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Shiraga F, Takasu I, Fukuda K, Fujita T, Yamashita A, Hirooka K, et al. Modified vitreous surgery for symptomatic lamellar macular hole with epiretinal membrane containing macular pigment. Retina. 2013;33:1263–9.PubMedCrossRef Shiraga F, Takasu I, Fukuda K, Fujita T, Yamashita A, Hirooka K, et al. Modified vitreous surgery for symptomatic lamellar macular hole with epiretinal membrane containing macular pigment. Retina. 2013;33:1263–9.PubMedCrossRef
79.
Zurück zum Zitat Takahashi K, Morizane Y, Kimura S, Shiode Y, Doi S, Okanouchi T, et al. Results of lamellar macular hole-associated epiretinal proliferation embedding technique for the treatment of degenerative lamellar macular hole. Graefes Arch Clin Exp Ophthalmol. 2019;257:2147–54.PubMedCrossRef Takahashi K, Morizane Y, Kimura S, Shiode Y, Doi S, Okanouchi T, et al. Results of lamellar macular hole-associated epiretinal proliferation embedding technique for the treatment of degenerative lamellar macular hole. Graefes Arch Clin Exp Ophthalmol. 2019;257:2147–54.PubMedCrossRef
80.
Zurück zum Zitat Ho TC, Ho AYL, Chen MS. Reconstructing foveola by foveolar internal limiting membrane non-peeling and tissue repositioning for lamellar hole-related epiretinal proliferation. Sci Rep. 2019;9:16030.PubMedPubMedCentralCrossRef Ho TC, Ho AYL, Chen MS. Reconstructing foveola by foveolar internal limiting membrane non-peeling and tissue repositioning for lamellar hole-related epiretinal proliferation. Sci Rep. 2019;9:16030.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Kumar K, Sinha TK, Bhattacharya D. Modified surgical technique for lamellar macular holes with lamellar hole-associated epiretinal proliferation (LHEP). Int Ophthalmol. 2021;41:2197–204.PubMedCrossRef Kumar K, Sinha TK, Bhattacharya D. Modified surgical technique for lamellar macular holes with lamellar hole-associated epiretinal proliferation (LHEP). Int Ophthalmol. 2021;41:2197–204.PubMedCrossRef
82.
Zurück zum Zitat Kanai M, Sakimoto S, Takahashi S, Nishida K, Maruyama K, Sato S, et al. Embedding technique versus conventional internal limiting membrane peeling for lamellar macular holes with epiretinal proliferation. Ophthalmol Retina. 2023;7:44–51.PubMedCrossRef Kanai M, Sakimoto S, Takahashi S, Nishida K, Maruyama K, Sato S, et al. Embedding technique versus conventional internal limiting membrane peeling for lamellar macular holes with epiretinal proliferation. Ophthalmol Retina. 2023;7:44–51.PubMedCrossRef
83.
Zurück zum Zitat Fukushima M, Hayashi A, Kusaka S, Kamei M, Tsuboi K. Use of a backflush needle with a silicone tip cannula to embed lamellar hole-associated epiretinal proliferation. Retina. 2023;43:2204–7.PubMedPubMedCentral Fukushima M, Hayashi A, Kusaka S, Kamei M, Tsuboi K. Use of a backflush needle with a silicone tip cannula to embed lamellar hole-associated epiretinal proliferation. Retina. 2023;43:2204–7.PubMedPubMedCentral
84.
Zurück zum Zitat Chehaibou I, Philippakis E, Mané V, Lavia C, Couturier A, Gaudric A, et al. Surgical outcomes in patients with lamellar macular holes selected based on the optical coherence tomography consensus definition. Int J Retina Vitreous. 2021;7:31.PubMedPubMedCentralCrossRef Chehaibou I, Philippakis E, Mané V, Lavia C, Couturier A, Gaudric A, et al. Surgical outcomes in patients with lamellar macular holes selected based on the optical coherence tomography consensus definition. Int J Retina Vitreous. 2021;7:31.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Lai TT, Hsieh YT, Lee Y, Yang CM. Embedding and sparing of lamellar hole-associated epiretinal proliferation in the treatment of lamellar macular holes. Eye (Lond). 2022;36:1308–13.PubMedCrossRef Lai TT, Hsieh YT, Lee Y, Yang CM. Embedding and sparing of lamellar hole-associated epiretinal proliferation in the treatment of lamellar macular holes. Eye (Lond). 2022;36:1308–13.PubMedCrossRef
86.
Zurück zum Zitat Chehaibou I, Tadayoni R, Hubschman JP, Bottoni F, Caputo G, Chang S, et al. Natural history and surgical outcomes of lamellar macular holes. Ophthalmol Retina. 2024;8:210–22.PubMedCrossRef Chehaibou I, Tadayoni R, Hubschman JP, Bottoni F, Caputo G, Chang S, et al. Natural history and surgical outcomes of lamellar macular holes. Ophthalmol Retina. 2024;8:210–22.PubMedCrossRef
87.
Zurück zum Zitat Massin P, Paques M, Masri H, Haouchine B, Erginay A, Blain P, et al. Visual outcome of surgery for epiretinal membranes with macular pseudoholes. Ophthalmology. 1999;106:580–5.PubMedCrossRef Massin P, Paques M, Masri H, Haouchine B, Erginay A, Blain P, et al. Visual outcome of surgery for epiretinal membranes with macular pseudoholes. Ophthalmology. 1999;106:580–5.PubMedCrossRef
88.
Zurück zum Zitat Omoto T, Asahina Y, Zhou HP, Fujino R, Takao M, Obata R, et al. Visual outcomes and prognostic factors of vitrectomy for lamellar macular holes and epiretinal membrane foveoschisis. PLoS ONE. 2021;16:e0247509.PubMedPubMedCentralCrossRef Omoto T, Asahina Y, Zhou HP, Fujino R, Takao M, Obata R, et al. Visual outcomes and prognostic factors of vitrectomy for lamellar macular holes and epiretinal membrane foveoschisis. PLoS ONE. 2021;16:e0247509.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Sasaki T, Matsui Y, Kato K, Chujo S, Maeda S, Ozaki A, et al. Comparisons of clinical characteristics and surgical outcomes of epiretinal membrane foveoschisis to typical epiretinal membrane. J Clin Med. 2023;12:4009.PubMedPubMedCentralCrossRef Sasaki T, Matsui Y, Kato K, Chujo S, Maeda S, Ozaki A, et al. Comparisons of clinical characteristics and surgical outcomes of epiretinal membrane foveoschisis to typical epiretinal membrane. J Clin Med. 2023;12:4009.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Yang X, Wu X, Qi B, Zhang K, Yu Y, Wang X, et al. Foveal microstructure and visual outcomes after pars plana vitrectomy in patients with different types of epiretinal membrane foveoschisis. Ophthalmic Res. 2024;67:137–44.PubMedCrossRef Yang X, Wu X, Qi B, Zhang K, Yu Y, Wang X, et al. Foveal microstructure and visual outcomes after pars plana vitrectomy in patients with different types of epiretinal membrane foveoschisis. Ophthalmic Res. 2024;67:137–44.PubMedCrossRef
91.
Zurück zum Zitat Matoba R, Kanzaki Y, Morita T, Masuda Y, Kimura S, Hosokawa MM, et al. Investigation of the pathophysiology of epiretinal membrane foveoschisis: an analysis of longitudinal changes in visual functions, retinal structures, and retinal traction force. Retina Jul. 2024;18. https://doi.org/10.1097/IAE.0000000000004217. Matoba R, Kanzaki Y, Morita T, Masuda Y, Kimura S, Hosokawa MM, et al. Investigation of the pathophysiology of epiretinal membrane foveoschisis: an analysis of longitudinal changes in visual functions, retinal structures, and retinal traction force. Retina Jul. 2024;18. https://​doi.​org/​10.​1097/​IAE.​0000000000004217​.
Metadaten
Titel
Epiretinal membrane: an overview and update
verfasst von
Ryo Matoba
Yuki Morizane
Publikationsdatum
28.10.2024
Verlag
Springer Japan
Erschienen in
Japanese Journal of Ophthalmology / Ausgabe 6/2024
Print ISSN: 0021-5155
Elektronische ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-024-01127-6

Neu im Fachgebiet Augenheilkunde

Künstliche Intelligenz in der Medizin – Chancen und Risiken aus ethischer Sicht

Bildgebende Fächer wie die Augenheilkunde bieten vielfältige Möglichkeiten für den nutzbringenden Einsatz künstlicher Intelligenz (KI). Die Auswertung von Bildern und Daten mittels trainierter Algorithmen besitzt das Potenzial, die …

Okuläre Graft-versus-Host-Disease

Die okuläre Graft-versus-Host-Erkrankung („graft-versus-host disease“ [GVHD]) nach allogener hämatopoetischer Stammzelltransplantation (HSCT) stellt überwiegend eine entzündliche und destruierende Augenoberflächenerkrankung mit zunehmender …

Kataraktchirurgie in Subsahara-Afrika – Möglichkeiten und Grenzen

Die Bedeutung von Sehbeeinträchtigung und Blindheit für Individuen und Gesellschaften hat in den letzten Jahren ein hohes Maß an Aufmerksamkeit erfahren. Wesentliche Aspekte dieser Thematik sind im World report on vision der …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.