Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2015

Open Access 01.12.2015 | Letter to the Editor

Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion

verfasst von: Nana Ping, Huiying Qiu, Qian Wang, Haiping Dai, Changgeng Ruan, Stefan Ehrentraut, Hans G. Drexler, Roderick A. F. MacLeod, Suning Chen

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 fusion transcript, which is a recurrent alteration in B cell acute lymphoblastic leukemia. Our results suggest that the JIH-5 cell line may serve as a tool for the study of mixed-phenotype acute leukemia or EP300-ZNF384.
Hinweise
Nana Ping Huiying Qiu and Qian Wang contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SC was the principal investigator. NP, HQ, and QW performed most of the experiments. SE, CR, and RM performed the cytogenetic and gene expression array analysis. SC, HD, and RM wrote the manuscript. All authors read and approved the final manuscript.
Abkürzungen
B-ALL
B cell acute lymphoblastic leukemia
CNA
copy number alterations
EBV
Epstein-Barr virus
FCM
flow cytometry
FISH
fluorescence in situ hybridization
MOAP
mitoxantrone, cytosine arabinoside, vindesine, and dexamethasone
MPAL
mixed-phenotype acute leukemia
NGS
next-generation sequencing
NuRD
nucleosome remodeling and deacetylase
PCR
polymerase chain reaction
SKY
spectral karyotype
T-ALL
T cell acute lymphoblastic leukemia

Findings

In a minority of patients with acute leukemia, it is difficult to determine the lineage origin because of the expression of both lymphoid and myeloid lineage-specific antigens [15]. The 2008 World Health Organization (WHO) classification introduced a new designation for this entity, mixed-phenotype acute leukemia (MPAL) [6]. Tumor cells are characterized by various biomarkers, such as cytogenetic, molecular genetic, or epigenetic aberrations [711]. However, the pathogenesis and optimal therapy of patients with MPAL remain largely undefined. Although several leukemia cell lines were once reported as BAL cell lines [1217], none fulfill the WHO 2008 criteria for MPAL. So far, no cell line established from patients with MPAL has been reported. Recently, we established the first human MPAL cell line, JIH-5. Herein, we present the phenotypic, genetic, and functional properties of JIH-5 cells. We applied next-generation sequencing (NGS) technology to unravel the transcriptome of JIH-5 cells.
A 21-year-old female with MPAL was admitted to our hospital in December 2008. Bone marrow sample was obtained from the patient with informed consent in December 2009 during the second relapse. Mononuclear cells were cultured in Iscove’s Modified Dulbecco’s Medium with 20 % fetal calf serum. The leukemia cells exhibited gradual cell proliferation 2 months after primary culture was initiated. The cell line was designated JIH-5. JIH-5 cells were tolerant to freezing in defined medium, storage in liquid nitrogen, thawing, and subsequent expansion. JIH-5 cells grow as single cells in suspension culture.
JIH-5 cells exhibit medium-sized spheroidal morphologies and large round nuclei with fine nuclear chromatin (Fig. 1a). The immunoprofiles of the JIH-5 cells are summarized in Table 1. JIH-5 cells express typical antigens of myeloid lineages (CD13, CD15, CD33, and cMPO), as well as antigens of B lymphoid lineages (CD10, CD19, CD22, CD23, and cCD79a) (Fig. 1b). The negative polymerase chain reaction (PCR) results with EBV and mycoplasma specific primers excluded EBV and mycoplasma contamination. The colony formation rate of JIH-5 cells was 1.41 % by semi-solid methylcellulose clonogenic assay. Tumor masses were found in one of six mice injected with JIH-5 cells after 83 days. The genetic identity of JIH-5 cells was compared to BM cell sample from the patient using short tandem repeat PCR. The results of authentication analysis indicated that the JIH-5 cells remained genetically identical to the founding tumor cells.
Table 1
Immunophenotypic characterization of the JIH-5 cells and the primary leukemia cells
Antigen (CD)
Primary leukemia cells (%)
JIH-5 cells (%)
At presentation
At the second relapse
T/NK cell markers
 CD2
0.2
0.5
16.4
 CD3
ND
ND
1.1
 CD5
ND
ND
1.1
 CD7
0.3
0.6
0
 CD56
ND
ND
1.4
 cCD3
ND
0
0.3
B cell markers
 CD10
5.6
11.6
34.8
 CD19
99.8
93.9
90.4
 CD20
0.1
0.5
1.7
 CD22
ND
ND
73.6
 CD23
ND
ND
53.3
 FMC-7
ND
ND
2.1
 cCD79a
97.6
93.6
80.8
Myeloid markers
 CD13
28.9
72.2
79.2
 CD14
0.2
1.0
2.1
 CD15
14.1
7.3
4.2
 CD33
85.2
80.9
78.6
 CD64
ND
ND
5.6
 MPO
11.9
59.1
66.8
Progenitor markers
 CD34
92.5
95.3
13.6
 CD38
ND
ND
30
 CD117
0.1
0.8
3.6
 HLA-DR
65.8
11.2
52.2
Adhesion markers
 CD11b
ND
ND
0.9
Erythroid markers
 CD71
ND
ND
5.3
 GPA
ND
ND
1.3
Megakaryocytic markers
 CD41
ND
ND
47.2
 CD61
ND
ND
1.1
Plasma cell markers
 CD138
ND
ND
1.8
ND not done
Combined G-banding and spectral karyotype (SKY) yielded the following karyotype for JIH-5: 46,XX,del(2)(q33)t(2;2)(p22;q37),t(4;5)(q35;q35),t(5;8)(q32;q22),der(6)del(6)(p21p22)t(6;10)(p23;q23),t(7;21)(p15;q21),der(9)del(9)(p21)del(9)(q34.2),der(10)t(6;10),t(12;22)(p13;q13),der(17)t(17;17)(p13;q22),del(19)(q13) (Fig. 2a, b). A total of ten copy number alterations (CNA) were detected by a-CGH. Both fluorescence in situ hybridization (FISH) and a-CGH analysis showed a microdeletion affecting ETV6 gene (Fig. 2c, d). No mutations were detected in 15 acute leukemia-related genes by direct sequencing of PCR products in JIH-5 cells. The global expression profile of JIH-5 was compared to leukemic blast cells from the patient, and a range of cell lines representing B and T cell acute lymphoblastic leukemia (T-ALL). The results indicate that transcriptionally, JIH-5 cells more closely resemble cell lines of B rather than T-ALL origin.
We captured and sequenced exomes from the paired sample of JIH-5 cells and control specimen in remission. We detected somatic tumor-specific mutations in a total of nine genes (eight missense and one nonsense mutations), including ABCA8, BCHE, CALCA, CSTF2, FPR1, KCNJ8, MAFB, STMN1, and TAAR8; all were heterozygous in JIH-5 cells. Bioinformatic evaluation of the transcriptional sequencing data and RT-PCR verification revealed six novel fusions, comprising three acting as translocations: EP300 (at 22q13) with both the adjacent ZNF384 and CHD4 (12p13), MSH2 (2p21) with NLK (17q11), and three microdeletions, HACL1-COLQ (3p25), HDAC8-CITED1 (Xq13), and POLA2-CDC42EP2 (11q13). Interestingly, the EP300 gene was found to fuse simultaneously with two partner genes located in 12p13, CHD4, and ZNF384 (Fig. 3a). Further FISH analysis with BAC and fosmid clones flanking EP300, CHD4, and ZNF384 confirmed breakpoints within CHD4 and EP300 due to a complex, apparently insertional, rearrangement involving 12p13 and 22q13 (Fig. 3b). Mutations of EP300 have been detected in Rubinstein-Taybi syndrome and some solid tumors [1822]. The EP300 was found to be fused with MLL in an AML patient harboring t(11;22)(q23;q13) [23]. CHD4 encodes a catalytic subunit of the NuRD complex and plays an important role in transcriptional regulation, chromatin assembly, and DNA damage repair [24]. The ZNF384 gene has been observed recurrently fused with EWSR1, TAF15, or E2A in acute leukemia [25, 26]. Recently, the EP300-ZNF384 was identified as a recurrent aberration in B cell acute lymphoblastic leukemia (B-ALL) [27]. The genetic abnormalities found in JIH-5 cells are detailed in Table 2.
Table 2
Synopsis of data on the JIH-5 cell line
Parameter
JIH-5
Clinical data
 
 Patient
21-year-old female
 Diagnosis
MPAL
 Treatment status
At the second relapse
 Specimen
BM
 Year of establishment
2009
Culture characterization
 
 Culture medium
IMDM + 20 % FCS
 Growth pattern
Single cells in suspension
 Doubling time
97 h
 Optimal cell density
1 × 106cells/ml
 Optimal split
1:3 every 3–4 days
 Cryopreservation
In 70 % medium, 20 % FCS, 10 % DMSO
 Morphology
medium-sized spheroidal morphologies
 Viral status
Negative for EBV
 Contamination
Negative for mycoplasma
 Authentication
Yes (by DNA finger printing, cytogenetic characteristics, immunoprofile)
Immunoprofiles
 
 Myelocytic
CD13+, CD33+, CD15+, MPO+
 B lymphoid
CD10+, CD19+, CD22+, CD23+, cCD79a+
 Megakaryocytic
CD41+
 Progenitor
CD38+, HLA-DR+
 Plasma cell
CD138+
Genetic characterization
 
 Karyotypic analysis in conjunction with SKY
46,XX,del(2)(q33)t(2;2)(p22;q37), t(4;5)(q35;q35),t(5;8)(q32;q22), der(6)del(6)(p21p22)t(6;10)(p23;q23), t(7;21)(p15;q21,der(9)del(9)p21)del(9)(q34.2), der(10)t(6;10),t(12;22)(p13;q13), der(17)t(17;17)(p13;q22),del(19)(q13)
 Array-CGH
del(2)(q33.1-q37.3), del(6)(p21.2-p21.31), del(8)(q21.2), del(8)(q23.3-q24.11), del(9)(q21.33-q34.12), del(10)(q23.33-q24.1), del(10)(q25.1), del(12)(p13.2), del(19)(q13.32), amp(17)(q21.32-q25.3)
Next-generation sequencing
 
 Whole-exome sequencing
Somatic mutations in ABCA8, BCHE, CALCA, CSTF2, FPR1, KCNJ8, MAFB, STMN1, TAAR8
 Transcriptome sequencing
EP300-ZNF384, CHD4-EP300, MSH2-NLK, HACL1-COLQ, HDAC8-CITED1, POLA2-CDC42EP2
In summary, we established a novel MPAL cell line, JIH-5, and characterized its biologic background comprehensively to show a novel oncogenomic gene fusion together with an associated cluster of mutations. Our findings suggested that the JIH-5 cell line may serve as a tool for the study of MPAL or EP300-ZNF384.

Acknowledgments

This work was supported by grants from the National Key Scientific Projects of China (2011CB933501), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Natural Science Foundation of China (81070416, 81270617), the Jiangsu Provincial Special Program of Medical Science (BL2012005), the Jiangsu Province’s Key Medical Center (ZX201102), the National Public Health Grand Research Foundation (No.201202017), and the Jiangsu Province Natural Science Fund for Distinguished Young Scholars (BK2012006).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SC was the principal investigator. NP, HQ, and QW performed most of the experiments. SE, CR, and RM performed the cytogenetic and gene expression array analysis. SC, HD, and RM wrote the manuscript. All authors read and approved the final manuscript.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Mirro J, Zipf TF, Pui CH, Kitchingman G, Williams D, Melvin S, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23.PubMed Mirro J, Zipf TF, Pui CH, Kitchingman G, Williams D, Melvin S, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood. 1985;66(5):1115–23.PubMed
2.
Zurück zum Zitat Ruiz-Argüelles GJ, Lobato-Mendizábal E, Marín-López A. The incidence of hybrid acute leukaemias. Leuk Res. 1988;12(9):707–9.CrossRefPubMed Ruiz-Argüelles GJ, Lobato-Mendizábal E, Marín-López A. The incidence of hybrid acute leukaemias. Leuk Res. 1988;12(9):707–9.CrossRefPubMed
3.
Zurück zum Zitat Weir EG, Ali Ansari-Lari M, Batista DA, Griffin CA, Fuller S, Smith BD, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11):2264–70.CrossRefPubMed Weir EG, Ali Ansari-Lari M, Batista DA, Griffin CA, Fuller S, Smith BD, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11):2264–70.CrossRefPubMed
4.
Zurück zum Zitat Wolach O, Stone RM. How I treat mixed-phenotype acute leukemia. Blood. 2015;125(16):2477–85.CrossRefPubMed Wolach O, Stone RM. How I treat mixed-phenotype acute leukemia. Blood. 2015;125(16):2477–85.CrossRefPubMed
5.
Zurück zum Zitat Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24(11):1844–51.CrossRefPubMed Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24(11):1844–51.CrossRefPubMed
6.
Zurück zum Zitat Borowitz MJ, Bene MC, Harris NL, Porwit A, Matutes E. Acute leukemias of ambiguous lineage. In: Swerdlow SH et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2008. p. 150–5. Borowitz MJ, Bene MC, Harris NL, Porwit A, Matutes E. Acute leukemias of ambiguous lineage. In: Swerdlow SH et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2008. p. 150–5.
7.
Zurück zum Zitat Li B, Gale RP, Xiao Z. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia. J Hematol Oncol. 2014;7:93.PubMedCentralCrossRefPubMed Li B, Gale RP, Xiao Z. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia. J Hematol Oncol. 2014;7:93.PubMedCentralCrossRefPubMed
10.
12.
Zurück zum Zitat Suzuki S, Uozumi K, Hanada S, Lin XY, Ohno N, Takatsuka Y, et al. A novel c-kit positive biphenotypic acute leukemia cell line, TMBL-1, carrying a p53 point mutation. Leuk Lymphoma. 2003;44(5):849–57.CrossRefPubMed Suzuki S, Uozumi K, Hanada S, Lin XY, Ohno N, Takatsuka Y, et al. A novel c-kit positive biphenotypic acute leukemia cell line, TMBL-1, carrying a p53 point mutation. Leuk Lymphoma. 2003;44(5):849–57.CrossRefPubMed
13.
Zurück zum Zitat Matsuo Y, Drexler HG, Takeuchi M, Orita K. A novel biphenotypic B-cell precursor leukemia cell line (NALM-29) carrying t(9;22)(q34;q11) established from a patient with acute leukemia. Leuk Res. 1999;23(8):731–40.CrossRefPubMed Matsuo Y, Drexler HG, Takeuchi M, Orita K. A novel biphenotypic B-cell precursor leukemia cell line (NALM-29) carrying t(9;22)(q34;q11) established from a patient with acute leukemia. Leuk Res. 1999;23(8):731–40.CrossRefPubMed
14.
Zurück zum Zitat Inokuchi K, Shinohara T, Futaki M, Hanawa H, Tanosaki S, Yamaguchi H, et al. Establishment of a cell line with variant BCR/ABL breakpoint expressing P180BCR/ABL from late-appearing Philadelphia-positive acute biphenotypic leukemia. Genes Chromosomes Cancer. 1998;23(3):227–38.CrossRefPubMed Inokuchi K, Shinohara T, Futaki M, Hanawa H, Tanosaki S, Yamaguchi H, et al. Establishment of a cell line with variant BCR/ABL breakpoint expressing P180BCR/ABL from late-appearing Philadelphia-positive acute biphenotypic leukemia. Genes Chromosomes Cancer. 1998;23(3):227–38.CrossRefPubMed
15.
Zurück zum Zitat Ariyasu T, Matsuo Y, Harashima A, Nakamura S, Takaba S, Tsubota T, et al. Establishment and characterization of “biphenotypic” acute leukemia cell lines with a variant Ph translocation t(9;22;10)(q34;q11;q22). Hum Cell. 1998;11(1):43–50.PubMed Ariyasu T, Matsuo Y, Harashima A, Nakamura S, Takaba S, Tsubota T, et al. Establishment and characterization of “biphenotypic” acute leukemia cell lines with a variant Ph translocation t(9;22;10)(q34;q11;q22). Hum Cell. 1998;11(1):43–50.PubMed
16.
Zurück zum Zitat Greil J, Gramatzki M, Burger R, Marschalek R, Peltner M, Trautmann U, et al. The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. Br J Haematol. 1994;86(2):275–83.CrossRefPubMed Greil J, Gramatzki M, Burger R, Marschalek R, Peltner M, Trautmann U, et al. The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. Br J Haematol. 1994;86(2):275–83.CrossRefPubMed
17.
Zurück zum Zitat Tanabe S, Fukuhara S, Yoneda T, Ohmori K, Nosaka T, Hatanaka M, et al. Characterization of a novel biphenotypic leukemia cell line, TA-1, with myeloperoxidase and inducible cytoplasmic mu chain: altered rearrangement patterns of antigen receptor genes. Int J Hematol. 1993;57(3):229–43.PubMed Tanabe S, Fukuhara S, Yoneda T, Ohmori K, Nosaka T, Hatanaka M, et al. Characterization of a novel biphenotypic leukemia cell line, TA-1, with myeloperoxidase and inducible cytoplasmic mu chain: altered rearrangement patterns of antigen receptor genes. Int J Hematol. 1993;57(3):229–43.PubMed
18.
Zurück zum Zitat Zimmermann N, Acosta AM, Kohlhase J, Bartsch O. Confirmation of EP300 gene mutations as a rare cause of Rubinstein-Taybi syndrome. Eur J Hum Genet. 2007;15(8):837–42.CrossRefPubMed Zimmermann N, Acosta AM, Kohlhase J, Bartsch O. Confirmation of EP300 gene mutations as a rare cause of Rubinstein-Taybi syndrome. Eur J Hum Genet. 2007;15(8):837–42.CrossRefPubMed
19.
Zurück zum Zitat Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000;24(3):300–3.CrossRefPubMed Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000;24(3):300–3.CrossRefPubMed
20.
Zurück zum Zitat Bryan EJ, Jokubaitis VJ, Chamberlain NL, Baxter SW, Dawson E, Choong DY, et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer. 2002;102(2):137–41.CrossRefPubMed Bryan EJ, Jokubaitis VJ, Chamberlain NL, Baxter SW, Dawson E, Choong DY, et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer. 2002;102(2):137–41.CrossRefPubMed
21.
Zurück zum Zitat Koshiishi N, Chong JM, Fukasawa T, Ikeno R, Hayashi Y, Funata N, et al. p300 gene alterations in intestinal and diffuse types of gastric carcinoma. Gastric Cancer. 2004;7(2):85–90.CrossRefPubMed Koshiishi N, Chong JM, Fukasawa T, Ikeno R, Hayashi Y, Funata N, et al. p300 gene alterations in intestinal and diffuse types of gastric carcinoma. Gastric Cancer. 2004;7(2):85–90.CrossRefPubMed
22.
Zurück zum Zitat Kim MS, Lee SH, Yoo NJ, Lee SH. Frameshift mutations of tumor suppressor gene EP300 in gastric and colorectal cancers with high microsatellite instability. Hum Pathol. 2013;44(10):2064–70.CrossRefPubMed Kim MS, Lee SH, Yoo NJ, Lee SH. Frameshift mutations of tumor suppressor gene EP300 in gastric and colorectal cancers with high microsatellite instability. Hum Pathol. 2013;44(10):2064–70.CrossRefPubMed
23.
Zurück zum Zitat Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood. 1997;90(12):4699–704.PubMed Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood. 1997;90(12):4699–704.PubMed
24.
Zurück zum Zitat Musselman CA, Ramírez J, Sims JK, Mansfield RE, Oliver SS, Denu JM, et al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proc Natl Acad Sci U S A. 2012;109(3):787–92.PubMedCentralCrossRefPubMed Musselman CA, Ramírez J, Sims JK, Mansfield RE, Oliver SS, Denu JM, et al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression. Proc Natl Acad Sci U S A. 2012;109(3):787–92.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L, et al. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia. 2008;22(4):723–9.CrossRefPubMed Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L, et al. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia. 2008;22(4):723–9.CrossRefPubMed
26.
Zurück zum Zitat Martini A, La Starza R, Janssen H, Bilhou-Nabera C, Corveleyn A, Somers R, et al. Recurrent rearrangement of the Ewing’s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res. 2002;62(19):5408–12.PubMed Martini A, La Starza R, Janssen H, Bilhou-Nabera C, Corveleyn A, Somers R, et al. Recurrent rearrangement of the Ewing’s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res. 2002;62(19):5408–12.PubMed
27.
Zurück zum Zitat Gocho Y, Kiyokawa N, Ichikawa H, Nakabayashi K, Osumi T, Ishibashi T et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015 May 6. doi: 10.1038/leu.2015.111. [Epub ahead of print] Gocho Y, Kiyokawa N, Ichikawa H, Nakabayashi K, Osumi T, Ishibashi T et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015 May 6. doi: 10.​1038/​leu.​2015.​111. [Epub ahead of print]
Metadaten
Titel
Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion
verfasst von
Nana Ping
Huiying Qiu
Qian Wang
Haiping Dai
Changgeng Ruan
Stefan Ehrentraut
Hans G. Drexler
Roderick A. F. MacLeod
Suning Chen
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2015
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0197-2

Weitere Artikel der Ausgabe 1/2015

Journal of Hematology & Oncology 1/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.