Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2017

28.10.2016 | Research Article

Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs

verfasst von: Maryam Naghibolhosseini, Glenis R. Long

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The reported research introduces a noninvasive approach to estimate round-trip outer-middle ear pressure gain using distortion product otoacoustic emissions (DPOAEs). Our ability to hear depends primarily on sound waves traveling through the outer and middle ear toward the inner ear. The role of the outer and middle ear in sound transmission is particularly important for otoacoustic emissions (OAEs), which are sound signals generated in a healthy cochlea and recorded by a sensitive microphone placed in the ear canal. OAEs are used to evaluate the health and function of the cochlea; however, they are also affected by outer and middle ear characteristics. To better assess cochlear health using OAEs, it is critical to quantify the effect of the outer and middle ear on sound transmission. DPOAEs were obtained in two conditions: (i) two-tone and (ii) three-tone. In the two-tone condition, DPOAEs were generated by presenting two primary tones in the ear canal. In the three-tone condition, DPOAEs at the same frequencies (as in the two-tone condition) were generated by the interaction of the lower frequency primary tone in the two-tone condition with a distortion product generated by the interaction of two other external tones. Considering how the primary tones and DPOAEs of the aforementioned conditions were affected by the forward and reverse outer-middle ear transmission, an estimate of the round-trip outer-middle ear pressure gain was obtained. The round-trip outer-middle ear gain estimates ranged from −39 to −17 dB between 1 and 3.3 kHz.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125(3):1584–1594CrossRefPubMedPubMedCentral Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125(3):1584–1594CrossRefPubMedPubMedCentral
Zurück zum Zitat Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152(1):100–109CrossRefPubMed Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152(1):100–109CrossRefPubMed
Zurück zum Zitat Allen, JB (1986) Measurement of eardrum acoustic impedance. In Peripheral auditory mechanisms, 44–51. Springer Allen, JB (1986) Measurement of eardrum acoustic impedance. In Peripheral auditory mechanisms, 44–51. Springer
Zurück zum Zitat Brown AM, Gaskill SA (1990) Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses. J Acoust Soc Am 88(2):840–849CrossRefPubMed Brown AM, Gaskill SA (1990) Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses. J Acoust Soc Am 88(2):840–849CrossRefPubMed
Zurück zum Zitat Brown AM, Harris FP, Beveridge HA (1996) Two sources of acoustic distortion products from the human cochlea. J Acoust Soc Am 100(5):3260–3267CrossRefPubMed Brown AM, Harris FP, Beveridge HA (1996) Two sources of acoustic distortion products from the human cochlea. J Acoust Soc Am 100(5):3260–3267CrossRefPubMed
Zurück zum Zitat Chen S, Zhang H, Wang L, Li G (2014) An in-situ calibration method and the effects on stimulus frequency otoacoustic emissions. Biomed Eng Online 13(1):95CrossRefPubMedPubMedCentral Chen S, Zhang H, Wang L, Li G (2014) An in-situ calibration method and the effects on stimulus frequency otoacoustic emissions. Biomed Eng Online 13(1):95CrossRefPubMedPubMedCentral
Zurück zum Zitat Chien W, Rosowski JJ, Ravicz ME, Rauch SD, Smullen J, Merchant SN (2009) Measurements of stapes velocity in live human ears. Hear Res 249(1):54–61CrossRefPubMed Chien W, Rosowski JJ, Ravicz ME, Rauch SD, Smullen J, Merchant SN (2009) Measurements of stapes velocity in live human ears. Hear Res 249(1):54–61CrossRefPubMed
Zurück zum Zitat DeBoer E, Nuttall AL (2001) Power gain of the cochlear ampli fier. In Physiological and psychological bases of auditory function, ed. A Kohlrausch VF Prijs R Schoonhoven DJ Breebaart AJM Houtsma, 1–7 DeBoer E, Nuttall AL (2001) Power gain of the cochlear ampli fier. In Physiological and psychological bases of auditory function, ed. A Kohlrausch VF Prijs R Schoonhoven DJ Breebaart AJM Houtsma, 1–7
Zurück zum Zitat Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112(6):2882–2897CrossRefPubMed Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112(6):2882–2897CrossRefPubMed
Zurück zum Zitat Dong W, Olson ES (2006) Middle ear forward and reverse transmission in gerbil. J Neurophysiol 95(5):2951–2961CrossRefPubMed Dong W, Olson ES (2006) Middle ear forward and reverse transmission in gerbil. J Neurophysiol 95(5):2951–2961CrossRefPubMed
Zurück zum Zitat Feeney PM, Keefe DH, Sanford CA (2004) Wideband reflectance measures of the ipsilateral acoustic stapedius reflex threshold. Ear Hear 25(5):421–430CrossRefPubMed Feeney PM, Keefe DH, Sanford CA (2004) Wideband reflectance measures of the ipsilateral acoustic stapedius reflex threshold. Ear Hear 25(5):421–430CrossRefPubMed
Zurück zum Zitat Gaskill SA, Brown AM (1996) Suppression of human acoustic distortion product: dual origin of 2f1–f2. J Acoust Soc Am 100(5):3268–3274CrossRefPubMed Gaskill SA, Brown AM (1996) Suppression of human acoustic distortion product: dual origin of 2f1–f2. J Acoust Soc Am 100(5):3268–3274CrossRefPubMed
Zurück zum Zitat Henin S, Thompson S, Abdelrazeq S, Long GR (2011) Changes in amplitude and phase of distortion product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 129(4):2068–2079CrossRefPubMed Henin S, Thompson S, Abdelrazeq S, Long GR (2011) Changes in amplitude and phase of distortion product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 129(4):2068–2079CrossRefPubMed
Zurück zum Zitat Henin S, Long GR, Thompson S (2014) Wide-band detection of middle ear muscle activation using swept-tone distortion product otoacoustic emissions. J Acoust Soc Am 136(1):272–283CrossRefPubMed Henin S, Long GR, Thompson S (2014) Wide-band detection of middle ear muscle activation using swept-tone distortion product otoacoustic emissions. J Acoust Soc Am 136(1):272–283CrossRefPubMed
Zurück zum Zitat Huber A, Linder T, Dillier N, Ferrazzini M, Stoeckli S, Schmid S, Fisch U (2001) Intraoperative assessment of stapes movement. Ann Otol, Rhinol Laryngol 110(1):31–35CrossRef Huber A, Linder T, Dillier N, Ferrazzini M, Stoeckli S, Schmid S, Fisch U (2001) Intraoperative assessment of stapes movement. Ann Otol, Rhinol Laryngol 110(1):31–35CrossRef
Zurück zum Zitat Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for dpoae generation. J Acoust Soc Am 109(2):622–637CrossRefPubMed Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for dpoae generation. J Acoust Soc Am 109(2):622–637CrossRefPubMed
Zurück zum Zitat Keefe DH (2001) Input/output functions of distortion product otoacoustic emissions predict the spectral shapes of the forward and reverse middle-ear transfer function. 24th Annual Midwinter Meeting of the Association for Research in Otolaryngology, Des Moines, IA Keefe DH (2001) Input/output functions of distortion product otoacoustic emissions predict the spectral shapes of the forward and reverse middle-ear transfer function. 24th Annual Midwinter Meeting of the Association for Research in Otolaryngology, Des Moines, IA
Zurück zum Zitat Keefe DH (2002) Spectral shapes of forward and reverse transfer functions between ear canal and cochlea estimated using dpoae input/output functions. J Acoust Soc Am 111(1):249–260CrossRefPubMed Keefe DH (2002) Spectral shapes of forward and reverse transfer functions between ear canal and cochlea estimated using dpoae input/output functions. J Acoust Soc Am 111(1):249–260CrossRefPubMed
Zurück zum Zitat Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391CrossRefPubMed Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391CrossRefPubMed
Zurück zum Zitat Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22(1):95–104CrossRefPubMed Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22(1):95–104CrossRefPubMed
Zurück zum Zitat Kemp DT, AM Brown (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In Mechanics of hearing, eds. Egbert de Boer and Max A Viergever, 75–82. Springer Kemp DT, AM Brown (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In Mechanics of hearing, eds. Egbert de Boer and Max A Viergever, 75–82. Springer
Zurück zum Zitat Kummer P, Janssen T, Arnold W (1995) Suppression tuning characteristics of the 2f1–f2 distortion-product otoacoustic emission in humans. J Acoust Soc Am 98(1):197–210CrossRefPubMed Kummer P, Janssen T, Arnold W (1995) Suppression tuning characteristics of the 2f1–f2 distortion-product otoacoustic emission in humans. J Acoust Soc Am 98(1):197–210CrossRefPubMed
Zurück zum Zitat Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102(5):2831–2848CrossRefPubMed Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102(5):2831–2848CrossRefPubMed
Zurück zum Zitat Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124(3):1613–1626CrossRefPubMed Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124(3):1613–1626CrossRefPubMed
Zurück zum Zitat Long GR, Changmo J, Talmadge CL (2009) Dependence of distortion-product otoacoustic emission components on primary-level ratio. In Concepts and challenges in the biophysics of hearing, Vol. 1, 203–208. Singapore World Scientific Press Long GR, Changmo J, Talmadge CL (2009) Dependence of distortion-product otoacoustic emission components on primary-level ratio. In Concepts and challenges in the biophysics of hearing, Vol. 1, 203–208. Singapore World Scientific Press
Zurück zum Zitat Magnan P, Avan P, Dancer A, Smurzynski J, Probst R (1997) Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones. Hear Res 107(1):41–45CrossRefPubMed Magnan P, Avan P, Dancer A, Smurzynski J, Probst R (1997) Reverse middle-ear transfer function in the guinea pig measured with cubic difference tones. Hear Res 107(1):41–45CrossRefPubMed
Zurück zum Zitat Martin GK, Stagner BB, Dong W, Lonsbury-Martin BL (2016) Comparing distortion product otoacoustic emissions to intracochlear distortion products inferred from a noninvasive assay. J Assoc Res Otolaryngol Martin GK, Stagner BB, Dong W, Lonsbury-Martin BL (2016) Comparing distortion product otoacoustic emissions to intracochlear distortion products inferred from a noninvasive assay. J Assoc Res Otolaryngol
Zurück zum Zitat Mauermann M, Uppenkamp S, van Hengel PWJ, Kollmeier B (1999) Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (dpoae) fine structure in humans. i. fine structure and higher order DPOAE as a function of the frequency ratio f2/f1. J Acoust Soc Am 106(6):3473–3483CrossRefPubMed Mauermann M, Uppenkamp S, van Hengel PWJ, Kollmeier B (1999) Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (dpoae) fine structure in humans. i. fine structure and higher order DPOAE as a function of the frequency ratio f2/f1. J Acoust Soc Am 106(6):3473–3483CrossRefPubMed
Zurück zum Zitat Naghibolhosseini M (2015) Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. PhD diss, City University of New York Naghibolhosseini M (2015) Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. PhD diss, City University of New York
Zurück zum Zitat Naghibolhosseini M, Long G (2016) Fractional-order modeling of the human ear. 39th Annual Midwinter Meeting of the Association for Research in Otolaryngology, San Diego, CA 39: 241 Naghibolhosseini M, Long G (2016) Fractional-order modeling of the human ear. 39th Annual Midwinter Meeting of the Association for Research in Otolaryngology, San Diego, CA 39: 241
Zurück zum Zitat Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski J (2009) Differential intracochlear sound pressure measurements in normal human temporal bones. J Assoc Res Otolaryngol 10(1):23–36CrossRefPubMed Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski J (2009) Differential intracochlear sound pressure measurements in normal human temporal bones. J Assoc Res Otolaryngol 10(1):23–36CrossRefPubMed
Zurück zum Zitat Nuttall AL (1974) Measurements of the guinea-pig middle-ear transfer characteristic. J Acoust Soc Am 56(4):1231–1238CrossRefPubMed Nuttall AL (1974) Measurements of the guinea-pig middle-ear transfer characteristic. J Acoust Soc Am 56(4):1231–1238CrossRefPubMed
Zurück zum Zitat Olson ES (2001) Intracochlear pressure measurements related to cochlear tuning. J Acoust Soc Am 110(1):349–367CrossRefPubMed Olson ES (2001) Intracochlear pressure measurements related to cochlear tuning. J Acoust Soc Am 110(1):349–367CrossRefPubMed
Zurück zum Zitat Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113(5):2773–2789CrossRefPubMed Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113(5):2773–2789CrossRefPubMed
Zurück zum Zitat Puria S, Rosowski JJ (1996) Measurement of reverse transmission in the human middle ear: preliminary results. Offprint of the conference proceedings: diversity in auditory mechanics. Berkeley, CA. World Scientific, Singapore, pp 151–157 Puria S, Rosowski JJ (1996) Measurement of reverse transmission in the human middle ear: preliminary results. Offprint of the conference proceedings: diversity in auditory mechanics. Berkeley, CA. World Scientific, Singapore, pp 151–157
Zurück zum Zitat Puria S, Peake WT, Rosowski JJ (1997) Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am 101(5):2754–2770CrossRefPubMed Puria S, Peake WT, Rosowski JJ (1997) Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. J Acoust Soc Am 101(5):2754–2770CrossRefPubMed
Zurück zum Zitat Ravicz ME, Rosowski JJ (2013) Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla. J Acoust Soc Am 134(4):2852–2865CrossRefPubMedPubMedCentral Ravicz ME, Rosowski JJ (2013) Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla. J Acoust Soc Am 134(4):2852–2865CrossRefPubMedPubMedCentral
Zurück zum Zitat Ravicz ME, Slama MCC, Rosowski J (2010) Middle-ear pressure gain and cochlear partition differential pressure in chinchilla. Hear Res 263(1):16–25CrossRefPubMed Ravicz ME, Slama MCC, Rosowski J (2010) Middle-ear pressure gain and cochlear partition differential pressure in chinchilla. Hear Res 263(1):16–25CrossRefPubMed
Zurück zum Zitat Shaffer LA, Withnell RH, Dhar S, Lilly DJ, Goodman SS, Harmon KM (2003) Sources and mechanisms of dpoae generation: implications for the prediction of auditory sensitivity. Ear Hear 24(5):367–379CrossRefPubMed Shaffer LA, Withnell RH, Dhar S, Lilly DJ, Goodman SS, Harmon KM (2003) Sources and mechanisms of dpoae generation: implications for the prediction of auditory sensitivity. Ear Hear 24(5):367–379CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2):782–798CrossRefPubMed Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2):782–798CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ (2007) Cochlear traveling wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am 121(2):1003–1016CrossRefPubMed Shera CA, Guinan JJ (2007) Cochlear traveling wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am 121(2):1003–1016CrossRefPubMed
Zurück zum Zitat Shera CA, Miller AJ (2002) Using DPOAEs to measure forward and reverse middle-ear transmission noninvasively. 25th annual meeting of the Association for Research in Otolaryngology Shera CA, Miller AJ (2002) Using DPOAEs to measure forward and reverse middle-ear transmission noninvasively. 25th annual meeting of the Association for Research in Otolaryngology
Zurück zum Zitat Talmadge CL, Tubis A, Piskorski P, Long GR (1997) Modeling otoacoustic emission fine structures. In Diversity in auditory mechanics, eds. Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, 462–471 Talmadge CL, Tubis A, Piskorski P, Long GR (1997) Modeling otoacoustic emission fine structures. In Diversity in auditory mechanics, eds. Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, 462–471
Zurück zum Zitat Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104(3):1517–1543CrossRefPubMed Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104(3):1517–1543CrossRefPubMed
Zurück zum Zitat Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105(1):275–292CrossRefPubMed Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105(1):275–292CrossRefPubMed
Zurück zum Zitat Voss SE, Shera CA (2004) Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat. J Acoust Soc Am 116(4):2187–2198CrossRefPubMed Voss SE, Shera CA (2004) Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat. J Acoust Soc Am 116(4):2187–2198CrossRefPubMed
Zurück zum Zitat Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150(1):43–69CrossRefPubMed Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150(1):43–69CrossRefPubMed
Zurück zum Zitat Whitehead ML, Stagner BB, McCoy MJ, Lonsbury-Martin BL, Martin GK (1995) Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. ii. asymmetry in l1, l2 space. J Acoust Soc Am 97(4):2359–2377CrossRefPubMed Whitehead ML, Stagner BB, McCoy MJ, Lonsbury-Martin BL, Martin GK (1995) Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. ii. asymmetry in l1, l2 space. J Acoust Soc Am 97(4):2359–2377CrossRefPubMed
Zurück zum Zitat Zwicker E, Harris FP (1990) Psychoacoustical and ear canal cancellation of (2f1–f2)-distortion products. J Acoust Soc Am 87(6):2583–2591CrossRefPubMed Zwicker E, Harris FP (1990) Psychoacoustical and ear canal cancellation of (2f1–f2)-distortion products. J Acoust Soc Am 87(6):2583–2591CrossRefPubMed
Metadaten
Titel
Estimation of Round-Trip Outer-Middle Ear Gain Using DPOAEs
verfasst von
Maryam Naghibolhosseini
Glenis R. Long
Publikationsdatum
28.10.2016
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2017
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-016-0592-6

Weitere Artikel der Ausgabe 1/2017

Journal of the Association for Research in Otolaryngology 1/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.