Skip to main content
Erschienen in: Journal of Ovarian Research 1/2018

Open Access 01.12.2018 | Research

Establishment and molecular characterization of a human ovarian clear cell carcinoma cell line (FDOV1)

verfasst von: Wei Jiang, Shuang Ye, Libing Xiang, Wentao Yang, Tiancong He, Xuan Pei, Lin Guo, Huijuan Yang

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2018

Abstract

Background

Ovarian clear cell carcinoma is a distinct histologic subtype with grave survival. The underlying molecular mechanism is not fully elucidated. However, we don’t have many cell lines, which are useful experimental tools for research. We describe the establishment and characterization of a new ovarian clear cell carcinoma cell line from a Chinese patient.

Results

FDOV1 has been subcultured for more than 80 generations. Monolayer cultured cells are polygonal in shape, showing a transparent cytoplasm full of vacuoles. The number of chromosomes ranges from 45 to 90. FDOV1 cells produces CA-125, but not CA-199. The cells could be transplanted and produced tumors mimicking the donor tumor morphologically and immunohistochemically. Whole exome sequence showed both FDOV1 and tissue block harbored PIK3CA H1047R mutation and ARID1A frameshift mutations (p.L2106 fs, p.N201 fs). More interestingly, we observed SPOP mutation (p.D82H) and ZNF217 (chromosome 20q13) amplification in FDOV1, which are quite novel.

Conclusions

Only a few patient-derived ovarian clear cell carcinoma cell lines have been reported in the literature. FDOV1 is the very first one, to the best of our knowledge, from a Mainland Chinese patient. It showed infinite multiplication until now and tumorigenicity in vivo. FDOV1 has co-existing PIK3CA and ARID1A mutations. It also harbored SPOP mutation and ZNF217 amplification, which would probably be a good model for exploring the molecular mechanism of ovarian clear cell carcinoma.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13048-018-0429-5) contains supplementary material, which is available to authorized users.
Wei Jiang and Shuang Ye contributed equally to this work.
Abkürzungen
AFP
Alpha fetoprotein
ARID1A
AT-Rich Interactive Domain-containing protein 1A
CA125
Carbohydrate antigen125
CA199
Carbohydrate antigen 199
CEA
Carcinoembryonic antigen
HE4
Human epididymis protein 4
OCCC
Ovarian clear cell carcinoma
PIK3CA
Phosphoinositide-3-kinase Catalytic Alpha
FIGO
International Federation of Gynecology and Obstetrics
TC
Paclitaxel & Carboplatin
PBS
Phosphate buffer solution
CCK8
Cell counting kit-8
OD450
Optical density (OD) at 450 nm
HE
Hematoxylin and eosin
MRI
Magnetic resonance imaging
WES
Whole-exome sequence
SNV
Single nucleotide variant
CNV
Copy number variation
indel
Insertion and deletion
ER
Estrogen receptor
AR
Androgen receptor
PR
Progesterone receptor
ZNF217
Zinc Finger Protein 217
PFS
Progression-Free Survival
OS
Overall survival

Background

Epithelial ovarian carcinoma is the most lethal gynecologic malignancy. Ovarian clear cell carcinoma (OCCC) is the second most common histologic subtype, accounting for 5–25% of all ovarian cancer depending on geographic location [1, 2]. It is well acknowledged that OCCC is more commonly seen in Asia women [3, 4]. OCCC represents a great challenge due to its disease aggressiveness and chemotherapy resistance. The grave survival and lack of effective treatment prompt us to investigate the underlying molecular mechanism of OCCC.
The two most widely reported gene mutations in OCCC are AT-Rich Interactive Domain-containing protein 1A (ARID1A) and Phosphoinositide-3-kinase Catalytic Alpha (PIK3CA), representing around 50% [5, 6] and 40% [7, 8] of all cases, respectively. Further studies supported that loss of ARID1A expression frequently coexisted with PIK3CA mutations [9]. What’s more, coexistent ARID1A-PIK3CA mutations might promote ovarian clear cell tumorigenesis through synergic effects [10, 11]. The breakthrough finding of ARID1A mutation has renewed the interest in elucidating the molecular pathways of OCCC [2], which still remains less well-understood than that of high-grade serous carcinoma.
Cancer cell lines are affordable models for genetic and molecular profiles, reflecting the characteristics of the origin tumor. According to documentations till now, 16 OCCC cell lines were established and their characteristics have been reported [1225], added ES-2 and TOV-21G, two commercial available cell lines, which characteristics and genetic features were obtained from ATCC database (http://​www.​atcc.​org) and COSMIC database (https://​cancer.​sanger.​ac.​uk/​cell_​lines), respectively. The majority of the established cell lines were derived from Japanese patients. Besides, only one OCCC cell line TOV-21G was found with PIK3CA and ARID1A mutation. We describe here the establishment and characterization of a novel cell line (FDOV1) from a Chinese patient that harbors coexistent ARID1A-PIK3CA mutations.

Results

Morphology and growth characteristics

Up to now, more than 80 serial passages have been carried out successively. FDOV1 cells grew in the form of an adherent monolayer without contact inhibition (Fig. 1). Several types of cells were noted: small round cells, oval cells, polygonal spindle cells and irregular cells. The cytoplasm was characteristic of transparency and vacuolation.
The cell growth curve was shown in Fig. 2. The population doubling time was 37.4 h, which was consistent with the low proliferation rate of OCCC. On flow cytometry analysis (Fig. 3), the cell cycle was distributed as: G1 phase, 42.3%; G2 phase, 36.1%; S phase, 21.6%.

Chromosomal analysis

A total of 45 metaphase cells from FDOV1 were examined for chromosome analysis. Chromosome numbers ranged from 45 to 90 (Fig. 4). The following karyotypes were observed: 2n = 45/46 (35, 78%); 2n = 47 (3, 7%); 4n = 86–90 (6, 13%). Chromosomal aberrations including complex translocations and deletions were noted, which were consistent with that of malignant tumors.

Tumor markers

The results for tumor marker measurement were listed as follow: CA125, 33.7 U/ml; CA199, 0.78 U/ml; CA153, < 1.00 U/ml; CA724, 2.96 U/ml; AFP, < 0.61 ng/ml; CEA, 0.21 ng/ml; HE4, < 15 pmol/L.

Heterotransplantation

To determine tumorigenicity, FDOV1 cells were injected into the dorsal flanks of two mice. Both mice developed visible tumors 20 days after injection. Fig. 5 presents the magnetic resonance imaging (MRI) of transplanted tumors of two mice 40 days after transplantation.

Histopathology and immunohistochemical staining

As clearly seen from Fig. 6, the xenografts morphologically mimicked the primary tumor in HE staining. Both the transplant and donor tumors showed diffuse intensive positivity for HNF-1β and Pax-8. Besides, negative Napsin A, ER and PR were observed for both tumors (results not presented).

WES and sanger sequencing results

We performed WES on FDOV1 cell, patient’s tissue block and peripheral blood. It was reported that the tumor purity of FDOV1 cells achieved 100% approximately, and that of the tumor block was 73%, which is fit for investigating the molecular aberrations, including single nucleotide variant (SNV), insertion and deletion (indel) and copy number variation (CNV). From the SNV related to cancer, it is shown that the tissue block and FDOV1 cell line shared some same somatic variations although diverse allele frequency (Fig. 7a). Interestingly, both tissue block and FDOV1 harbored PIK3CA H1047R mutation and ARID1A frameshift mutations (p.L2106 fs, p.N201 fs), which are viewed as the most important gene variations in OCCC. In addition, Both of them were found to carry SPOP (p.D82H, c.G244 T), ZNF217 (p.T985I, c.C2954T) and ARID1B (p.E1681X, c.G5041 T) mutations (Table 1), which were further validated by Sanger Sequencing (Fig. 8). Besides, Fig. 7b showed the CNV of tissue block and FDOV1. We observed that somatic copy number was increased in ZNF217(chr.20) and MYC(chr.8), which were reported as frequent amplifications in OCCC [26, 27], as well as MCL1(chr.1), RAD51(chr.15), DOT1L(chr.19), while copy number was decreased in TP53(chr.17), which was documented as a common copy number variant in OCCC [26], as well as NRAS(chr.1), AURKB(chr.17), STK11(chr.19) and CRLF2(chr.X) (Table 2).
Table 1
Single nucleotide variant (SNV) of FDOV1 by whole-exome sequencing(WES)
Gene
Pdot
Tissue
FDOV1
PIK3CA
p.H1047R
0.372
0.369
SPOP
p.D82H
0.36
0.5
ZNF217
p.T985I
0.329
0.46
ARID1A
p.L2106 fs
0.285
0.311
ARID1B
p.E1681X
0.277
0.588
ARID1A
p.N201 fs
0.271
0.339
FOXP1
p.S650delinslS
0.081
 
NOTCH2
p.P6fs
0.081
 
KMT2C
p.K2797 fs
0.048
 
MAP3K1
p.941_942del
0.039
 
TGFBR2
p.E125fs
0.034
 
KMT2C
p.T820I
0.033
 
ABL1
p.605_605del
0.029
 
ROCK2
p.R1295G
0.026
 
KMT2D
c.8366 + 1G > T
0.02
 
ERBB4
p.G565 V
0.017
 
KMT2C
p.D319Y
0.014
 
CTNNA1
p.M721 fs
0.013
 
KMT2C
p.R4418S
 
0.028
KMT2D
p.3860_3861del
 
0.02
RNF43
p.R145L
 
0.018
KMT2A
p.A1253S
 
0.012
Table 2
Copy number variant (CNV) of FDOV1 by whole-exome sequencing (WES)
 
Chr
Tissue
FDOV1
Upregulated Genes
 ZNF217
chr20
0.75
0.91
 MYC
chr8
0.50
0.89
 DOT1L
chr19
0.78
1.12
 MCL1
chr1
0.48
0.77
 RAD51
chr15
0.47
0.94
Downregulated Genes
 NRAS
chr1
−0.65
−1.01
 TP53
chr17
−0.55
− 1.04
 AURKB
chr17
−0.55
−1.04
 STK11
chr19
−0.64
−1.05
 CRLF2
chrX
−1.38
−1.41
The number in column of tissue and FDOV1 represent the log2 (sample/germline), consequently, the number more than 0 suggests amplified in copy number, less than 0 suggests decreased in copy number

Discussion

Ovarian clear cell carcinoma, as a subtype with distinct clinical behavior, is notorious for its poor survival and resistance to conventional platinum-based chemotherapy. An international phase III clinical trial was conducted to investigate the addition of irinotecan as adjuvant chemotherapy for patients with advanced-stage [28]. Unfortunately, no significant survival benefit was found. Given the limited benefit from cytotoxic drugs, there is now great interest in the development of molecular targeted therapy, which requires investigation of a number of areas in the laboratory [3]. Better understanding of the underlying molecular mechanism is of importance.
According to documentations, there were 16 ovarian clear cell carcinoma cell lines reported so far, in addition, TOV-21G, ES-2, which are commercially available from American Tissue Culture Center, and FDOV1. Their characteristics were compared in Table 3. Firstly, most of the OCCC cell lines were from Japan, while FDOV1 is the only one derived from a Chinese mainland woman. It has been demonstrated that the same kind of carcinoma from different race even country tends to have distinct characteristics, especially genetic characteristics [2931]. We postulated that genetic background might be partly the reason for the marked geographic difference in OCCC. Therefore, the establishment and characterization of a novel cell line derived from Chinese patients is of significance. Secondly, all cell lines were derived from ovary (10/19), ascites (6/19), and metastatic or recurrent site (3/19), which implied good materials for primarily culture. Lastly, as previously mentioned, ARID1A and PIK3CA mutations are the two most commonly reported. Interestingly, it is found that ARID1A–PIK3CA mutational co-occurrence (33%) is very high in ovarian CCC [11]. Research work by Chandler et al. supported that a genetic epistasis model wherein ARID1A and PIK3CA mutations cooperate and ovarian cancer can arise only when these genes are co-mutated in the mouse ovarian surface epithelium [11]. Coexistent ARID1A–PIK3CA mutations might be a major driver of OCCC in humans. Among 19 OCCC cell lines, only FDOV1 and TOV-21G carried coexistent ARID1A–PIK3CA mutations. The character of concurrent ARID1A–PIK3CA mutations of FDOV1 might help to better understand the underlying mechanism and even to explore the activity of dual inhibitors in vitro. However, the cell lines established before 2000 lack genetic information due to testing techniques. Besides, some new molecular features found by WES in FDOV1 requires more attentions.
Table 3
Cell lines of ovary clear cell carcinoma
 
Cell line
Country
Age
Material
DT
Chromosome number
Transplantability
Gene characteristics
1
HUOCA-II (1987)
Japan
51
Ovary
24,28
46
Yes
 
2
RMG-I (1988)
Japan
34
Ascites
60
47
Yes
 
3
OCC1 (1990)
Hong Kong
47
Ascites
36,38
70–77
Yes
 
4
RMG-II (1991)
Japan
53
Ascites
58
hypertetraploid
No
 
5
TOV-21G(1991)a
French-Canadian descent
62
Ovary
36
47
Yes
ARID1A p.Q758fsa75, ARID1A p.Y551fsa72, KRAS p.G13C, PIK3CA p.H1047Y
6
ES-2(1991)a
Black
47
Ovary
24
66- 88
Yes
BRAF p.V600E, MAP2K1 p.D67N
7
OVISE (1995)
Japan
40
Metastatic tumor
60–70
59–65
Yes
 
8
OVTOKO (1995)
Japan
78
Metastatic tumor
60–70
76–83
Yes
 
9
JHOC-5 (1999)
Japan
47
Ovary
52
74–85
No
 
10
JHOC-6 (1999)
Japan
43
Recurrent tumor
70
46–49
Yes
 
11
SMOV-2 (1999)
Japan
46
Ovary
48.2
85–92
Yes
P53 mutation (−)
12
TAYA (2002)
Japan
43
Ascites
50
69–74
No
P53 mutation (codon 132 in exon 5), PTEN mutation(−)
13
RMG-V (2005)
Japan
52
Ascites
15.5
77–85
No
 
14
TU-OC-1 (2013)
Japan
65
Ovary
38.4
64–90
Yes
PIK3CA E542K mutation
15
TU-OC-2(2016)
Japan
68
Ovary
37.5
41–96
No
PIK3CA mutation (−), TP53 mutation (−)
ARID1A loss
16
HCH-1 (2016)
Japan
67
Ovary
48.7, 66.4
39–44
Yes
PIK3CA mutation (−), P53 mutation(−), PTEN mutation(−), KRAS mutation(−)
17
NOCC(2016)
Japan
48
Ascites
29
60–83
Yes
 
18
HCH-3 (2017)
Japan
41
Ovary
82
78–87
Yes
KRAS mutation (+), TP53 mutation(+)
19
FDOV1(2017)
China mainland
67
Ovary
37.4
45–90
Yes
PIK3CA p.H1047R, ARID1A p.L2106 fs, ARID1A p.N201 fs, SPOP p.D82H
ARID1B p.E1681X
aThe biological characteristics of TOV-21G and ES-2 were obtained from ATCC database (http://​www.​atcc.​org), and the genetic variants of TOV-21G and ES-2 were obtained from COSMIC database (https://​cancer.​sanger.​ac.​uk/​cell_​lines), which provide more detailed and complete genetic features of cell lines
Notably, SPOP, a relatively new gene regulating DNA damage repair, is the most frequently mutated gene in prostate carcinoma [32, 33]. Mutations in SPOP lead to genomics instability and are identified as driver events resulting in tumorigenesis of prostate carcinoma via coordination with PI3K/mTOR and AR (Androgen Receptor) pathway in mouse [34, 35]. Studies on SPOP mutation in other solid carcinomas is reported in follicular and papillary thyroid cancers [36, 37], endometrial clear cell carcinoma [38, 39], gynecological carcinosarcoma [40], lung cancer [41], and colorectal cancer [42]. What is worthy of mentioning is that SPOP mutation in gynecological malignant tumor is not uncommon (18% in endometrial clear cell carcinoma, 14% in carcinosarcoma) [38, 40]. In OCCC, the mutation rate of SPOP is 11.1% (1/9) according to COSMIC (Catalogue Of Somatic Mutations In Cancer) database. However, few relevant functional studies are documented in OCCC. Thus, FDOV1, a novel cell line harbored SPOP mutation, is an ideal tool for functional study. In addition, it is suggested that SPOP mutation might represent sensitivity to DNA damaging agents such as PARP inhibitor in prostate carcinoma [35]. Consequently, whether it is indicated a similar effect on OCCC still needs further investigation.
Chromosome 20q13 ZNF217 (Zinc Finger Protein 217) locus amplification, which has found in FDOV1, is one of common molecuclar genetic aberrations in OCCC [43]. The frequency is reported from 20 to 36% [10, 43, 44]. It is reported that ZNF217 amplification often coexisted with loss of ARID1A expression and PIK3CA mutation [10]. Importantly, ZNF217 amplification has a correlation with shorter worse survival outcome in OCCC, and multivariate analysis suggest it is an independent prognostic factor of PFS (Progression-Free Survival) and OS (Overall survival) [43]. Still, ZNF217 amplification has an adverse prognostic implication in breast and gastric cancer [4547]. However, the underlying mechanism is still tensely studied. FDOV1 will be an good cell line for mechanism research in vitro.

Conclusions

An ovarian clear cell carcinoma cell line named FDOV1 was established from a Mainland Chinese patient. FDOV1 showed fast and unlimited multiplication until now and tumorigenicity in vivo. In addition, WES showed that it harbors concurrent ARID1A–PIK3CA mutations and SPOP mutation, also with ZNF217 amplification, which will be an ideal tool for mechanism research of ovarian clear cell carcinoma.

Methods

Medical history

A 67-year-old woman was admitted into Fudan University Shanghai Cancer Center with the chief complaint of palpable abdominal mass in May 2016. Ultrasound revealed a large pelvic mass (14 × 10 cm) with mixed components and a hyperechoic mural nodule (4 × 3 cm). Serum tumor markers including carbohydrate antigen (CA) 125 and CA199 were not elevated. Intraoperative findings were only significant for a cystic-and-solid mass (15 cm in diameter) in the left adnexa. Frozen pathology was highly suspicious of ovarian clear cell carcinoma. The patient underwent comprehensive staging surgery and the final stage was FIGO (International Federation of Gynecology and Obstetrics) Ia. She gave written informed consent before surgery according to institutional guideline (FUSCC 050432–4-1212B). Six cycles of TC regimen (paclitaxel + carboplatin) chemotherapy were administered. She was followed up every 3 months after treatment. The patient was admitted into outside hospital with chief complain of intestinal obstruction in May 2017. She developed multiple sites of venous thromboembolism and cerebral infarction. Unfortunately, she died 1 month later with no chance of anti-cancer treatment.

Establishment of cell line

The fresh tissue (1 cm3) from primary ovarian tumor was obtained during comprehensive staging surgery, and suspended in phosphate buffer solution (PBS) to get rid of necrotic and connective tissue. The material was then finely minced into 1-mm3 tissue blocks and placed in 10-cm cell culture dishes (Corning, NY, USA) containing Medium 199 medium (HyClone, Thermo Scientific, USA) with 10% fetal bovine serum (Gibco, Life technologies, USA), 100 IU/ml penicillin (HyClone, Thermo Scientific, USA) and 50 μg/ml streptomycin (HyClone, Thermo Scientific, USA). The cells were then incubated in a humidified atmosphere containing 5% CO2 at 37 °C. After repeated passage, a new cell line of FDOV1 was successfully established with more than 80 generations. FDOV1 cells have been sent to China General Microbiological Culture Collection Center for preservation (No. 13812) in March 2017.

Growth characteristics

Cell proliferation and growth curve was determined by Cell Counting Kit-8 (CCK-8) test. FDOV1 cells (2 × 103 cells/100 μl) were seeded in 96-well plates in sextuplicate. Ten days later, 100 μl mixture (CCK-8/medium 1:9) were added into the wells for incubation by 2 hours. We then measured the Optical Density (OD) at 450 nm (OD450) by a microplate reader (Synergy H4, Bio-Tek).

Cell cycle analysis by flow cytometry

Resuspended FDOV1 cells (1 × 106 cell) were kept overnight in 3 ml 75% ethanol at − 20 °C. After treatment, the cells were collected and stained with propidium iodide solution for 20 min at 4 °C in darkness. We then assessed the cell cycle by flow cytometer (BD Biosciences, San Jose, CA, USA).

Chromosome analysis

The cells in exponential phase were treated with 0.25 μg/ml colchicine for 6 hours and kept overnight at 37 °C. We then treated the cells with 0.1% trypsin solution for 15 s at room temperature and stained them with 3% Giemsa for G-band karyotyping. After examing 45 metaphases, the histograms of the chromosomal distribution were determined.

Tumor markers

A total of 2 × 106 cells were cultured for 4 days in total. The medium was changed and collected every 2 days, then were sent for tumor marker detection by chemiluminescence immunoassay. Detected markers included CA 125, CA 199, CA 153, CA 724, AFP, CEA and HE4.

Heterotransplantation

All the procedures were approved by the Department of Laboratory Animal Science in Fudan University. For in vivo studies, 4–6 weeks old NOD/SCID mice (Shanghai SLAC Laboratory Animal, Shanghai, China) were maintained under sterile conditions. FDOV1 cells (1 × 107 cells, passage 18) were injected subcutaneously into the dorsal flanks of two mice. Visible tumors were noted in both mice 20 days after transplantation.

Histological analysis and immunohistochemistry

Transplant tumors were fixed in 10% buffered formalin for 24 h and embedded in paraffin. Hematoxylin and eosin (HE) were used to stain 4-μm sections. The markers used for immunohistochemistry were listed as follows: HNF-1β (Sigma, CA, USA), Napsin A (Abcam, Cambridge, UK), Pax-8 (Cellmarque, CA, USA), ER (Roche, Basel, Swiss) and PR (Roche, Basel, Swiss). Microscopic slides were reviewed by a senior gynecology-dedicated pathologist (Prof. Yang).

Whole-exome sequencing (WES) of FDOV1 cell and patient’s tumor tissue

The WES was performed by 3D Medicines Corporation and the specific method was the same as a previous publication [48].

Sanger sequencing

Mutations of the specific genes in FDOV1 cells were validated by Sanger Sequencing. The RNA was extracted by Trizol Methods, then reverse transcription polymerase chain reaction (RT-PCR) was performed as our previous study [49]. The primers were showed in Additional file 1: Table S1. PCR amplification was performed as follows: denaturation at 98 °C for 5 min, 30 cycle of 98 °C for 10s, 58 °C for 30s, and 72 °C for 1 min, then holding at 72 °C for 1 min, finally incubation at 4 °C. Sequencing was performed at Boshang Biotechnology Co.Ltd. (Shanghai, China).

Acknowledgements

We thank Dr. David Chan for his advice in manuscript preparation. We thank 3D Medicines Corporation for WES analysis.

Funding

The study was supported by grants from National Natural Science Foundation of China (81572803 and 81702558).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
The patient gave written informed consent before surgery according to institutional guideline (FUSCC 050432–4-1212B).
Institutional consent form was written before surgery.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Anglesio MS, Carey MS, Kobel M, Mackay H, Huntsman DG. Clear cell carcinoma of the ovary: a report from the first ovarian clear cell symposium, June 24th, 2010. Gynecol Oncol. 2011;121(2):407–15.CrossRefPubMed Anglesio MS, Carey MS, Kobel M, Mackay H, Huntsman DG. Clear cell carcinoma of the ovary: a report from the first ovarian clear cell symposium, June 24th, 2010. Gynecol Oncol. 2011;121(2):407–15.CrossRefPubMed
2.
Zurück zum Zitat del Carmen MG, Birrer M, Schorge JO. Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol. 2012;126(3):481–90.CrossRefPubMed del Carmen MG, Birrer M, Schorge JO. Clear cell carcinoma of the ovary: a review of the literature. Gynecol Oncol. 2012;126(3):481–90.CrossRefPubMed
3.
Zurück zum Zitat Okamoto A, Glasspool RM, Mabuchi S, Matsumura N, Nomura H, Itamochi H, et al. Gynecologic Cancer InterGroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24(9 Suppl 3):S20–5.CrossRefPubMed Okamoto A, Glasspool RM, Mabuchi S, Matsumura N, Nomura H, Itamochi H, et al. Gynecologic Cancer InterGroup (GCIG) consensus review for clear cell carcinoma of the ovary. Int J Gynecol Cancer. 2014;24(9 Suppl 3):S20–5.CrossRefPubMed
4.
Zurück zum Zitat Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol Oncol. 2014;133(2):147–54.CrossRefPubMed Sung PL, Chang YH, Chao KC, Chuang CM. Global distribution pattern of histological subtypes of epithelial ovarian cancer: a database analysis and systematic review. Gynecol Oncol. 2014;133(2):147–54.CrossRefPubMed
5.
Zurück zum Zitat Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.CrossRefPubMedPubMedCentral Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.CrossRefPubMedPubMedCentral Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–81.CrossRefPubMed Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–81.CrossRefPubMed
8.
Zurück zum Zitat Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174(5):1597–601.CrossRefPubMedPubMedCentral Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174(5):1597–601.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25(4):615–24.CrossRefPubMed Yamamoto S, Tsuda H, Takano M, Tamai S, Matsubara O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 2012;25(4):615–24.CrossRefPubMed
10.
Zurück zum Zitat Huang HN, Lin MC, Huang WC, Chiang YC, Kuo KT. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol. 2014;27(7):983–90.CrossRefPubMed Huang HN, Lin MC, Huang WC, Chiang YC, Kuo KT. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol. 2014;27(7):983–90.CrossRefPubMed
11.
Zurück zum Zitat Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118.CrossRefPubMedPubMedCentral Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Yamada T, Hattori K, Satomi H, Okazaki T, Mori H, Hirose Y. Establishment and characterization of a cell line (HCH-1) originating from a human clear cell carcinoma of the ovary. J Ovarian Res. 2016;9(1):32.CrossRefPubMedPubMedCentral Yamada T, Hattori K, Satomi H, Okazaki T, Mori H, Hirose Y. Establishment and characterization of a cell line (HCH-1) originating from a human clear cell carcinoma of the ovary. J Ovarian Res. 2016;9(1):32.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ishiwata I, Ishiwata C, Soma M, Ishikawa H. Establishment of HUOCA-II, a human ovarian clear cell adenocarcinoma cell line, and its angiogenic activity. J Natl Cancer Inst. 1987;78(4):667–73.PubMed Ishiwata I, Ishiwata C, Soma M, Ishikawa H. Establishment of HUOCA-II, a human ovarian clear cell adenocarcinoma cell line, and its angiogenic activity. J Natl Cancer Inst. 1987;78(4):667–73.PubMed
14.
Zurück zum Zitat Nozawa S, Tsukazaki K, Sakayori M, Jeng CH, Iizuka R. Establishment of a human ovarian clear cell carcinoma cell line (RMG-I) and its single cell cloning--with special reference to the stem cell of the tumor. Hum Cell. 1988;1(4):426–35.PubMed Nozawa S, Tsukazaki K, Sakayori M, Jeng CH, Iizuka R. Establishment of a human ovarian clear cell carcinoma cell line (RMG-I) and its single cell cloning--with special reference to the stem cell of the tumor. Hum Cell. 1988;1(4):426–35.PubMed
15.
Zurück zum Zitat Nozawa S, Yajima M, Sasaki H, Tsukazaki K, Aoki D, Sakayori M, et al. A new CA125-like antigen (CA602) recognized by two monoclonal antibodies against a newly established ovarian clear cell carcinoma cell line (RMG-II). Jpn J Cancer Res. 1991;82(7):854–61.CrossRefPubMedPubMedCentral Nozawa S, Yajima M, Sasaki H, Tsukazaki K, Aoki D, Sakayori M, et al. A new CA125-like antigen (CA602) recognized by two monoclonal antibodies against a newly established ovarian clear cell carcinoma cell line (RMG-II). Jpn J Cancer Res. 1991;82(7):854–61.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Gorai I, Nakazawa T, Miyagi E, Hirahara F, Nagashima Y, Minaguchi H. Establishment and characterization of two human ovarian clear cell adenocarcinoma lines from metastatic lesions with different properties. Gynecol Oncol. 1995;57(1):33–46.CrossRefPubMed Gorai I, Nakazawa T, Miyagi E, Hirahara F, Nagashima Y, Minaguchi H. Establishment and characterization of two human ovarian clear cell adenocarcinoma lines from metastatic lesions with different properties. Gynecol Oncol. 1995;57(1):33–46.CrossRefPubMed
17.
Zurück zum Zitat Yamada K, Tachibana T, Hashimoto H, Suzuki K, Yanagida S, Endoh H, et al. Establishment and characterization of cell lines derived from serous adenocarcinoma (JHOS-2) and clear cell adenocarcinoma (JHOC-5, JHOC-6) of human ovary. Hum Cell. 1999;12(3):131–8.PubMed Yamada K, Tachibana T, Hashimoto H, Suzuki K, Yanagida S, Endoh H, et al. Establishment and characterization of cell lines derived from serous adenocarcinoma (JHOS-2) and clear cell adenocarcinoma (JHOC-5, JHOC-6) of human ovary. Hum Cell. 1999;12(3):131–8.PubMed
18.
Zurück zum Zitat Yonamine K, Hayashi K, Iida T. Establishment and characterization of human ovarian clear cell adenocarcinoma cell line (SMOV-2), and its cytotoxity by anticancer agents. Hum Cell. 1999;12(3):139–48.PubMed Yonamine K, Hayashi K, Iida T. Establishment and characterization of human ovarian clear cell adenocarcinoma cell line (SMOV-2), and its cytotoxity by anticancer agents. Hum Cell. 1999;12(3):139–48.PubMed
19.
Zurück zum Zitat Saga Y, Suzuki M, Machida S, Ohwada M, Sato I. Establishment of a new cell line (TAYA) of clear cell adenocarcinoma of the ovary and its radiosensitivity. Oncology. 2002;62(2):180–4.CrossRefPubMed Saga Y, Suzuki M, Machida S, Ohwada M, Sato I. Establishment of a new cell line (TAYA) of clear cell adenocarcinoma of the ovary and its radiosensitivity. Oncology. 2002;62(2):180–4.CrossRefPubMed
20.
Zurück zum Zitat Aoki D, Suzuki N, Susumu N, Noda T, Suzuki A, Tamada Y, et al. Establishment and characterization of the RMG-V cell line from human ovarian clear cell adenocarcinoma. Hum Cell. 2005;18(3):143–6.CrossRefPubMed Aoki D, Suzuki N, Susumu N, Noda T, Suzuki A, Tamada Y, et al. Establishment and characterization of the RMG-V cell line from human ovarian clear cell adenocarcinoma. Hum Cell. 2005;18(3):143–6.CrossRefPubMed
21.
Zurück zum Zitat Itamochi H, Kato M, Nishimura M, Oumi N, Oishi T, Shimada M, et al. Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene. Hum Cell. 2013;26(3):121–7.CrossRefPubMed Itamochi H, Kato M, Nishimura M, Oumi N, Oishi T, Shimada M, et al. Establishment and characterization of a novel ovarian clear cell adenocarcinoma cell line, TU-OC-1, with a mutation in the PIK3CA gene. Hum Cell. 2013;26(3):121–7.CrossRefPubMed
22.
Zurück zum Zitat Sato S, Itamochi H, Oumi N, Chiba Y, Oishi T, Shimada M, et al. Establishment and characterization of a novel ovarian clear cell carcinoma cell line, TU-OC-2, with loss of ARID1A expression. Hum Cell. 2016;29(4):181–7.CrossRefPubMed Sato S, Itamochi H, Oumi N, Chiba Y, Oishi T, Shimada M, et al. Establishment and characterization of a novel ovarian clear cell carcinoma cell line, TU-OC-2, with loss of ARID1A expression. Hum Cell. 2016;29(4):181–7.CrossRefPubMed
23.
Zurück zum Zitat Wong WS, Wong YF, Ng YT, Huang PD, Chew EC, Ho TH, et al. Establishment and characterization of a new human cell line derived from ovarian clear cell carcinoma. Gynecol Oncol. 1990;38(1):37–45.CrossRefPubMed Wong WS, Wong YF, Ng YT, Huang PD, Chew EC, Ho TH, et al. Establishment and characterization of a new human cell line derived from ovarian clear cell carcinoma. Gynecol Oncol. 1990;38(1):37–45.CrossRefPubMed
24.
Zurück zum Zitat Ohyama A, Toyomura J, Tachibana T, Isonishi S, Takahashi H, Ishikawa H. Establishment and characterization of a clear cell carcinoma cell line, designated NOCC, derived from human ovary. Hum Cell. 2016;29(4):188–96.CrossRefPubMed Ohyama A, Toyomura J, Tachibana T, Isonishi S, Takahashi H, Ishikawa H. Establishment and characterization of a clear cell carcinoma cell line, designated NOCC, derived from human ovary. Hum Cell. 2016;29(4):188–96.CrossRefPubMed
25.
Zurück zum Zitat Yamada T, Hattori K, Satomi H, Okazaki T, Moriand H, Hirose Y. Characterization of a novel cell line (HCH-3) derived from a human ovarian clear cell carcinoma. J Carcinog Mutagen. 2017;8(3):292.CrossRef Yamada T, Hattori K, Satomi H, Okazaki T, Moriand H, Hirose Y. Characterization of a novel cell line (HCH-3) derived from a human ovarian clear cell carcinoma. J Carcinog Mutagen. 2017;8(3):292.CrossRef
26.
Zurück zum Zitat Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, et al. Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. Am J Pathol. 2017;187(10):2246–58.CrossRefPubMed Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, et al. Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. Am J Pathol. 2017;187(10):2246–58.CrossRefPubMed
27.
Zurück zum Zitat Kim SI, Lee JW, Lee M, Kim HS, Chung HH, Kim JW, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. 2018;148(2):375–82.CrossRefPubMed Kim SI, Lee JW, Lee M, Kim HS, Chung HH, Kim JW, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. 2018;148(2):375–82.CrossRefPubMed
28.
Zurück zum Zitat Sugiyama T, Okamoto A, Enomoto T, Hamano T, Aotani E, Terao Y, et al. Randomized phase III trial of irinotecan plus cisplatin compared with paclitaxel plus carboplatin as first-line chemotherapy for ovarian clear cell carcinoma: JGOG3017/GCIG trial. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(24):2881–7.CrossRef Sugiyama T, Okamoto A, Enomoto T, Hamano T, Aotani E, Terao Y, et al. Randomized phase III trial of irinotecan plus cisplatin compared with paclitaxel plus carboplatin as first-line chemotherapy for ovarian clear cell carcinoma: JGOG3017/GCIG trial. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(24):2881–7.CrossRef
29.
Zurück zum Zitat Lai Y, Wang C, Civan JM, Palazzo JP, Ye Z, Hyslop T, et al. Effects of Cancer stage and treatment differences on racial disparities in survival from Colon Cancer: a United States population-based study. Gastroenterology. 2016;150(5):1135–46.CrossRefPubMedPubMedCentral Lai Y, Wang C, Civan JM, Palazzo JP, Ye Z, Hyslop T, et al. Effects of Cancer stage and treatment differences on racial disparities in survival from Colon Cancer: a United States population-based study. Gastroenterology. 2016;150(5):1135–46.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Goutte N, Sogni P, Bendersky N, Barbare JC, Falissard B, Farges O. Geographical variations in incidence, management and survival of hepatocellular carcinoma in a western country. J Hepatol. 2017;66(3):537–44.CrossRefPubMed Goutte N, Sogni P, Bendersky N, Barbare JC, Falissard B, Farges O. Geographical variations in incidence, management and survival of hepatocellular carcinoma in a western country. J Hepatol. 2017;66(3):537–44.CrossRefPubMed
31.
Zurück zum Zitat Keenan T, Moy B, Mroz EA, Ross K, Niemierko A, Rocco JW, et al. Comparison of the genomic landscape between primary breast Cancer in African American versus white women and the Association of Racial Differences with Tumor Recurrence. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(31):3621–7.CrossRef Keenan T, Moy B, Mroz EA, Ross K, Niemierko A, Rocco JW, et al. Comparison of the genomic landscape between primary breast Cancer in African American versus white women and the Association of Racial Differences with Tumor Recurrence. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(31):3621–7.CrossRef
32.
Zurück zum Zitat Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.CrossRef Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.CrossRef
33.
Zurück zum Zitat Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.CrossRefPubMedPubMedCentral Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51.CrossRefPubMedPubMedCentral Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–51.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. SPOP mutation leads to genomic instability in prostate cancer. Elife. 2015;4:e09207.CrossRefPubMedPubMedCentral Boysen G, Barbieri CE, Prandi D, Blattner M, Chae SS, Dahija A, et al. SPOP mutation leads to genomic instability in prostate cancer. Elife. 2015;4:e09207.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.CrossRefPubMedPubMedCentral Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ye L, Zhou X, Huang F, Wang W, Qi Y, Xu H, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing. Nat Commun. 2017;8:15533.CrossRefPubMedPubMedCentral Ye L, Zhou X, Huang F, Wang W, Qi Y, Xu H, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing. Nat Commun. 2017;8:15533.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Le Gallo M, Rudd ML, Urick ME, Hansen NF, Zhang S, Lozy F, et al. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer. 2017;123(17):3261–8.CrossRefPubMedPubMedCentral Le Gallo M, Rudd ML, Urick ME, Hansen NF, Zhang S, Lozy F, et al. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer. 2017;123(17):3261–8.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat DeLair DF, Burke KA, Selenica P, Lim RS, Scott SN, Middha S, et al. The genetic landscape of endometrial clear cell carcinomas. J Pathol. 2017;243(2):230–41.CrossRefPubMedPubMedCentral DeLair DF, Burke KA, Selenica P, Lim RS, Scott SN, Middha S, et al. The genetic landscape of endometrial clear cell carcinomas. J Pathol. 2017;243(2):230–41.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D, et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006.CrossRefPubMedPubMedCentral Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D, et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.CrossRefPubMed Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.CrossRefPubMed
42.
Zurück zum Zitat Kim MS, Je EM, Oh JE, Yoo NJ, Lee SH. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS. 2013;121(7):626–33.CrossRefPubMed Kim MS, Je EM, Oh JE, Yoo NJ, Lee SH. Mutational and expressional analyses of SPOP, a candidate tumor suppressor gene, in prostate, gastric and colorectal cancers. APMIS. 2013;121(7):626–33.CrossRefPubMed
43.
Zurück zum Zitat Rahman MT, Nakayama K, Rahman M, Nakayama N, Ishikawa M, Katagiri A, et al. Prognostic and therapeutic impact of the chromosome 20q13.2 ZNF217 locus amplification in ovarian clear cell carcinoma. Cancer. 2012;118(11):2846–57.CrossRefPubMed Rahman MT, Nakayama K, Rahman M, Nakayama N, Ishikawa M, Katagiri A, et al. Prognostic and therapeutic impact of the chromosome 20q13.2 ZNF217 locus amplification in ovarian clear cell carcinoma. Cancer. 2012;118(11):2846–57.CrossRefPubMed
44.
Zurück zum Zitat Huang HN, Huang WC, Lin CH, Chiang YC, Huang HY, Kuo KT. Chromosome 20q13.2 ZNF217 locus amplification correlates with decreased E-cadherin expression in ovarian clear cell carcinoma with PI3K-Akt pathway alterations. Hum Pathol. 2014;45(11):2318–25.CrossRefPubMed Huang HN, Huang WC, Lin CH, Chiang YC, Huang HY, Kuo KT. Chromosome 20q13.2 ZNF217 locus amplification correlates with decreased E-cadherin expression in ovarian clear cell carcinoma with PI3K-Akt pathway alterations. Hum Pathol. 2014;45(11):2318–25.CrossRefPubMed
45.
Zurück zum Zitat Littlepage LE, Adler AS, Kouros-Mehr H, Huang G, Chou J, Krig SR, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012;2(7):638–51.CrossRefPubMedPubMedCentral Littlepage LE, Adler AS, Kouros-Mehr H, Huang G, Chou J, Krig SR, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov. 2012;2(7):638–51.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol. 2017;242(1):73–89.CrossRefPubMed Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, et al. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol. 2017;242(1):73–89.CrossRefPubMed
47.
Zurück zum Zitat Shida A, Fujioka S, Kurihara H, Ishibashi Y, Mitsumori N, Omura N, et al. Prognostic significance of ZNF217 expression in gastric carcinoma. Anticancer Res. 2014;34(9):4813–7.PubMed Shida A, Fujioka S, Kurihara H, Ishibashi Y, Mitsumori N, Omura N, et al. Prognostic significance of ZNF217 expression in gastric carcinoma. Anticancer Res. 2014;34(9):4813–7.PubMed
48.
Zurück zum Zitat Feng F, Cheng Q, Yang L, Zhang D, Ji S, Zhang Q, et al. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing. Oncotarget. 2017;8(3):5349–60.PubMed Feng F, Cheng Q, Yang L, Zhang D, Ji S, Zhang Q, et al. Guidance to rational use of pharmaceuticals in gallbladder sarcomatoid carcinoma using patient-derived cancer cells and whole exome sequencing. Oncotarget. 2017;8(3):5349–60.PubMed
49.
Zurück zum Zitat Xiang L, Li J, Jiang W, Shen X, Yang W, Wu X, et al. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers. Oncotarget. 2015;6(7):4968–75.CrossRefPubMed Xiang L, Li J, Jiang W, Shen X, Yang W, Wu X, et al. Comprehensive analysis of targetable oncogenic mutations in chinese cervical cancers. Oncotarget. 2015;6(7):4968–75.CrossRefPubMed
Metadaten
Titel
Establishment and molecular characterization of a human ovarian clear cell carcinoma cell line (FDOV1)
verfasst von
Wei Jiang
Shuang Ye
Libing Xiang
Wentao Yang
Tiancong He
Xuan Pei
Lin Guo
Huijuan Yang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2018
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0429-5

Weitere Artikel der Ausgabe 1/2018

Journal of Ovarian Research 1/2018 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.