Skip to main content
Erschienen in:

10.06.2024 | Original Research

Equity in Using Artificial Intelligence Mortality Predictions to Target Goals of Care Documentation

verfasst von: Gina M. Piscitello, MD, MS, Shari Rogal, MD, MPH, Jane Schell, MD, MHS, Yael Schenker, MD, MAS, Robert M. Arnold, MD

Erschienen in: Journal of General Internal Medicine | Ausgabe 15/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

Artificial intelligence (AI) algorithms are increasingly used to target patients with elevated mortality risk scores for goals-of-care (GOC) conversations.

Objective

To evaluate the association between the presence or absence of AI-generated mortality risk scores with GOC documentation.

Design

Retrospective cross-sectional study at one large academic medical center between July 2021 and December 2022.

Participants

Hospitalized adult patients with AI-defined Serious Illness Risk Indicator (SIRI) scores indicating > 30% 90-day mortality risk (defined as “elevated” SIRI) or no SIRI scores due to insufficient data.

Intervention

A targeted intervention to increase GOC documentation for patients with AI-generated scores predicting elevated risk of mortality.

Main Measures

Odds ratios comparing GOC documentation for patients with elevated or no SIRI scores with similar severity of illness using propensity score matching and risk-adjusted mixed-effects logistic regression.

Key Results

Among 13,710 patients with elevated (n = 3643, 27%) or no (n = 10,067, 73%) SIRI scores, the median age was 64 years (SD 18). Twenty-five percent were non-White, 18% had Medicaid, 43% were admitted to an intensive care unit, and 11% died during admission. Patients lacking SIRI scores were more likely to be younger (median 60 vs. 72 years, p < 0.0001), be non-White (29% vs. 13%, p < 0.0001), and have Medicaid (22% vs. 9%, p < 0.0001). Patients with elevated versus no SIRI scores were more likely to have GOC documentation in the unmatched (aOR 2.5, p < 0.0001) and propensity-matched cohorts (aOR 2.1, p < 0.0001).

Conclusions

Using AI predictions of mortality to target GOC documentation may create differences in documentation prevalence between patients with and without AI mortality prediction scores with similar severity of illness. These finding suggest using AI to target GOC documentation may have the unintended consequence of disadvantaging severely ill patients lacking AI-generated scores from receiving targeted GOC documentation, including patients who are more likely to be non-White and have Medicaid insurance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med 2018;169(12):866–872.CrossRefPubMedPubMedCentral Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med 2018;169(12):866–872.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366(6464):447–453.CrossRefPubMed Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366(6464):447–453.CrossRefPubMed
9.
Zurück zum Zitat Manz CR, Zhang Y, Chen K, et al. Long-term Effect of Machine Learning–Triggered Behavioral Nudges on Serious Illness Conversations and End-of-Life Outcomes Among Patients With Cancer: A Randomized Clinical Trial. JAMA Oncology [Internet] 2023 [cited 2023 Jan 26];Available from: https://doi.org/10.1001/jamaoncol.2022.6303. Manz CR, Zhang Y, Chen K, et al. Long-term Effect of Machine Learning–Triggered Behavioral Nudges on Serious Illness Conversations and End-of-Life Outcomes Among Patients With Cancer: A Randomized Clinical Trial. JAMA Oncology [Internet] 2023 [cited 2023 Jan 26];Available from: https://​doi.​org/​10.​1001/​jamaoncol.​2022.​6303.
10.
Zurück zum Zitat Oo TH, Marroquin OC, McKibben J, Schell JO, Arnold RM, Kip KE. Improved Palliative Care Practices Through Machine-Learning Prediction of 90-Day Risk of Mortality Following Hospitalization. NEJM Catalyst [Internet] [cited 2023 Jan 30];4(1):CAT.22.0214. Available from: https://catalyst.nejm.org/doi/https://doi.org/10.1056/CAT.22.0214. Oo TH, Marroquin OC, McKibben J, Schell JO, Arnold RM, Kip KE. Improved Palliative Care Practices Through Machine-Learning Prediction of 90-Day Risk of Mortality Following Hospitalization. NEJM Catalyst [Internet] [cited 2023 Jan 30];4(1):CAT.22.0214. Available from: https://​catalyst.​nejm.​org/​doi/​https://​doi.​org/​10.​1056/​CAT.​22.​0214.
11.
Zurück zum Zitat Manz CR, Parikh RB, Small DS, et al. Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial. JAMA Oncol 2020;6(12):e204759.CrossRefPubMedPubMedCentral Manz CR, Parikh RB, Small DS, et al. Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial. JAMA Oncol 2020;6(12):e204759.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Gensheimer MF, Gupta D, Patel MI, et al. Use of Machine Learning and Lay Care Coaches to Increase Advance Care Planning Conversations for Patients With Metastatic Cancer. JCO Oncol Pract 2023;19(2):e176–e184.CrossRefPubMed Gensheimer MF, Gupta D, Patel MI, et al. Use of Machine Learning and Lay Care Coaches to Increase Advance Care Planning Conversations for Patients With Metastatic Cancer. JCO Oncol Pract 2023;19(2):e176–e184.CrossRefPubMed
14.
Zurück zum Zitat Schell JO, Schenker Y, Piscitello G, et al. Implementing a Serious Illness Risk Prediction Model: Impact on GOC Documentation. J Pain Symptom Manage 2023;S0885-3924(23)00616–4. Schell JO, Schenker Y, Piscitello G, et al. Implementing a Serious Illness Risk Prediction Model: Impact on GOC Documentation. J Pain Symptom Manage 2023;S0885-3924(23)00616–4.
15.
Zurück zum Zitat Uyeda AM, Lee RY, Pollack LR, et al. Predictors of Documented GOC Discussion for Hospitalized Patients With Chronic Illness. J Pain Symptom Manage 2023;65(3):233–241.CrossRefPubMed Uyeda AM, Lee RY, Pollack LR, et al. Predictors of Documented GOC Discussion for Hospitalized Patients With Chronic Illness. J Pain Symptom Manage 2023;65(3):233–241.CrossRefPubMed
16.
18.
Zurück zum Zitat E von E, Dg A, M E, Sj P, Pc G, Jp V. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol [Internet] 2008 [cited 2023 May 9];61(4). Available from: https://pubmed.ncbi.nlm.nih.gov/18313558/. E von E, Dg A, M E, Sj P, Pc G, Jp V. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol [Internet] 2008 [cited 2023 May 9];61(4). Available from: https://​pubmed.​ncbi.​nlm.​nih.​gov/​18313558/​.
20.
Zurück zum Zitat Secunda K, Wirpsa MJ, Neely KJ, et al. Use and Meaning of “GOC” in the Healthcare Literature: a Systematic Review and Qualitative Discourse Analysis. J Gen Intern Med [Internet] 2020 [cited 2023 Mar 29];35(5):1559–1566. Available from: https://doi.org/10.1007/s11606-019-05446-0. Secunda K, Wirpsa MJ, Neely KJ, et al. Use and Meaning of “GOC” in the Healthcare Literature: a Systematic Review and Qualitative Discourse Analysis. J Gen Intern Med [Internet] 2020 [cited 2023 Mar 29];35(5):1559–1566. Available from: https://​doi.​org/​10.​1007/​s11606-019-05446-0.
24.
Zurück zum Zitat Wright AA, Zhang B, Ray A, et al. Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment. JAMA 2008;300(14):1665–1673.CrossRefPubMedPubMedCentral Wright AA, Zhang B, Ray A, et al. Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment. JAMA 2008;300(14):1665–1673.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat National Academies of Sciences, Engineering, and Medicine and National Academy of Medicine. Toward Equitable Innovation in Health and Medicine: A Framework. National Academies of Sciences, Engineering, and Medicine. 2023. Toward Equitable Innovation in Health and Medicine: A Framework. [Internet]. Washington, DC: The National Academies Press.; 2023. Available from: https://doi.org/10.17226/27184.. National Academies of Sciences, Engineering, and Medicine and National Academy of Medicine. Toward Equitable Innovation in Health and Medicine: A Framework. National Academies of Sciences, Engineering, and Medicine. 2023. Toward Equitable Innovation in Health and Medicine: A Framework. [Internet]. Washington, DC: The National Academies Press.; 2023. Available from: https://​doi.​org/​10.​17226/​27184..
29.
Zurück zum Zitat Smith CB, Pintova S, Adelson KB, Gonsky JP, Egorova N, Bickell NA. Disparities in length of GOC conversations between oncologists and patients with advanced cancer. JCO [Internet] 2018 [cited 2022 Dec 4];36(34_suppl):19–19. Available from: https://ascopubs.org/doi/abs/https://doi.org/10.1200/JCO.2018.36.34_suppl.19. Smith CB, Pintova S, Adelson KB, Gonsky JP, Egorova N, Bickell NA. Disparities in length of GOC conversations between oncologists and patients with advanced cancer. JCO [Internet] 2018 [cited 2022 Dec 4];36(34_suppl):19–19. Available from: https://​ascopubs.​org/​doi/​abs/​https://​doi.​org/​10.​1200/​JCO.​2018.​36.​34_​suppl.​19.
30.
Zurück zum Zitat Shen MJ, Peterson EB, Costas-Muñiz R, et al. The Effects of Race and Racial Concordance on Patient-Physician Communication: A Systematic Review of the Literature. J Racial Ethn Health Disparities [Internet] 2018 [cited 2022 Dec 4];5(1):117–140. Available from: https://doi.org/10.1007/s40615-017-0350-4. Shen MJ, Peterson EB, Costas-Muñiz R, et al. The Effects of Race and Racial Concordance on Patient-Physician Communication: A Systematic Review of the Literature. J Racial Ethn Health Disparities [Internet] 2018 [cited 2022 Dec 4];5(1):117–140. Available from: https://​doi.​org/​10.​1007/​s40615-017-0350-4.
31.
Zurück zum Zitat Ingersoll LT, Alexander SC, Priest J, et al. Racial/ethnic differences in prognosis communication during initial inpatient palliative care consultations among people with advanced cancer. Patient Educ Couns 2019;102(6):1098–1103.CrossRefPubMed Ingersoll LT, Alexander SC, Priest J, et al. Racial/ethnic differences in prognosis communication during initial inpatient palliative care consultations among people with advanced cancer. Patient Educ Couns 2019;102(6):1098–1103.CrossRefPubMed
32.
Zurück zum Zitat Chen AT, Tsui S, Sharma RK. Characterizing uncertainty in GOC discussions among black and white patients: a qualitative study. BMC Palliat Care 2022;21(1):24.CrossRefPubMedPubMedCentral Chen AT, Tsui S, Sharma RK. Characterizing uncertainty in GOC discussions among black and white patients: a qualitative study. BMC Palliat Care 2022;21(1):24.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Eneanya ND, Wenger JB, Waite K, et al. Racial Disparities in End-of-Life Communication and Preferences among Chronic Kidney Disease Patients. Am J Nephrol 2016;44(1):46–53.CrossRefPubMed Eneanya ND, Wenger JB, Waite K, et al. Racial Disparities in End-of-Life Communication and Preferences among Chronic Kidney Disease Patients. Am J Nephrol 2016;44(1):46–53.CrossRefPubMed
34.
Zurück zum Zitat Mack JW, Paulk ME, Viswanath K, Prigerson HG. Racial disparities in the outcomes of communication on medical care received near death. Arch Intern Med 2010;170(17):1533–1540.CrossRefPubMedPubMedCentral Mack JW, Paulk ME, Viswanath K, Prigerson HG. Racial disparities in the outcomes of communication on medical care received near death. Arch Intern Med 2010;170(17):1533–1540.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Loggers ET, Maciejewski PK, Paulk E, et al. Racial differences in predictors of intensive end-of-life care in patients with advanced cancer. J Clin Oncol 2009;27(33):5559–5564.CrossRefPubMedPubMedCentral Loggers ET, Maciejewski PK, Paulk E, et al. Racial differences in predictors of intensive end-of-life care in patients with advanced cancer. J Clin Oncol 2009;27(33):5559–5564.CrossRefPubMedPubMedCentral
Metadaten
Titel
Equity in Using Artificial Intelligence Mortality Predictions to Target Goals of Care Documentation
verfasst von
Gina M. Piscitello, MD, MS
Shari Rogal, MD, MPH
Jane Schell, MD, MHS
Yael Schenker, MD, MAS
Robert M. Arnold, MD
Publikationsdatum
10.06.2024
Verlag
Springer International Publishing
Erschienen in
Journal of General Internal Medicine / Ausgabe 15/2024
Print ISSN: 0884-8734
Elektronische ISSN: 1525-1497
DOI
https://doi.org/10.1007/s11606-024-08849-w

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Verbände und Cremes gegen Dekubitus: „Wir wissen nicht, was sie bringen!“

Die Datenlage zur Wirksamkeit von Verbänden oder topischen Mitteln zur Prävention von Druckgeschwüren sei schlecht, so die Verfasser einer aktuellen Cochrane-Studie. Letztlich bleibe es unsicher, ob solche Maßnahmen den Betroffenen nutzen oder schaden.

Schützt das tägliche Glas Milch vor Darmkrebs?

Die Milch machts – sie bietet Frauen nach Daten einer großen Ernährungsanalyse den besten Darmkrebsschutz aller Lebensmittel, was am hohen Kalziumgehalt liegen dürfte. Am anderen Ende des Spektrums steht der Alkoholkonsum: Das Glas Wein am Abend ist eher ungünstig.

Vorsicht mit Glukokortikoiden bei Glomerulopathie

Auch niedrig dosierte Glukokortikoide zur Behandlung einer primären Glomerulopathie lassen offenbar die Infektionsgefahr steigen. In einer US-Studie hing das Risiko vor allem mit der kombinierten Anwendung von Immunsuppressiva zusammen.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.