Skip to main content
Erschienen in: Journal of Ethnobiology and Ethnomedicine 1/2017

Open Access 01.12.2017 | Research

Ethnomedicinal and cultural practices of mammals and birds in the vicinity of river Chenab, Punjab-Pakistan

verfasst von: Muhammad Altaf, Arshad Javid, Muhammad Umair, Khalid Javed Iqbal, Zahid Rasheed, Arshad Mehmood Abbasi

Erschienen in: Journal of Ethnobiology and Ethnomedicine | Ausgabe 1/2017

Abstract

Background

Although, use of animal species in disease treatment and culture practices is as ancient as that of plant species; however ethnomedicinal uses and cultural values of animal species have rarely been reported. Present study is the first report on the medicinal uses of mammals and bird species in Pakistan.

Methods

Questionnaires and semi-structured interviews were applied to collect qualitative and quantitative data from local informants (N = 109). Relative frequency of mention (RFM), fidelity level (FL), relative popularity level (RPL), similarity index (SI) and rank order priority (ROP) indices were used to analyzed the data.

Results

One hundred and eight species of animals, which include: 83% birds and 17% mammals were documented. In total 30 mammalian and 28 birds’ species were used to treat various diseases such as rheumatic disorders, skin infections and sexual weakness among several others. Fats, flesh, blood, milk and eggs were the most commonly utilized body parts. Bos taurus, Bubalus bubalis, Capra aegagrus hircus, Felis domesticus, Lepus nigricollis dayanus and Ovis aries (mammals) and Anas platyrhynchos domesticus, Columba livia, Coturnix coturnix, Gallus gallus and Passer domesticus (birds) were the highly utilized species. Medicinal and cultural uses of 30% mammals and 46% birds were reported for the first time, whereas 33% mammals and 79% birds depicted zero similarity with previous reports.

Conclusion

Present study exhibits significant ethnozoological knowledge of local inhabitants and their strong association with animal species, which could be helpful in sustainable use of biodiversity of the region. Additionally, in vitro and in vivo evaluation of biological activities in the mammalian and birds’ species with maximum fidelity level and frequency of mention could be important to discover animal based novel drugs.

Graphical Abstract

Some commonly used mammals and birds species of the study area

Background

Animal resources have been of significant value in different features of human life from its origins. Various animal species are present in art, music, religion, literature, medicine, food and many other human expressions [1, 2]. The phenomenon of zootherapy is noticeable mutually by a broad geographical distribution and profound historical origins [3]. Zootherapy contributes significantly in the healing practices, magic rituals [4] and constitutes an important alternative in modern civilization [5]. Therefore, to recognize this important relationship, ethnozoology should be considered as an affective field [6], and the social and cultural bonds between native people and animal species should be taken into account [7]. The use of animals for medicinal purposes is part of a body of traditional knowledge [5]. Wild and domestic animals and products derived from their bodies are not only used in traditional medicines, but are also increasingly valued as raw materials in the preparation of modern medicines and herbal preparations [8], 8.7% of essential chemicals are derived from animals [9]. Regardless of their importance, studies on the therapeutic uses of animals and their body parts have been neglected, when compared to plants [5].
Rural people make use of a large host of existing resources; while, they are not all evenly important. The idea of cultural importance arose through the study of traditional systems of classification and taxonomy [10]. Cultural importance of a species is the value of its characteristic within a human ethnic group [11]. There are different selection parameters of specific species or groups of species [1214]. The idea of a species, its specific ecological characteristics, the benefits obtained from it, the direct and/or indirect harm or damage it can cause, it’s cultural importance, and other criterion, are illustrations of substantial and insubstantial characteristics that people take into consideration to allocate value [15, 16]. And such evaluation involves different ecological and social procedures which are specific to each human ethnic group and occur in a different way through era. Thus, the cultural importance of an animal is a scientific method [17].
The fundamental relation between humans and animals goes behind utilitarian features. Consequently, documentation of traditional knowledge associated with medicinal and cultural uses of the wild and domesticated animal species is essential because the majority of local communities are rapidly losing their socioeconomic and cultural characteristics [18]. Particularly, mammals and birds are known as the most important and extremely fascinating species that is present in people’s thoughts and cultural traditions [16]. In several human ethnic communities, mammals and birds species constitute the major source of protein; used in medicine, leather industry as well as in folklore [16, 1921]. Pakistan has a rich diversity of mammals with a total of 195 listed species [22], and birds with a total of 668 observed species [23] and majority of them are utilized in traditional health care. However, ethnomedicinal uses and cultural importance of mammals and birds species in Pakistan have never been documented. Present study was aimed to document the medicinal uses and cultural value of mammals and birds species used by the local communities of three districts: Sialkot, Gujrat and Gujranwala around the river Chenab in the Punjab province of Pakistan.

Methods

Study area

Present study was conducted in the three districts of Punjab province Pakistan viz. Sialkot, Gujrat and Gujranwala located around the river Chenab (Fig 1). The river Chenab originates from Kangra and Kulu districts of Himachal Pradesh India and enters in Pakistan near Diawara village of district Sialkot [24]. The study area spreads over 9830 Km2 with temperature ranges from 1 °C to 48 °C in the months of December and June, respectively [2528].

Ethnography

Male population is dominant in the study area, and is estimated around 52%, while remaining 48% are female. Majority of the inhabitants (65%) lives in rural areas and 35% are settled in urban areas. Mughal, Jutt, Arain, Gujjar, Sheikh, Malik, Butt and Rana are the major ethnic communities while Christians are in minority. Most of the inhabitants speak Punjabi language (90.6%), followed by Urdu (9%), Pashto (0.2%), Siraki (0.19%) and English (0.01%). Wheat is the major cereal crop with annual production 1530 Thousand Million Tones (TMT) followed by rice (964 TMT) and sugarcane (225 TMT). Guava and citrus are the major fruits of the area with an annual production of 20,335 and 5010 Million Tons (MT). Study area is well known for vegetable production where potato, onion, tomato, carrot, brinjl, ladyfinger and garlic are commonly grown. Almost 1,347,000 cattle are slaughter annually for meet and on average 211 MT per annum wool obtained from animals like sheep and goats [2527].

Data collection and analysis

Field surveys were conducted during 2014–2015 to collect information on ethnomedicinal application of mammals and birds species. Formal consent was received from informants regarding data collection and publication; then the Participatory rural appraisal (PRA) approach as mentioned in the Kyoto Protocol was applied with the consent of the informant. Ethical guidelines of the International Society of Ethnobiology (http://​www.​ethnobiology.​net/) were strictly followed. Questionnaires and semi-structured interviews were conducted from 109 informants (i.e. farmers, teachers, herdsmen, hunters and traditional health practitioners). Informants were selected based on their traditional knowledge on medicinal and cultural importance of mammals and birds species. Mammals species were recognized using field guides “Mammals of Pakistan” [29, 30]. Books of “Birds of Pakistan” were consulted for identification of birds of the study area [31, 32].
Data on ethnomedicinal uses and cultural values were analyzed using various indices such as; relative frequency of mention (RFM), fidelity level (FL), relative popularity level (RPL), rank order priority (ROP) and similarity index (SI).
Relative frequency of mention (RFM): The value of RFM for species of medicinal animals is based on the citing percentage of local informants for that particular animal species. RFM was calculated using formula as reported by [33].
$$ \mathrm{RFM}=\frac{\mathrm{FM}}{\mathrm{N}}\ \left(0\le RFM\le 1\right) $$
Where, FM = Frequency of mention (or number of informants) for a cultural use of a particular species. N = total number of informants.
Fidelity level (FL): was calculated by modified formula of [34].
$$ \mathrm{FL}\ \left(\%\right)={\mathrm{N}}_{\mathrm{p}}/\mathrm{FM}\times 100 $$
Where, Np is the number of informants of major ailment (IMA) for particular types of mammals and birds species. FM = Frequency of mention (or number of informants) for cultural use of a particular species.
Relative popularity level (RPL): was determined as explained earlier [35, 36]. Briefly, mammals and birds species were divided into two groups ‘popular’ and ‘unpopular’. Popular mammals and birds are those which were mentioned for more than half of the maximum FM. The remaining mammals and birds’ species were noted as unpopular. A co-ordinate system was utilize in which X-axis represents to the FM citing a mammals and birds species for cultural use, while Y-axis represents to the number of different cultural uses for each mammals and birds species. For mammals and birds species with low popularity level, a linear increase was assumed, namely, a greater FM cited the mammals and birds species for any use, hence a greater average number of uses per mammals and birds species. On the other hand, for popular mammals and birds species a horizontal line was supposed namely, the average number of uses per mammal and bird is independent of the FM, who knows the mammalian and avian species; Hence, the average number of uses of a popular mammals and birds species does not increase with the increased FM who mention the mammals and birds species for any medical use. For popular mammalian and avian species, the RPL was selected to 1.0. For mammals and birds species within the unpopular group, the RPL is less than 1.0. RPL values may be noted for each particular mammalian and avian species in accordance with its location on the graph.
Rank order priority (ROP): is used to rank the mammals and birds species [35, 36] and was calculated by formula,
$$ \mathrm{ROP}=\mathrm{FL}\times \mathrm{RPL} $$
Similarity index (SI) was calculated using formula
$$ \mathrm{SI}={\mathrm{M}}_{\mathrm{s}}/{\mathrm{M}}_t\kern1em \left(0\le \mathrm{SI}\le 1\right) $$
Ms. = Similar number of medicinal applications in present and previous research records for a particular species.
Mt. = Total number of medicinal applications in present and previous research records for a particular species.

Results and discussion

Demographic features of respondents

A total of 109 informants between the age of 20 to 70 years were interviewed (Table 1). Maximum respondents 73 were 41 to 60 years old. Approximately, 71 were literate with different levels of education viz., primary (25), secondary school certificate (41), graduate (4) and post-graduate (1). About 84 respondents were from rural areas and their main source of income was agriculture. The old age informants possess significant traditional knowledge compared to younger. This may be due to their wide interaction with animal species.
Table 1
Ethnographic data of local informants
Variables
Demographic categories
Number of informants
Gender
Male
109
Female
0
Experience
Health practitioners
20
Farmer
43
Teachers
23
Herdsman
15
Hunters
9
Age group
20–30
9
31–40
27
41–50
36
51–60
26
above 60
11
Education
Post-graduate
1
Graduate
4
SSC
41
Primary
25
Illiterate
38
Residence
Rural
84
Urban
25
Religious background
Muslim
108
Non-Muslim
1

Local nomenclature

Vernacular nomenclature represents the local names of animal species used for medicinal and cultural purposes. Local name usually have clue about habitat, morphological difference, myth and social associations. For example, choha is used as suffix synonym in five species such as Millardia meltada (Fasli choha), Mus musculus (Chota choha), Nesokia indica (Choti push wala choha), Rattus rattus (Wada choha) and Tatera indica (Jangli choha). These variations in local names are due to difference in morphological characteristics i.e. house rat has larger size and is known as ‘wada choha’; mouse has smaller size and is named ‘chota choha’; and short tailed mole rat is called ‘chhoti dum wala choha’. Suncus etruscus (Mediterranean pygmy shrew) is the world smallest mammal. In the study area it is named as ‘choti chachondar’; alike suffix ‘waddi chachondar’ is used for Suncus murinus (House shrew) due to its large size. Hystrix indica (Indian crested porcupine) and long eared Hemiechinus collaris (Desert hedgehog) have same suffix ‘say’. Indian crested porcupine is known as ‘kanday wali say’ due to long spines while long eared desert hedgehog is known as ‘chotay kanday ali say’ because of small spines.
Based on habitat some mammals were named as ‘fasli choha’ (M. meltada) lives in cultivated fields, whereas ‘jungli choha (T. indica) is found in forests only. Likewise, Lepus nigricollis dayanus (Desert hare) lives in forest and is named jungli khargush or saya, while Oryctolagus cuniculus (Domestic rabbit) lives in houses and is known as khargush or saya. Five species of mammals were noted to have more than one local names viz. desert hare ‘jungli saya and jungli khargush’, Indian wild boar (Sus scrofa) ‘baarla and soor’ and domestic rabbit ‘khargush and saya’. Saya and baarla are common names in the forest land and rural areas, whereas khurgush and soor are used in urban areas. Chotay kanday ali say and Kandyari Choha are common names of Hemiechinus collaris Pangolin and Sipple are also common names of Manis crassicaudata in all areas (Table 2).
Table 2
Cultural uses of mammals and birds in the study area
S. no
Scientific, local & common name
MCU
FM
RFM
Med. use
Cultural uses
Mag
Entt
Do
To
Cc
Pt
Or
Fo
Na
Ha
 
Mammals
1.
Bos taurus L.
Cow, Gay
5
36
0.33
X
X
X
X
X
X
2.
Bubalus bubalis L.
Buffalo, Mujh
5
40
0.37
X
X
X
X
X
X
3.
Camelus dromedaries L.
Camel, Ount
5
24
0.22
X
X
X
X
X
X
4.
Canis aureus L.
Asiatic jackal, Gidar
3
17
0.16
X
X
X
X
X
X
X
X
5.
Canis lupus familiaris L.
Dog, Kuta
5
19
0.17
X
X
X
X
X
X
6.
Capra aegagrus hircus L.
Goat, Bakri
5
32
0.29
X
X
X
X
X
X
7.
Equus africanus von Heuglin
Donkey, Gadha
5
22
0.2
X
X
X
X
X
X
X
8.
Equus caballus L.
Horse, Kurrah
5
28
0.26
X
X
X
X
X
X
9.
Felis chaus Schreber
Jungle cat, Jungli billi
3
15
0.14
X
X
X
X
X
X
X
X
10.
Felis domesticus L.
Cat, Billi
3
46
0.42
X
X
X
X
X
X
X
X
11.
Funnambulus pennanti Wroughton Northern palm squirrel, Gulahri
1
7
0.06
X
X
X
X
X
X
X
X
X
X
12.
Hemiechinus collaris Gray
Long eared desert hedgehog
Chotay kanday ali say, Kandyari Choha
2
11
0.1
X
X
X
X
X
X
X
X
X
13.
Herpestes javanicus E. Geoffroy Small Indian mongoose, Neola
3
12
0.11
X
X
X
X
X
X
X
X
14.
Homo sapiens L.
Human, Insan
1
9
0.08
X
-
X
X
X
X
X
X
X
X
15.
Hystrix indica Kerr
Indian crested porcupine, Kanday wali say
4
52
0.48
X
X
X
X
X
X
X
16.
Lepus nigricollis dayanus F. Cuvier Desert hare, Jungli saya, Jungli khargush
4
54
0.5
X
X
X
X
X
X
X
17.
Manis crassicaudata E. Geoffroy Indian Pangolin, Pangolin, Sipple
1
8
0.07
X
X
X
X
X
X
X
X
X
X
18.
Millardia meltada Gray
Soft-furred field rat, Fasli Choha
1
6
0.06
X
X
X
X
X
X
X
X
X
X
19.
Mus musculus L.
House mouse, Chota Choha
1
4
0.04
X
X
X
X
X
X
X
X
X
X
20.
Nesokia indica Gray
Short tailed mole rat, Chhoti push wala choha
1
3
0.03
X
X
X
X
X
X
X
X
X
X
21.
Oryctolagus cuniculusl.
Domestic rabbit, Khargush, Saya
4
14
0.13
X
X
X
X
X
X
X
22.
Ovis aries L.
Sheep, Bairh
5
23
0.21
X
X
X
X
X
X
23.
Pteropus giganteus Brunnich
Indian flying fox bat, Chamgadar
1
10
0.09
X
X
X
X
X
X
X
X
X
X
24.
Rattus rattus L.
House rat, Wada Choha
1
5
0.05
X
X
X
X
X
X
X
X
X
X
25.
Suncus etruscus Savi
Mediterranean pygmy shrew, Choti chachondar
1
2
0.02
X
X
X
X
X
X
X
X
X
X
26.
Suncus murinus L.
House shrew, Waddi chachondar
1
2
0.02
X
X
X
X
X
X
X
X
X
X
27.
Sus scrofa L.
Indian wild boar, Baarla, Soor
4
20
0.18
X
X
X
X
X
X
X
28.
Tatera indica Hardwicke
Indian gerbil, Jungli Choha
1
3
0.03
X
X
X
X
X
X
X
X
X
X
29.
Ursus thibetanus G. Cuvier
Bear, Richh
7
26
0.24
X
X
X
X
30.
Vulpes bengalensis Shaw Indian/Bengal fox, Lomri
3
13
0.12
X
X
X
X
X
X
X
X
 
Birds
31.
Acridotheres ginginianus Latham
Bank Myna, Shark
3
21
0.193
X
X
X
X
X
X
X
X
X
32.
Acridotheres tristis L.
Common Myna, Lali
2
3
0.028
X
X
X
X
X
X
X
X
X
X
33.
Acrocephalus dumetorum Blyth
Blyth’s Reed Warbler, Dabh peeddi
2
6
0.055
X
X
X
X
X
X
X
X
X
X
34.
Acrocephalus melanopogon Temminck
Moustached Sedge Warbler, Chhoti Peeddi
2
4
0.037
X
X
X
X
X
X
X
X
X
X
35.
Alauda arvensis L
Eurasian Lark, Chandol
4
35
0.321
X
X
X
X
X
X
X
X
36.
Alauda gulgula Franklin
Small Skylark, Chhota chandol
4
35
0.321
X
X
X
X
X
X
X
X
37.
Alcedo atthis L.
Common Kingfisher, Chhota machhera
2
12
0.11
X
X
X
X
X
X
X
X
X
X
38.
Amandava amandava L.
Red Munia, Lal moonia
2
11
0.101
X
X
X
X
X
X
X
X
X
X
39.
Amaurornis phoenicurus Pennant,
White-breasted Waterhen, Chitthikki jal kukri
4
25
0.229
X
X
X
X
X
X
X
X
40.
Anas clypeata L.
Shoveler, Balchi
2
9
0.083
X
X
X
X
X
X
X
X
X
X
41.
Anas crecca L.
Common Teal, Til
2
3
0.028
X
X
X
X
X
X
X
X
X
X
42.
Anas penelope L.
Eurasian Wigeon. Wijan
4
5
0.046
X
X
X
X
X
X
X
X
43.
Anas platyrhynchos domesticus L.
Domestic Duck, Batakh
5
55
0.505
X
X
X
X
X
X
44.
Anas platyrhynchos L.
Mallard, Nilsir
3
11
0.101
X
X
X
X
X
X
X
X
X
45.
Anas querquedula L.
Garganey, Nili til
3
22
0.202
X
X
X
X
X
X
X
V
X
X
46.
Anas strepera L.
Gadwall, Gaidwal
2
4
0.037
X
X
X
X
X
X
X
X
X
X
47.
Anhinga melanogaster Pennant
Snake Bird, Bhujanga
2
6
0.055
X
X
X
X
X
X
X
X
X
X
48.
Anser indicus Latham
Bar-headed Goose, Sawa magh
4
22
0.202
X
X
X
X
X
X
X
X
49.
Anthus campestris L.
Tawny Pipit, Baggi charchari
2
4
0.037
X
X
X
X
X
X
X
X
X
X
50.
Anthus novaeseelandiae Gmelin
Richard Pipit, Charchari
2
2
0.018
X
X
X
X
X
X
X
X
X
X
51.
Anthus trivialis L.
Tree Pipit, Rukh charchari
2
6
0.055
X
X
X
X
X
X
X
X
X
X
52.
Anus auta L.
Pintail Duck, Sinkhpur
4
38
0.349
X
X
X
X
X
X
X
X
53.
Apus affinis Gray
Little Swift, Chhoti ateran
2
11
0.101
X
X
X
X
X
X
X
X
X
X
54.
Aquila rapax Temminck
Tawny Eagle, Chhota baaz
3
9
0.083
X
X
X
X
X
X
X
X
X
55.
Ara macao L.
Macaw, Macaw
3
24
0.22
X
X
X
X
X
X
X
X
56.
Ardea cinerea L.
Grey Heron, Nari
2
15
0.138
X
X
X
X
X
X
X
X
X
X
57.
Ardea cinerea L.
Purple Heron, Kirmachi nari
2
17
0.156
X
X
X
X
X
X
X
X
X
X
58.
Ardeola grayii Sykes
Indian Pond Heron, Chhappari bagla
2
2
0.018
X
X
X
X
X
X
X
X
X
X
59.
Athene brama Temminck
Spotted Little Owlet, Ullo
5
31
0.284
X
X
X
X
X
X
X
60.
Aythya ferina L.
Common Pochard, Pochad
4
35
0.321
X
X
X
X
X
X
X
X
61.
Aythya fuligula L.
Tufted Duck, Bodal murgabi
4
34
0.312
X
X
X
X
X
X
X
X
62.
Bubulcus ibis L.
Cattle Egret, Badami bagla
3
6
0.055
X
X
X
X
X
X
X
X
X
63.
Buteo buteo L.
Common Buzzard, Tisa
2
2
0.018
X
X
X
X
X
X
X
X
X
X
64.
Buteo rufinus Cretzschmar
Long-legged Buzzard, Chuhamar tisa
2
3
0.028
X
X
X
X
X
X
X
X
X
X
65.
Calandrella brachydactylaLeisler,
Greater Short-toed Lark, Chandol
4
35
0.321
X
X
X
X
X
X
X
X
66.
Calidris alpine L.
Tateri
2
5
0.046
X
X
X
X
X
X
X
X
X
X
67.
Calidris minuta Leisler
Little Stint, Panlawa
2
5
0.046
X
X
X
X
X
X
X
X
X
X
68.
Calidris temminckii Leisler
Temminck’s Stint
2
5
0.046
X
X
X
X
X
X
X
X
X
X
69.
Caprimulgus europaeus L.
European Nightjar, Chapaki
2
27
0.248
X
X
X
X
X
X
X
X
X
X
70.
Carpodacus erythrinus Pallas
Common Rosefinch, Lal tooti
4
15
0.138
X
X
X
X
X
X
X
X
71.
Centropus sinensis Stephens
Common Crow Pheasant, Jal Kukar
3
18
0.165
X
X
X
X
X
X
X
X
X
72.
Cercomela fusca Blyth
Common Rock chat, Lal galri
2
3
0.028
X
X
X
X
X
X
X
X
X
X
73.
Ceryle rudis L.
Small Pied kingfisher, Kilkila
2
9
0.083
X
X
X
X
X
X
X
X
X
X
74.
Charadrius alexandrinus L.
Snowy Plover, Kalarwala marwa
3
17
0.156
X
X
X
X
X
X
X
X
X
75.
Chlidonias hybridus Pallas
Whiskered Tern, Taheri
2
4
0.037
X
X
X
X
X
X
X
X
X
X
76.
Chrysomma altirostre JerdonSind Babbler, Serhari
2
2
0.018
X
X
X
X
X
X
X
X
X
X
77.
Cisticola juncidis Rafinesque
Fan-tailed Warbler, Phanka Peeddi
2
4
0.037
X
X
X
X
X
X
X
X
X
X
78.
Clamator jacobinus Boddaert
Pied Crested Cuckoo, Koail
2
14
0.128
X
X
X
X
X
X
X
 
X
X
79.
Columba livia Gmelin
Blue Rock Pigeon, Jangli kabotar
6
60
0.55
X
X
X
X
X
X
80.
Coracias benghalensis L.
Indian Roller, Nil kanth
2
3
0.028
X
X
X
X
X
X
X
X
X
X
81.
Coracias garrulus L.
Kashmir Roller, Nil Kanth
2
8
0.073
X
X
X
X
X
X
X
X
X
X
82.
Corvus splendens Vieillot
House Crow, Kaan
4
28
0.257
X
X
X
X
X
X
X
X
83.
Coturnix coturnix L.
Common Quail, Batera
6
58
0.532
X
X
X
X
X
X
84.
Cursorius coromandelicus Gmelin,
Indian Courser, Nukri
2
4
0.037
X
X
X
X
X
X
X
X
X
X
85.
Dendrocitta vagabunda Latham
Indian Tree Pie, Chhota kaan, Lagoja
2
5
0.046
X
X
X
X
X
X
X
X
X
X
86.
Dicrurus macrocercus Vieillot
Black Drongo, Japal kalchit, Chepu
2
5
0.046
X
X
X
X
X
X
X
X
X
X
87.
Egretta alba L.
Large Egret, Wadda bagla
3
10
0.092
X
X
X
X
X
X
X
X
X
88.
Egretta garzetta L.
Little Egret, Bauna bagla
3
8
0.073
X
X
X
X
X
X
X
X
X
89.
Egretta intermedia Wagler Intermediate Egret, Gabhla bagla
3
12
0.11
X
X
X
X
X
X
X
X
X
90.
Elanus caeruleus Desfontaines
Black Winged Kite, Chiti ail
2
10
0.092
X
X
X
X
X
X
X
X
X
X
91.
Emberiza bruniceps Brandt
Red-headed Bunting, Lal sir booli
2
25
0.229
X
X
X
X
X
X
X
X
X
X
92.
Emberiza schoeniclus L.
Reed Bunting, Booli
2
14
0.128
X
X
X
X
X
X
X
X
X
X
93.
Eremopterix grisea Scopoli
Ashy Crowned Finch lark, Saleti sir chandol
4
35
0.321
X
X
X
X
X
X
X
X
94.
Eudynamys scolopacea L.
Koel, Koal
4
24
0.22
X
X
X
X
X
X
X
X
95.
Falco tinnunculus L.
Eurasian Kestrel, Lal shikra
2
11
0.101
X
X
X
X
X
X
X
X
X
X
96.
Falco chicquera Daudin,
Red Necked Falcon, Lal-gardan baaz
2
10
0.092
X
X
X
X
X
X
X
X
X
X
97.
Ficedula parva Bechstein
Red-breasted Flycatcher, Lal gala tik tiki
2
4
0.037
X
X
X
X
X
X
X
X
X
X
98.
Francolinus francolinus L.
Black partridge, Kala tittar
6
56
0.514
X
X
X
X
X
X
99.
Francolinus pondicerianus Gmelin,
Indian Grey Partridge, Bhura tittar
5
23
0.211
X
X
X
X
X
X
X
100.
Fulica atra L.
Eurasian Coot, Koot
2
11
0.101
X
X
X
X
X
X
X
X
X
X
101.
Gallicrex cinerea Gmelin
Watercock, Jal murgha
2
13
0.119
X
X
X
X
X
X
X
X
X
X
102.
Gallinula chloropus L.
Common Moorhen, Jal kukri
4
34
0.312
X
X
X
X
X
X
X
X
103.
Gallus gallus L.
Domestic Chicken, Murghi
5
62
0.569
X
X
X
X
X
X
104.
Gelochelidon nilotica Gmelin
Gull-billed Tern, Bularh taheri
2
5
0.046
X
X
X
X
X
X
X
X
X
X
105.
Grus grus L.
Common Crane, Waddi kunj
2
9
0.083
X
X
X
X
X
X
X
X
X
X
106.
Halcyon smyrnensis L.
White-throated Kingfisher, Wadda machhera
2
14
0.128
X
X
X
X
X
X
X
X
X
X
107.
Hieraaetus fasciatus Sibley & Monroe
Bonnelli’s Eagle, Baaz
3
14
0.128
X
X
X
X
X
X
X
X
X
1108.
Himantopus himantopus L.
Black-winged Stilt, Lam latta
2
15
0.138
X
X
X
X
X
X
X
X
X
X
109.
Hippolais caligata Lichtenstein
Booted Warbler, Chita gala Peeddi
2
7
0.064
X
X
X
X
X
X
X
X
X
X
110.
Hirundo rustica L.
Barn or Common Swallow, Ababil
2
5
0.046
X
X
X
X
X
X
X
X
X
X
111.
Hirundo smithii Leach
Wire-tailed Swallow, Tar punjha
2
4
0.037
X
X
X
X
X
X
X
X
X
X
112.
Hoplopterus indicus Boddaert
Red-wattled Lapwing, Tatihri
2
13
0.119
X
X
X
X
X
X
X
X
X
X
113.
Ixobrychus sinensis Gmelin
Yellow Bittern, Bora bagla
2
4
0.037
X
X
X
X
X
X
X
X
X
X
114.
Larus fuscus L
Lesser Black-headed Gull, Chhota damra
2
4
0.037
X
X
X
X
X
X
X
X
X
X
115.
Lonchura malabarica L.
Indian Silverbill
4
17
0.156
X
X
X
X
X
X
X
X
116.
Lymnocryptes minimus Brünnich,
Jack Snipe, Rangla chaha
2
6
0.055
X
X
X
X
X
X
X
X
X
X
117.
Meleagris gallopavo L.
Turkey, Turkey
5
30
0.275
X
X
X
X
X
X
118.
Merops orientalis Latham
Little Green Bee-eater, Chhota path ranga
2
7
0.064
X
X
X
X
X
X
X
X
X
X
119.
Merops supercilliosus L.
Blue-cheeked Bee-eater, Chhota path ranga
3
5
0.046
X
X
X
X
X
X
X
X
X
120.
Milvus migrans migrans Boddaert,
Indian Kite, Cheil, Ail
2
8
0.073
X
X
X
X
X
X
X
X
X
X
121.
Motacilla alba alboides Hodgson,
Hodgeson’s Pied Wagtail, Wadda mamola
2
3
0.028
X
X
X
X
X
X
X
X
X
X
122.
Motacilla alba dukhunensis Sykes,
Siberian Pied Wagtail, Wadda mamola
2
3
0.028
X
X
X
X
X
X
X
X
X
X
123.
Motacilla cinerea Tunstall
Grey Wagtail, Slati mamola
2
4
0.037
X
X
X
X
X
X
X
X
X
X
124.
Motacilla citreola calcarata PallasYellow-headed Black-backed Wagtail, Pila kala Mamola
2
6
0.055
X
X
X
X
X
X
X
X
X
X
125.
Motacilla citreola citreola Pavlova Yellow-Headed Black-Collared Wagtail, Pila Mamola
2
4
0.037
X
X
X
X
X
X
X
X
X
X
126.
Motacilla citreola werae Pavlova Yellow-headed Grey-backed Wagtail
Pila si mamaloa
2
4
0.037
X
X
X
X
X
X
X
X
X
X
127.
Motacilla maderaspatensis Gmelin,
Large Pied Wagtail, Wada mamola
2
3
0.028
X
X
X
X
X
X
X
X
X
X
128.
Mycteria leucocephala Pennant
Painted Stork, Chitra lamdhing
2
11
0.101
X
X
X
X
X
X
X
X
X
X
129.
Nectarinia asiatica Latham
Purple Sunbird, Kala pidda, Shakar khora
2
7
0.064
X
X
X
X
X
X
X
X
X
X
130.
Nycticorax nycticorax L.
Night Heron, Chor bagla
2
7
0.064
X
X
X
X
X
X
X
X
X
X
131.
Oenanthe isabellina Temminck,
Isabelline Wheatear, Kali akha wheater
3
15
0.138
X
X
X
X
X
X
X
X
X
132.
Oenanthe picata Blyth
Eastern Wheatear, Kali cheeti wheatear
3
20
0.183
X
X
X
X
X
X
X
X
X
133.
Oriolus oriolus L.
Golden Oriole, Pilak
2
13
0.119
X
X
X
X
X
X
X
X
X
X
134.
Orthotomus sutorius Pennant
Tailor Bird, Derzi
2
3
0.028
X
X
X
X
X
X
X
X
X
X
135.
Parus major L.
Great Tit, Wadda tit
2
8
0.073
X
X
X
X
X
X
X
X
X
X
136.
Passer domesticus L.
House Sparrow, Chiri
6
64
0.587
X
X
X
X
X
X
137.
Passer hispaniolensis Temminck,
Willow Sparrow, Chini chiri
2
15
0.138
X
X
X
X
X
X
X
X
X
X
138.
Pavo cristatus L.
Peacock, Moor
3
25
0.229
X
X
X
X
X
X
X
X
139.
Pericrocotus ethologus Bangs & Phillips
Long-tailed Minivet, Lam punjhi saheli
2
7
0.064
X
X
X
X
X
X
X
X
X
X
140.
Pernis ptilorhynchus Temminck,
Crested Honey Buzzard, Makhi tissa
2
4
0.037
X
X
X
X
X
X
X
X
X
X
141.
Phalacrocorax niger Vieillot
Little Cormorant, Jal kaan
2
3
0.028
X
X
X
X
X
X
X
X
X
X
142.
Phoenicurus ochruros Gmelin
Black Redstart, Kala thirthara
2
4
0.037
X
X
X
X
X
X
X
X
X
X
143.
Phylloscopus subviridis Brooks
Brooks’s Leaf Warbler, Hari peeli Peeddi
2
4
0.037
X
X
X
X
X
X
X
X
X
X
144.
Ploceus philippinus L.
Baya Weaver, Bijra
2
3
0.028
X
X
X
X
X
X
X
X
X
X
145.
Porzana parva Scopoli
Little Crake, Jal bater
2
15
0.138
X
X
X
X
X
X
X
X
X
X
146.
Prinia burnesii Blyth
Long-tailed Grass Warbler, Bori Peeddi
2
3
0.028
X
X
X
X
X
X
X
X
X
X
147.
Prinia gracilis Lichtenstein
Streaked Long-tailed Warbler,
Lumbi push Peeddi
2
5
0.046
X
X
X
X
X
X
X
X
X
X
148.
Prinia inornata Sykes
Tawny Prinia, Chhoti bori Peeddi
4
27
0.248
X
X
X
X
X
X
X
X
149.
Prinia socialis Sykes
Ashy long-tailed Warbler, Uchi push Peeddi
2
3
0.028
X
X
X
X
X
X
X
X
X
X
150.
Psittacula eupatria L.
Large Indian Parakeet, Wada tota
4
50
0.459
X
X
X
X
X
X
X
X
151.
Psittacula krameri Scopoli
Rose-ringed Parakeet, Gani wala Tota
5
50
0.459
X
X
X
X
X
X
X
X
X
152.
Pycnonotus cafer L.
Red-vented Bulbul, Pahari bulbul
2
2
0.018
X
X
X
X
X
X
X
X
X
X
153.
Pycnonotus leucogenys Gray
White-cheeked Bulbul, Bulbul
2
2
0.018
X
X
X
X
X
X
X
X
X
X
154.
Rallus aquaticus L.
Water Rail
2
13
0.119
X
X
X
X
X
X
X
X
X
X
155.
Recurvirostra avosetta L.
Pied Avocet, Chaha
2
3
0.028
X
X
X
X
X
X
X
X
X
X
156.
Remiz pendulinus L.
Penduline Tit, Tit
2
6
0.055
X
X
X
X
X
X
X
X
X
X
157.
Rhipidura aureola Lesson
White-browned Fantail Flycatcher
Phanka tik tiki
2
3
0.028
X
X
X
X
X
X
X
X
X
X
158.
Riparia paludicola Vieillot
Indian Sindh Martin, Martin
2
35
0.321
X
X
X
X
X
X
X
X
X
X
159.
Riparia riparia L.
Collard Sand Martin, Martin ababil
2
4
0.037
X
X
X
X
X
X
X
X
X
X
160.
Rynchops albicollis Swainson
Indian Skimmer, Pancheera
2
4
0.037
X
X
X
X
X
X
X
X
X
X
161.
Saxicola leucura Blyth
White-tailed Bushchat, Galri
2
5
0.046
X
X
X
X
X
X
X
X
X
X
162.
Saxicoloides fulicata L.
Indian Robin, Kalla Peedda
2
3
0.028
X
X
X
X
X
X
X
X
X
X
163.
Sterna acuticauda Gray
Black-bellied Tern, Kali chonge taheri
2
5
0.046
X
X
X
X
X
X
X
X
X
X
164.
Sterna albifrons Pallas
Little Tern, Choti taheri
2
6
0.055
X
X
X
X
X
X
X
X
X
X
165.
Sterna aurantia Gray
Indian River Tern, Dariai taheri
2
4
0.037
X
X
X
X
X
X
X
X
X
X
166.
Streptopelia decaocto Frivaldszky
Indian Ring Dove, Kogi, Ghogi
6
45
0.413
X
X
X
X
X
X
167.
Streptopelia orientalis Latham
Oriental turtle Dove, Totru
6
44
0.404
X
X
X
X
X
X
168.
Streptopelia senegalensis L.
Little Brown Dove, Chhoti tutru, Chhoti kogi
6
36
0.33
X
X
X
X
X
X
169.
Streptopelia tranquebarica Hermann,
Red Turtle Dove, Lal totru
6
47
0.431
X
X
X
X
X
X
170.
Sturnus roseus L.
Rosy Starling, Gulabi tilyar, Gulabi maina
2
4
0.037
X
X
X
X
X
X
X
X
X
X
171.
Sturnus vulgaris L.
Common Starling, Tilyar, Maina
2
5
0.046
X
X
X
X
X
X
X
X
X
X
172.
Sylvia curruca L.
Lesser Whitethroat, Chitt kanthi peeddi
2
4
0.037
X
X
X
X
X
X
X
X
X
X
173.
Tachybaptus ruficollis Pallas
Little Grebe, Dubkian
2
5
0.046
X
X
X
X
X
X
X
X
X
X
174.
Tadorna ferruginea Pallas
Common Shelduck, Surkhab
2
3
0.028
X
X
X
X
X
X
X
X
X
X
175.
Tadorna tadorna L.
Ruddy Shelduck, Surmai
2
6
0.055
X
X
X
X
X
X
X
X
X
X
176.
Tephrodornis pondicerian Gmelin,
Common Wood Shrike, Latora
2
6
0.055
X
X
X
X
X
X
X
X
X
X
177.
Tringa glareola L.
Wood Sandpiper
2
5
0.046
X
X
X
X
X
X
X
X
X
X
178.
Tringa nebularia Gunnerus
Greenshank, Hara chaha
2
4
0.037
X
X
X
X
X
X
X
X
X
X
179.
Tringa ochropus L.
Green Sandpiper
2
6
0.055
X
X
X
X
X
X
X
X
X
X
180.
Tringa stagnatilis Bechstein
Marsh Sandpiper
2
5
0.046
X
X
X
X
X
X
X
X
X
X
181.
Turdoides caudatus Dumont
Common Babbler, Serhari
2
4
0.037
X
X
X
X
X
X
X
X
X
X
182.
Turdoides earlei Blyth
Striated Babbler, Dharidar serhari
2
7
0.064
X
X
X
X
X
X
X
X
X
X
183.
Turdoides striatus Dumont
Jungle Babbler, Jangli serhari
2
9
0.083
X
X
X
X
X
X
X
X
X
X
184.
Upupa epops L.
Common Hoopoe, Hud-hud
2
4
0.037
X
X
X
X
X
X
X
X
X
X
185.
Vanellus vanellus L.
Great Plover, Waddi karvank
2
4
0.037
X
X
X
X
X
X
X
X
X
X
MCU (Medicinal and Cultural Uses), FM (Frequency of Mention), RFM (Relative Frequency of Mention), Med (Medicinal), Mag (Magic), Entt (Entertainment), Do (Domestic), To (Tool), Cc (Commercial), Pt (Pet), Or (Ornamental), Fo (Food), Na (Narrative), Ha (Harmful)
The local name of 96.2% bird species are mentioned (Table 2). However, local name of 3.8% species including Rallus aquaticus, Calidris temminckii, Tringa stagnatilis, Tringa ochropus, Tringa glareola and Lonchura malabarica could not be searched. Around 8 bird species were noted to have more than one local name. These include: Milvus migrans migrans, (Cheil and Ail), Streptopelia decaocto (Kogi and Ghogi), Streptopelia orientalis (Tutru and Chhoti kogi), Nectarinia asiatica (Kala pidda and Shaker khora), Dicrurus macrocercus, (Japal kalchit and Chepu), Sturnus vulgaris (Tilyar and Maina), Sturnus roseus (Gulabi tilyar and Gulabi maina), and Dendrocitta vagabunda, (Chhota kaan and Lagoja). About 5.2% species have synonyms; because of their resemblance with other bird species such as Merops orientalis, and Merops supercilliosus have synonym chhota path ranga; the synonym of Oenanthe isabellina, Oenanthe picata is wheatear; Coracias garrulus and Coracias benghalensis have synonym nil kanth; while Chrysomma altirostre, and Turdoides caudatus called as serhari.
Interestingly, the vernacular names of 26 bird species were associated with their voice. These species were: Phalacrocorax niger (jal kaan), Anas Penelope (wijan), Milvus migrans (ail), Elanus caeruleus (chiti ail), Francolinus francolinus (kala tittar), Coturnix coturnix (batera), Grus grus (waddi kunj), Recurvirostra avosetta (chaha), Hoplopterus indicus (tatihri), Calidris alpine (tateri), Tringa nebularia (hara chaha), Gelochelidon nilotica (bularh taheri), Chlidonias hybridus (taheri), Streptopelia orientalis (Totru), Psittacula eupatria (wada tota), Psittacula krameri,(ganiwala tota), Clamator jacobinus (koail), Eudynamys scolopacea (koal), Ceryle rudis (kilkila), Upupa epops (hud-hud), Coracias benghalensis (nil kanth), Hirundo rustica (ababil), Anthus campestris (baggi charchari), Corvus splendens (kaan), Carpodacus erythrinus (lal tooti) and Athene brama (ullo).
The local name and English name of 10.3% species were same. Such as Teal for (Anas crecca), Gadwall (Anas strepera), Wigeon (Anas Penelope), Pochard (Aythya ferina), Coot (Fulica atra), Koel (Eudynamys scolopacea), Martin (Riparia paludicola), Tit (Remiz pendulinus & Parus major), Bulbul (Pycnonotus spp.), Macaw (Ara macao), Wheatear (Oenanthe spp.) and Turkey (Meleagris gallopavo). This may be due the fact that, English is the official language of Pakistan and British Government had ruled over this region more than 9 decades.

Body part(s) used

The body parts of mammals and birds species used in different recipes are presented in Fig. 2a and b. In mammals, fat was the most utilized body part (21 recipes), followed by flesh (7), milk (6) and blood (4), while remaining parts were used in one recipe only. Among birds, flash was the most commonly used body part with maximum application of 18 recipes, followed by fat and blood (each in 5 recipes), egg (4 recipes) and bones (3 recipes).
The inhabitants of the study area use fat and flesh to treat skin infections, rheumatic pains, burning sensation, body swelling and as sex stimulant. The presence of omega-3 fatty acid in fat that reduces inflammation may involve treating human ailments [37]. As this compound is also useful in neurological disorder, atherosclerosis, thrombotic and aging affects [3840]. Likewise, milk of Bubalus bubalis (Buffalo), Bos taurus (Cow), Capra aegagrus hircus (Goat), Camelus dromedaries (Camel), Equus africanus (Donkey) and Ovis aries (Sheep) is used to treat muscular pain, weakness, fever, and as sexual tonic. This may be due to the presence of high contents of proteins, lipids, vitamins and minerals in milk, which strengthens the body, reduce joint pain and increase sexual potency [4145].
Blood of different species such as donkey, domestic rabbit, desert hare, camel, spotted little owlet, cattle egret, large egret, little egret and intermediate egret was effective in abdominal dropsy, arthritis, burning sensation, sexual weakness and dysentery. Flesh of different mammals and birds was used to cure asthma, epilepsy, joint pain, sexual debility and skin infections. Human’s urine was reported against herpes and to treat ear pain in the study area. It has been documented that the urine of cow, sheep, camel, hyrax, goat, rhinoceros and ass effective in the treatment of disinfection, skin diseases, syphilis, tuberculosis, asthma, mouth infection, foot diseases, chronic ailment, acne, back pain, fever, anemia, nervous problem, memory loss, as antifungal, throat, rashes, burn, ear and eyes infections [2, 20, 4656]. In addition, urine of camel inhibits cell proliferation, enhance apoptosis, maintain cyclin-dependent kinase inhibitor p21[48], and has high resistance against heat as well as fungal diseases [54].

Ethnomedicinal uses of mammals and birds

Present investigation is the first report on ethnomedicinal uses and cultural values of mammals and bird species in Pakistan. The inhabitants of the study area use different animals to treat health disorders and possess significant traditional knowledge particularly on medicinal and cultural uses of mammals and birds species. In total, 30 mammalian and 28 bird species are used to treat various diseases in the study area (Table 3). The Fig. 3a and b demonstrates percentage of animal based (mammals and birds) recipes used to treat various diseases by the inhabitants of the study area. Rheumatic disorders, skin infections, sexual weakness and gastrointestinal disorders were among the topmost ailments treated, followed be body pain, burning sensation and paralysis. In mammals 23% recipes were used to treat skin infections, followed by sexual problems and rheumatic disorders (20 and 14%, respectively), whereas for birds highest percentage recipes were used to treat body weakness, gastrointestinal disorders and skin infections (20, 18 and 13%, respectively). Nutritional deficiency, lack of hygienic environment and social evils may attribute in high prevalence of these diseases in the study area.
Table 3
Medicinal uses of mammals and birds and their comparison with previous reports
S. no
Scientific, common and local name
Part used
Application
Diseases cured
Previous reports
Reference
SI
IMA
FL
RPL
ROP
 
Mammals
1.
Bos taurus L. Cow, Gay
Fat, milk, Flesh
Topical and oral
Feet wounds, body pain, fever, poison effect
Fever, bone fever, memory loss, paralysis, asthma, stomach ache, gastritis, diarrhea, eye infection, tuberculosis, pesticide
[46, 47, 59, 62, 65, 77, 78]
0.08
36
100
1
100
2.
Bubalus bubalis L. Buffalo Mujh
Fat, Milk, flesh
Topical and oral
Feet wound, body pain, fever, poison effect
Pain, wound, jaundice, ascites, rheumatic pain, weakness, osteoporosis, thrombosis
[18, 5557, 59, 61, 77, 79]
0.18
16
40
1
40
3.
Camelus dromedaries L.
Camel
Ount
Milk, blood
Topical and oral
Muscular pain, weakness, arthritis
Acidity, hepatitis B and C
[60, 64]
0
10
42
0.89
37
4.
Canis aureus L.
Asiatic jackal
Gidar
Flesh, bones
Topical
Skin diseases
Asthma, sciatica, arthritis, body pain, gout, skin diseases, paralysis
[46, 47, 57, 70, 78]
0.14
11
65
0.63
41
5.
Canis lupus familiaris L.
Dog
Kuta
Fat, flesh
Topical
Sexual power
Weakness, poison, fever
[77]
0
8
42
0.7
30
6.
Capra aegagrus hircus L.
Goat
Bakri
Milk
Oral
Increase sexual efficiency
Fever, eye tonic, tonsillitis, asthma, tuberculosis, menstrual disorder, toothache, anemia, dysentery, bronchitis, jaundice, diarrhea, blindness
[55, 5862, 64]
0
13
41
1
41
7.
Equus africanus von Heuglin & Fitzinger
Donkey
Gadha
Milk, blood
Topical
Abdominal dropsy, arthritis
Arthritis, madness, abdominal dropsy, tuberculosis
[55, 58, 70]
0.5
9
41
0.81
33
8.
Equus caballus L.
Horse
Kurrah
Fat
Topical
Skin infection
Rabies, skin diseases, burn, allergy, arthritis, body pain, neuralgia, osteoporosis
[50, 55, 56]
0.13
11
39
1
39
9.
Felis chaus Schreber
Jungle cat
Jungli billi
Fat
Topical
Joint Pain
Leucoderma
[55]
0
10
67
0.56
37
10.
Felis domesticus L.
Cat
Billi
Fat
Topical
Rheumatic pain, skin infections
Fever, arthritis
[57, 58]
0
46
100
1
100
11.
Funnambulus pennanti Wroughton
Northern palm squirrel
Gulahri
Flesh
Topical and oral
Epilepsy
Epilepsy
[59]
1
4
57
0.26
15
12.
Hemiechinus collaris Gray
Long eared desert hedgehog
Chotay kanday ali say, Kandyari Choha
Fat
Topical
Rheumatic pain, body ache
  
0
7
64
0.41
26
13.
Herpestes javanicus E. Geoffroy Saint-Hilarie
Small Indian mongoose
Neola
Fat
Topical
Sexual power
  
0
8
67
0.44
30
14.
Homo sapiens L.
Human
Insan
Saliva, urine
Topical
Herpes, ear pain
Eye infections, wound, hiccup
[4951, 58, 70, 77, 80]
0
6
67
0.33
22
15.
Hystrix indica Kerr
Indian crested porcupine
Kanday wali say
Fat
Topical
Skin infection, Rheumatic pain
  
0
26
50
1
50
16.
Lepus nigricollis dayanus F. Cuvier
Desert hare
Jungli saya, Jungli khargush
Flesh, liver, blood
Topical and oral
Asthma, burning sensation, paralysis
Tonic, chicken pox, wheezing, stomach and joint pain, high blood pressure, asthma
[46, 47, 55, 56, 59, 70, 77, 78]
0.13
27
50
1
50
17.
Manis crassicaudata E. Geoffroy
Indian Pangolin
Pangolin, Sipple
Scale, flesh
Topical
Feet swelling, Sexual power
Feet swelling, piles, blood pressure, head ach, asthma, anti-haemorrhoidal, warts, ear pain, angina
[55, 56, 59, 65, 66, 70]
0.1
3
38
0.3
11
18.
Millardia meltada Gray
Soft-furred field rat
Fasli Choha
Fat
Topical
Joint pain
  
0
3
50
0.22
11
19.
Mus musculus L.
House mouse
Chota Choha
Fat
Topical
Enhancement of semen
Arthritis, analgesic
[60, 80]
0
2
50
0.15
7
20.
Nesokia indica Gray
Short tailed mole rat
Chhoti push wala choha
Fat
Topical
Joint pain
  
0
2
67
0.11
7
21.
Oryctolagus cuniculusL.
Domestic rabbit
Khargush, Saya
Tail, blood
Topical
Burning sensation, weakness
Bronchial diseases, stomachache
[63, 64]
0
14
100
0.52
52
22.
Ovis aries L.
Sheep
Bairh
Fat, milk, flesh
Topical and oral
Skin burn and crack, weakness, joint pain
Edema, fractures, joint pain, sterility, flu, skin burn and crack, muscular pain, swellings, weakness,
[20, 45, 47, 52, 56, 8082]
0.2
23
100
0.85
85
23.
Pteropus giganteus Brunnich
Indian flying fox bat
Chamgadar
Fat
Topical
Body and backbone pain, sexual power
Asthma, bronchitis
[55, 56, 61, 77]
0
5
50
0.37
19
24.
Rattus rattus L.
House rat
Wada Choha
Fat
Topical
Joint pain
Convulsions, semen enhancement, wounds healing,
[56, 57, 61, 69]
0
3
60
0.19
11
25.
Suncus etruscus Savi
Mediterranean pygmy shrew
Choti chachondar
Fat
Topical
Scrotal swelling
  
0
1
50
0.07
4
26.
Suncus murinus L.
House shrew
Waddi chachondar
Fat
Topical
Scrotal swelling
Snake bite, scrotal swelling
[56, 61]
0.5
1
50
0.07
4
27.
Sus scrofa L.
Indian wild boar
Baarla, Soor
Fat
Topical
Paralysis, burn
Inflammatory, joint pain, fracture, paralysis, burn, snake bite, fever, piles, cough, cold, anti-haemorrhoidal, warts, earache, angina
[46, 47, 50, 55, 56, 59, 60, 62, 63, 65, 70, 77, 80]
0.17
10
50
0.74
37
28.
Tatera indica Hardwicke
Indian gerbil
Jungli Choha
Fat
Topical
Lumbago
  
0
1
33
0.11
4
29.
Ursus thibetanus G. Cuvier
Bear
Richh
Fat
Topical
Sexual power
  
0
7
27
0.96
26
30.
Vulpes bengalensis Shaw
Indian/Bengal fox
Lomri
Fat
Topical
Epilepsy
  
0
9
69
0.48
33
 
Birds
31.
Acridotheres tristis L.
Common Myna, Lali
Flesh
Oral
Whooping cough, weakness
  
0
15
71.43
0.66
47
32.
Anas platyrhynchos domesticus L.
Domestic Duck, Batakh
Egg
Oral
Weak eye-side, weakness, low blood pressure
 
[20, 55, 56, 69]
0
55
100.
1.00
100
33.
Anas platyrhynchos L.
Mallard, Nilsir
Flesh, egg
Oral
Paralysis, weakness
Erectile dysfunction, scarlet fever, body strength, weakness
 
0.2
10
90.91
0.34
31
34.
Aquila rapax Temminck
Tawny Eagle, Chhota baaz
Fat
Topical
Breast swelling
Chest pain
[45]
0
4
44.44
0.28
13
35.
Ara macao L.
Macaw, Macaw
Fat
Topical
Pneumonia
  
0
9
37.50
0.75
28
36.
Athene brama Temminck
Spotted Little Owlet, Ullo
Blood
Topical
Sexual weakness
Rickets, cough
[55]
0
18
58.06
0.97
56
37.
Bubulcus ibis L.
Cattle Egret, Badami bagla
Blood, Flesh
Topical and oral
Dysentery
  
0
1
16.67
0.19
3
38.
Centropus sinensis Stephens
Common Crow Pheasant, Jal Kukar
Flesh
Oral
Body-ache, weakness
  
0
5
27.78
0.56
16
39.
Charadrius alexandrinus L.
Snowy Plover, Kalarwala marwa
Egg
Oral
Typhoid
 
[47, 5557, 60, 63, 64, 69]
0
6
35.29
0.53
19
40.
Columba livia Gmelin
Blue Rock Pigeon, Jangli kabotar
Flesh, Feather
Oral
Paralysis
Menorrhagia, Bronchitis, puberty in young girls, paralysis, epilepsy, anemia, infertility
[55, 83]
0.17
53
88.33
1.00
88
41.
Corvus splendens Vieillot
House Crow, Kaan
Bone
Topical
For ear infection
Lethargy, aphrodisiac, anemia, body aches, stomach disorder
 
0
4
14.29
0.88
13
42.
Coturnix coturnix L.
Common Quail, Batera
Head of the bird, flesh
Oral
Enhance memory, improve sexual power
Skin diseases, anemia, body weakness, enhance memory power
[47, 55, 56]
0.25
30
51.72
1.00
52
43.
Egretta alba L.
Large Egret, Wadda bagla
Blood, Flesh
Topical and oral
Dysentery
  
0
5
50.00
0.31
16
44.
Egretta garzetta L.
Little Egret, Bauna bagla
Blood, Flesh
Topical and oral
Dysentery
Asthma, body strength, breathing trouble, immune enhancer
[55, 56]
0
2
25.00
0.25
6
45.
Egretta intermedia Wagler Intermediate Egret, Gabhla bagla
Blood, Flesh
Topical and oral
Dysentery
  
0
7
58.33
0.38
22
46.
Francolinus francolinus L.
Black partridge, Kala tittar
Flesh and Bone soup
Oral
Bronchitis, weakness
Bronchitis
[64]
0.5
24
42.86
1.00
43
47.
Gallus gallus L.
Domestic Chicken, Murghi
Egg, flesh
Oral
Fever, weakness, low blood pressure
Sprains, strains, nourishing food, eye-each, bronchitis, diabetes, burst furuncles, asthma, Indigestion, sinusitis, shortness of breath, bronchitis, nervous problems, rheumatism, stuffy nose, weak bones, flu, weakness, sore throat, furuncle, burns, night blindness, eye infection, evil eye
[20, 47, 49, 50, 58, 6163, 78, 82, 84]
0
62
100
1.00
100
48.
Hieraaetus fasciatus Sibley & Monroe
Bonnelli’s Eagle, Baaz
Fat
Topical
Breast swelling
Breast swelling
[58]
1
3
21.43
0.44
9
49.
Meleagris gallopavo L.
Turkey, Turkey
Flesh
Oral
Asthma
  
0
10
33.33
0.94
31
50.
Oenanthe isabellina Temminck,
Isabelline Wheatear, Kali akha wheater
Fat
Topical
Gastric problems in infants
  
0
8
53.33
0.47
25
51.
Oenanthe picata Blyth
Eastern Wheatear, Kali cheeti wheatear
Fat
Topical
Gastric problems in infants
  
0
2
10
0.63
6
52.
Passer domesticus L.
House Sparrow, Chiri
Flesh
Oral
Weakness, fever
Increase sexual desire, aphrodisiac, allergy, paralysis, impotency, gas trouble, constipation, Chickenpox,
[47, 56, 62, 64, 84]
0
64
100
1.00
100
53.
Pavo cristatus L.
Peacock, Moor
Bone
Topical
Wound, pus
Blurred vision, anemia, Abscess, eye diseases, body strength, ear infection, hiccup, asthma
[55, 56, 62, 65]
0
7
28.00
0.78
22
54.
Streptopelia decaocto Frivaldszky
Indian Ring Dove, Kogi, Ghogi
Flesh
Oral
Maturity in girls
Early maturity in girls
[64]
1
13
28.89
1.00
29
55.
Streptopelia orientalis Latham
Oriental turtle Dove, Totru
Flesh
Oral
Maturity in girls
  
0
13
29.55
1.00
30
56.
Streptopelia senegalensis L.
Little Brown Dove, Chhoti tutru, Chhoti kogi
Flesh
Oral
Maturity in girls
  
0
13
36.11
1.00
36
57.
Streptopelia tranquebarica Hermann,
Red Turtle Dove, Lal totru
Flesh
Oral
Maturity in girls
  
0
13
27.66
1.00
28
58.
Upupa epops L.
Common Hoopoe, Hud-hud
Flesh
Oral
Kidney problems
Gall bladder stone
[84]
0
1
25.00
0.13
3
SI (Similarity Index), IMA (Informants of Major Ailment), FL (Fidelity Level), RPL (Relative Popularity Level), ROP (Rank order priority)
Local people use body fat of Felis domesticus (Cat) to treat skin infections and rheumatic pain. These findings were in agreement to Benarjee, Srikanth [57] and andHaileselasie [58]. Milk of C. aegagrus hircus (Goat) is used as sexual tonic. However, different parts of same species have been reported to cure fever, eye tonic, tonsillitis, asthma, tuberculosis, irregular menstrual cycle, toothache, anemia, dysentery, bronchitis, jaundice, diarrhea, anemia and blindness [55, 56, 5862]. According to local inhabitants, milk of C. dromedaries (Camel) is highly effective in the treatment of sexual weakness and muscular pain, whereas tail and blood of O. cuniculus (Domestic rabbit) are useful against burning sensation and weakness. Same species have been reported to treat acidity, bronchial disease, stomach disorder, hepatitis B and C [60, 63, 64]. Scales and flesh of M. crassicaudata (Indian pangolin) were used in the treatment of feet swelling and as sexual tonic, respectively. Same species is used to treat piles, blood pressure, headache, asthma [55, 56, 59, 61, 65, 66].
The ethnomedicinal uses of C. dromedaries (Camel), C. aegagrus hircus (Goat), Canis lupus familiaris (Dog), Felis chaus (Jungli cat), F. domesticus (Cat), H. collaris (Long eared desert hedgehog), Herpestes javanicus (Small Indian mongoose), Homo sapiens (Human), H. indica (Indian crested porcupine), M. meltada (Soft-furred field rat), M. musculus (House mouse), Nesokia indica (Short tailed mole rat), O. cuniculus (Domestic rabbit), R. rattus (House rat), S. estruscus (Mediterranean pygmy shrew), Tatera indica (Indian gerbil) and Ursus thibetanus (Bear) were reported for the first time (Table 3). In addition, these species exhibited zero similarity index with previous literature. Inhabitants of the study area use these species to treat sexual power, rheumatic pain, herpes, lumbago, burning sensation, enhancement of semen, ear pain, skin infections, muscular pain, weakness, and arthritis. Some species i.e. Funnambulus pennanti (Northern palm squirrel), E. africanus (Donkey), S. murinus (House shrew), and O. aries (Sheep) exhibited maximum similarity index with previous studies (1, 0.5, 0.5 and 0.2, respectively).Due to illegal hunting and extensive use in traditional medicines Indian pangolin is at verge of extinction and has been included in “Red Listed” species by International Union for Conservation of Nature (IUCN) [67, 68].
Only, 28 species of birds out of 155 were used in traditional medicines by the inhabitants of the study area (Table 3). The ethnomedicinal uses of Acridotheres tristis, Anas platyrhynchos domesticus, Aquila rapax, Ara macao, Athene brama, Bubulcus ibis, Charadrius alexandrinus, Corvus splendens, Centropus sinensis, Egretta alba, Egretta garzetta, Egretta intermedia, Gallus gallus, Meleagris gallopavo, Oenanthe isabellina, Oenanthe picata, Passer domesticus, Pavo cristatus, Streptopelia orientalis, Streptopelia senegalensis, Streptopelia tranquebarica and Upupa epops have not been reported before and exhibited 0 similarity Index. These species were reported against respiratory disorders (asthma, pneumonia, and cough), cardiovascular disorders, skin infections (swelling, wounds, pus, and ear infection), sexual weakness, typhoid, body-ache, fever, gastric problems, maturity in girls and kidney problems.
Anas platyrhynchos was used for the treatment of paralysis, weakness. Same species was reported to treat erectile dysfunction, scarlet fever, body strength and weakness, showed 0.2 similarity index [19, 20, 55, 56, 69]. Columba livia, was used to treat paralysis and have 0.17 similarity index with previous reports [46, 47, 57, 60, 63, 64, 69]. Local inhabitants use Coturnix coturnix to enhance memory, improve sexual power. Same species has been reported against skin diseases, anemia, body weakness, enhance memory power and its similarity index is 0.25 [47, 55, 56]. Hieraaetus fasciatus and Streptopelia decaocto were used for the treatment of the breast swelling and early maturity in young girls respectively and have highest similarity index 1.

Cultural uses

The cultural uses of mammals and bird species are given in Table 2. Spines of H. indica (Indian crested porcupine) were used in magic or superstitions; however presence of spines creates disgusting among the people that may leads to clash. Likewise, hairs and bones of U. thibetanus (Bear) and C. dromedaries (Camel) were used to treat black magic (Kala Jadoo). Six mammals’ species were used for enjoyment of the people such as dog fight, mongoose contest with snake, bear and horse dance, hunting of desert hare and Indian wild boar. Dogs are commonly used for hunting of desert hare and Indian wild boar. Horses with decorated craft (Baggi) are used in wedding ceremony. B. bubalis (Buffalo), B. tarus (Cow), C. aegagrus hircus (Goat), C. dromedaries (Camel), E. africanus (Donkey), Equus caballus (Horse), Oryctolagus cuniculus (Domestic rabbit) and O. aries (sheep) are reared for milk and milk products (curd, butter, ghee), meet, leather and wool. Skin of large and medium size mammals species were used to make leather products. Hairs of Canis aureus, C. aegagrus hircus, E. caballus, F. chaus, H. indica, Herpestes javanicus, O. aries, O. cuniculus and Vulpes bengalensis were used in stuffed toys (Fig 4). These findings were in agreement to del Valle, Naranjo [16].
Spines of H. indica and H. collaris were used as needles while bones of U. thibetanus were used as a defensive tool. Bear (Ursus thibetanus) are not present in the wild areas of Areas surrounding the river Chenab are not natural habitat of U. thibetanus, however body parts of this species are imported from Azad Jammu and Kashmir and Northern areas of Pakistan. Sun dried dung of B. bubalis and B. gaurus is used for heating purpose and to cook food. Likewise, local inhabitants used to train dogs for hunting desert hare and Indian wild boar. Ten percent of the reported species were linked with traditional narrated stories or superstitions such as; people of the area thought that if cat (F. domesticus) crossed ahead of any person during journey, then it would be inauspicious. Spiritually and socially it is believed, that Allah (God) may not accept prayer of a person that speaks the name of Soor (S. scrofa). Similarly, presence of the dog (C. lupus familiaris) in the house may stop the blessing of Allah (God). According todel Valle, Naranjo [16]79% mammals species in Playon de la Gloria, 50% in Reforma Agraria, 47% in Naha and 42% in Metzabok-Mexico were supposed to be harmful.
In the study sites, people eat specific birds, as they obey the rules of Islam. Among birds, 17.4% species (herbivore, granivore, frugivore and omnivore which do not eat dead animals) were edible and used as food Table 2, while scavengers, carnivores, insectivore and piscivore are prohibited to eat in Islam. Local hunters mimic the voices of doves, partridges and quails. They use golara (birds in cage) to attracts other species of birds. Punjabi net trap and mist net are also used to capture the live birds. Previous results showed that wild birds used as a source of food in many areas of the world i.e. India [60, 70]; Pakistan [64]; Philippines [71]; Brazil [72, 73].
Six birds were linked with narrative stories, such as the voice of crow is thought to be an indication of guest. Similarly, the presence of owl is supposed to be infamy in home; arrival or presence of doves (Indian ring dove, red turtle dove, little brown dove and Oriental turtle dove) in house linked with the influx of prosperity. Many magicians used owlet blood and carcasses for magic. These findings were almost same as reported [74] in Punjab, Pakistan.
About 96.8% of reported bird species are wild, while 3.2% are domesticated. People of the study area like to keep Parakeets (Large Indian Parakeet and Rose-ringed Parakeet) as a pet bird. Eight species of the birds were used commercially. Such as common quail farming is growing day by day. Fried meet of common quail, house sparrow and blue rock pigeon is very delicious. Parakeet’s species are used commercially for the lottery. Domestic chicken, duck and turkey are kept in home and at farms for the meat purposes. About 15.5% species were used for hunting or entrainment and all reported birds were used for the ornamental purposes; because they are stuffed by local people and their feathers are used in making mud toys.

Relative frequency of mention (RFM)

The animal species, which are reported by the maximum number of informants are frequently used to treat various diseases, exhibited high relative frequency of mention (RFM) ranged from 0.02 to 0.587 (Table2). Among mammals Lepus nigricollis dayanus (Desert hare) had maximum RFM (0.50), followed by Hystrix indica (Indian crested porcupine) and Felis domesticus (Cat) (0.48 and 0.42, respectively). Whereas lowest RFM value (0.02) was calculated in Suncus estruscus (Mediterranean pygmy shrew) and Suncus murinus (House shrew). Among birds: Passer domesticus (House Sparrow) depicted highest RFM value (0.587), while Gallus gallus (Domestic chicken) and Columba livia (Blue Rock Pigeon) were ranked second and third with RFM value of 0.569 and 0.550, respectively.

Fidelity level (FL)

Fidelity level (FL) is used to identify species that are most preferred by the inhabitants for the treatment of certain ailments. Animal species with topmost medicinal uses in a particular area have maximum fidelity level [75, 76]. In the present investigation fidelity level of mammals and birds species varied from 10 to 100% (Table 2). B. taurus Smith (Cow), F. domesticus (Desert hare’), Oryctolagus cuniculus (Domestic rabbit) and Ovis aries (Sheep) were the mammals species, which depicted 100% FL, while Ursus thibetanus (Bear) showed lowest FL percentage (27%) as mentioned in (Fig 5). Fat, milk and flesh of these species were used to treat skin infections, fever, rheumatic pain, and to reduce poisonous effects. Among birds; Anas platyrhynchos domesticus (Domestic duck), Gallus gallus (Domestic chicken) and Passer domesticus (House sparrow) exhibited 100% FL. Beside this, six species of birds depicted more than 70% FL, which include: Anas platyrhynchos (90.91%), Columba livia (88.33%) and Acridotheres ginginianus (71.43%) S2B Fig. The FL of mammals and bird species were calculated for the first time. Therefore, these species could be used for in depth chemical profiling and to investigate pharmaceutical properties, which may confirm their medicinal worth.

Relative popularity level (RPL)

The Relative popularity level (RPL) of mammals and bird species are given in Table 3. Approximately, 7 species of mammals that depicted highest importance were included for further discussion. For the mammals species cited by 2 to 26 informants (Fig. 6a), the frequency of use per mammal increases linearly with increase in the frequency of mention (y-1.5 + 0.130×; correlation coefficient r = 0.661). Conversely, the half number of uses for those species mentioned by 27 informants or more does not increase with the increased FM. All mammals species mentioned by less than 27 informants (23 mammals species) were therefore classified as unpopular, whereas those cited by 27 informants or more (7 mammals species) are classified as popular. The B. bubalis (buffalo), B. taurus (cow), C. aegagrus hircus (goat), E. caballus (horse), F. domesticus (cat), H. indica (Indian crested porcupine) and L. nigricollis dayanus (desert hare) were the most popular mammals with 1.0 RPL value.
In birds, 10 species received more attention by informants, therefore included for further discussion (Fig 6b). The bird species cited by 4 to 64 informants, number of uses per bird increases with the increase in the number of informants (r = 0.71). The popular bird species with 1.000 RPL value were; P. domesticus, G. gallus, C. livia, C. coturnix, F. francolinus, A. platyrhynchos domesticus, S. tranquebarica, S. decaocto, S. orientalis and S. senegalensis. These findings were comparable with Friedman, Yaniv [35] and Ali-Shtayeh, Yaniv [36]. Furthermore, high popularity of mammalian and bird species might be attributed to wider geographic distribution, informant’s awareness and cultural knowledge.

Rank order priority (ROP)

The healing potential of each mammal and bird species was documented using its FL values, while ROP is used to give appropriate rank to species with different FL values. The RPL of each species derived from Fig 6a and b ; was used as correction factor to adjust the FL values. The measured level of rank order priority (ROP) of each mammal and bird species is mentioned in Table 3. The ROP value of only four mammal species out of 30 and 4 bird species out of 28 was above 50. The B. taurus (Cow) and F. domesticus (Cat) were highly utilized with maximum ROP = 100, followed by O. aries (Sheep) and O. cuniculus (Domestic rabbit) have ROP (85 and 52, respectively). Among, birds ROP value of P. domesticus and G. gallus was 100 and that of C. livia was 88. Decrease in ROP value may be due to decreasing popularity of medicinal and cultural uses of animals among indigenous peoples. Additionally, the informants of the rural areas have more information and interaction with cultural and medicinal uses of mammals and birds compared to urban areas. These findings were analogous to previous results for medicinal species of Negev district [35] and Palestinian area [36].

Conclusion

Inhabitants of the study area showed strong association with surrounding fauna and possess significant traditional knowledge particularly on mammals and birds species. In the present study, the ethnomedicinal and cultural uses of; 30% mammals and 46% birds’ species were reported for the first time. Moreover, 33% mammals and 79% birds’ species depicted zero similarity Index. These findings could be helpful for conservation and sustainable use of animal biodiversity in the region. Further investigation to screen pharmacological active substances and in vitro/in vivo valuation of biological activities in mammals and birds’ species with maximum FL and FM could be significant in animal based drug discoveries.

Acknowledgements

The authors are thankful for the kind help of employs of the Irrigation and Power department of the Government and Wildlife and Fisheries Department, Government of the Punjab during surveys in the study area. We are also thankful for the local community for the help at each point.

Funding

This paper is a part of PhD work conducted by Muhammad Altaf (first author). No funding was provided by any source to conduct this survey. We send waiver request to Editor in Chief of JEE, and he agreed to grant a full waiver to this manuscript.

Availability of data and materials

We have already included all data in the manuscript that were collected during the field survey.
Present study is purely based on filed survey instead of human or animal trails. Therefore ethical approval and consent to participate is not applicable. However, formal consent was received from informants regarding data collection and publication; then the Participatory rural appraisal (PRA) approach as mentioned in the Kyoto Protocol was applied with the consent of the informant. Ethical guidelines of the International Society of Ethnobiology (http://​www.​ethnobiology.​net) were strictly followed.
Our manuscript does not contain any individual’s person data; therefore this section is Not Applicable to our study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Kaplan H, Hill K, Lancaster J, Hurtado AM. A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthr. 2000;9:156–85.CrossRef Kaplan H, Hill K, Lancaster J, Hurtado AM. A theory of human life history evolution: diet, intelligence, and longevity. Evol Anthr. 2000;9:156–85.CrossRef
2.
Zurück zum Zitat Alves RR, Rosa IL, Neto NAL, Voeks R. Animals for the gods: magical and religious faunal use and trade in Brazil. Hum Ecol. 2012;40:751–80.CrossRef Alves RR, Rosa IL, Neto NAL, Voeks R. Animals for the gods: magical and religious faunal use and trade in Brazil. Hum Ecol. 2012;40:751–80.CrossRef
3.
Zurück zum Zitat Marques JGW. A fauna medicinal dos índios Kuna de San Blas (Panamá) ea hipótese da universalidade zooterápica, Anais da 46a Reunião Anual da SBPC; 1994. p. 324. Marques JGW. A fauna medicinal dos índios Kuna de San Blas (Panamá) ea hipótese da universalidade zooterápica, Anais da 46a Reunião Anual da SBPC; 1994. p. 324.
4.
Zurück zum Zitat Bagde NS, Hampa J. An ethnozoological studies and medicinal values of vertebrate origin in the adjoining areas of Pench National Park of Chhindwara District of Madhya Pradesh, India. Ind Int J Life Sci. 2013;1:278–83. Bagde NS, Hampa J. An ethnozoological studies and medicinal values of vertebrate origin in the adjoining areas of Pench National Park of Chhindwara District of Madhya Pradesh, India. Ind Int J Life Sci. 2013;1:278–83.
5.
Zurück zum Zitat Alves RR, Rosa IL. Why study the use of animal products in traditional medicines? J Ethnobiol Ethnomed. 2005;1:1.CrossRef Alves RR, Rosa IL. Why study the use of animal products in traditional medicines? J Ethnobiol Ethnomed. 2005;1:1.CrossRef
6.
Zurück zum Zitat Santos-Fita D, Costa-Neto E, Cano-Contreras E, Costa Neto E, Santos Fitas D, Vargas CM. El quehacer de la etnozoología. Manual de Etnozoología. 2009:23–44. Santos-Fita D, Costa-Neto E, Cano-Contreras E, Costa Neto E, Santos Fitas D, Vargas CM. El quehacer de la etnozoología. Manual de Etnozoología. 2009:23–44.
7.
Zurück zum Zitat Londoño-Betancourth JC. Valoración cultural del uso e importancia de la fauna silvestre en cautividad en tres barrios de Pereira (Risaralda). Boletín Científico. Centro de Museos. Museo Hist Nat. 2009;13:33–46. Londoño-Betancourth JC. Valoración cultural del uso e importancia de la fauna silvestre en cautividad en tres barrios de Pereira (Risaralda). Boletín Científico. Centro de Museos. Museo Hist Nat. 2009;13:33–46.
8.
Zurück zum Zitat Kang S, Phipps MJ, Asia TE, A question of attitude: South Korea's traditional medicine practitioners and wildlife conservation. TRAFFIC East Asia: 2003. Kang S, Phipps MJ, Asia TE, A question of attitude: South Korea's traditional medicine practitioners and wildlife conservation. TRAFFIC East Asia: 2003.
9.
Zurück zum Zitat Marques J. Fauna medicinal: Recurso do ambiente ou ameaça à biodiversidade. Mutum. 1997;1:4. Marques J. Fauna medicinal: Recurso do ambiente ou ameaça à biodiversidade. Mutum. 1997;1:4.
10.
Zurück zum Zitat Berlin B. Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. New Jersey: Princeton University Press; 2014. Berlin B. Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. New Jersey: Princeton University Press; 2014.
11.
Zurück zum Zitat Baumeister RF. The cultural animal: Human nature, meaning, and social life. New York: Oxford University Press: 2005. Baumeister RF. The cultural animal: Human nature, meaning, and social life. New York: Oxford University Press: 2005.
12.
Zurück zum Zitat Rosegrant MWH, azell PB. Transforming the rural Asian economy: The unfinished revolution. Oxford: Oxford University Press; 2000. Rosegrant MWH, azell PB. Transforming the rural Asian economy: The unfinished revolution. Oxford: Oxford University Press; 2000.
13.
Zurück zum Zitat Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.PubMed Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.PubMed
14.
Zurück zum Zitat Kamanga P, Vedeld P, Sjaastad E. Forest incomes and rural livelihoods in Chiradzulu District, Malawi. Ecol.l Econ. 2009;68:613–24.CrossRef Kamanga P, Vedeld P, Sjaastad E. Forest incomes and rural livelihoods in Chiradzulu District, Malawi. Ecol.l Econ. 2009;68:613–24.CrossRef
15.
Zurück zum Zitat Turbay S, Ulloa A. Aproximaciones a los estudios antropológicos sobre la relación entre el ser humano y los animales. Rostros culturales de la fauna: las relaciones entre los humanos y los animales en el contexto colombiano. Bogotá: Fundación Natura: McArthur Foundation and Instituto Colombiano de Antropol Hist; 2002. p. 87–111. Turbay S, Ulloa A. Aproximaciones a los estudios antropológicos sobre la relación entre el ser humano y los animales. Rostros culturales de la fauna: las relaciones entre los humanos y los animales en el contexto colombiano. Bogotá: Fundación Natura: McArthur Foundation and Instituto Colombiano de Antropol Hist; 2002. p. 87–111.
16.
Zurück zum Zitat del Valle YG, Naranjo EJ, Caballero J, Martorell C, Ruan-Soto F, Enríquez PL. Cultural significance of wild mammals in mayan and mestizo communities of the Lacandon Rainforest, Chiapas, Mexico. J Ethnobiol Ethnomed. 2015;11:1.CrossRef del Valle YG, Naranjo EJ, Caballero J, Martorell C, Ruan-Soto F, Enríquez PL. Cultural significance of wild mammals in mayan and mestizo communities of the Lacandon Rainforest, Chiapas, Mexico. J Ethnobiol Ethnomed. 2015;11:1.CrossRef
17.
Zurück zum Zitat Ruan-Soto F, Caballero J, Martorell C, Cifuentes J, González-Esquinca AR, Garibay-Orijel R. Evaluation of the degree of mycophilia-mycophobia among highland and lowland inhabitants from Chiapas. Mexico J Ethnobiol Ethnomed. 2013;9:1.CrossRef Ruan-Soto F, Caballero J, Martorell C, Cifuentes J, González-Esquinca AR, Garibay-Orijel R. Evaluation of the degree of mycophilia-mycophobia among highland and lowland inhabitants from Chiapas. Mexico J Ethnobiol Ethnomed. 2013;9:1.CrossRef
18.
Zurück zum Zitat Alves RR, Rosa IL. Zootherapy goes to town: The use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol. 2007;113:541–55.CrossRefPubMed Alves RR, Rosa IL. Zootherapy goes to town: The use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol. 2007;113:541–55.CrossRefPubMed
19.
Zurück zum Zitat Alves RRN. Relationships between fauna and people and the role of ethnozoology in animal conservation. Ethnobiol Conserv. 2012;1:1–69. Alves RRN. Relationships between fauna and people and the role of ethnozoology in animal conservation. Ethnobiol Conserv. 2012;1:1–69.
20.
Zurück zum Zitat Alves RRN, Neta ROS, Trovão D, Barbosa J, Barros AT, Dias TLP. Traditional uses of medicinal animals in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed. 2012;8:4269–8.CrossRef Alves RRN, Neta ROS, Trovão D, Barbosa J, Barros AT, Dias TLP. Traditional uses of medicinal animals in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed. 2012;8:4269–8.CrossRef
21.
22.
Zurück zum Zitat Roberts TJ. The Mammals of Pakistan. Oxford: University Press; 1997. Roberts TJ. The Mammals of Pakistan. Oxford: University Press; 1997.
23.
Zurück zum Zitat Mirza ZB, Wasiq H. A field guide to birds of Pakistan. Bookland: Lahore; 2007. Mirza ZB, Wasiq H. A field guide to birds of Pakistan. Bookland: Lahore; 2007.
24.
Zurück zum Zitat Siddiqi TA, Tahir-Kheli S. Water and Security in South Asia; 2004. p. 234. Siddiqi TA, Tahir-Kheli S. Water and Security in South Asia; 2004. p. 234.
25.
Zurück zum Zitat Sheikh MS. Punjab G Go, editor. District Pre-Investment Study 2012, vol. 2012. p. 1–376. Sheikh MS. Punjab G Go, editor. District Pre-Investment Study 2012, vol. 2012. p. 1–376.
26.
Zurück zum Zitat Sheikh MS. Punjab GGO, editor. District Pre-Investment Study 2012, vol. 2012. p. 1–28. Sheikh MS. Punjab GGO, editor. District Pre-Investment Study 2012, vol. 2012. p. 1–28.
27.
Zurück zum Zitat Sheikh MS. In: Punjab SGO, editor. District Pre-Investment Study 2012; 2012. p. 1–31. Sheikh MS. In: Punjab SGO, editor. District Pre-Investment Study 2012; 2012. p. 1–31.
28.
Zurück zum Zitat Umair M, Ilyas U, Altaf M. Diversity and Ecology of Parthenium weeds ar head khanki. Pakistan: Lambert Academic Publishing; 2013. Umair M, Ilyas U, Altaf M. Diversity and Ecology of Parthenium weeds ar head khanki. Pakistan: Lambert Academic Publishing; 2013.
29.
Zurück zum Zitat Roberts TJ. Field guide to the large and medium-sized mammals of Pakistan. Oxford: University Press; 2005. Roberts TJ. Field guide to the large and medium-sized mammals of Pakistan. Oxford: University Press; 2005.
30.
Zurück zum Zitat Roberts TJ. Field guide to the small mammals of Pakistan. Oxford: University Press; 2005. Roberts TJ. Field guide to the small mammals of Pakistan. Oxford: University Press; 2005.
31.
Zurück zum Zitat Roberts TJ, The Birds of Pakistan. Vol I Place Oxford; University Press: 1991. Roberts TJ, The Birds of Pakistan. Vol I Place Oxford; University Press: 1991.
32.
Zurück zum Zitat Roberts TJ, The Birds of Pakistan. Vol II Place Oxford; University Press: 1992. Roberts TJ, The Birds of Pakistan. Vol II Place Oxford; University Press: 1992.
33.
Zurück zum Zitat Tardío JPardo-de-Santayana M. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain) 1. Econ Bot. 2008;62:24–39.CrossRef Tardío JPardo-de-Santayana M. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain) 1. Econ Bot. 2008;62:24–39.CrossRef
34.
Zurück zum Zitat Alexiades MN, Sheldon JW. Selected guidelines for ethnobotanical research: a field manual. New York: Botanical Garden; 1996. Alexiades MN, Sheldon JW. Selected guidelines for ethnobotanical research: a field manual. New York: Botanical Garden; 1996.
35.
Zurück zum Zitat Friedman J, Yaniv Z, Dafni A, Palewitch D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert Israel. J Ethnopharmacol. 1986;16:275–87.CrossRefPubMed Friedman J, Yaniv Z, Dafni A, Palewitch D. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert Israel. J Ethnopharmacol. 1986;16:275–87.CrossRefPubMed
36.
Zurück zum Zitat Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol. 2000;73:221–32.CrossRefPubMed Ali-Shtayeh MS, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J Ethnopharmacol. 2000;73:221–32.CrossRefPubMed
37.
Zurück zum Zitat Wilson L. Fats and oils for optimum health. The Center for Development. 2015; Wilson L. Fats and oils for optimum health. The Center for Development. 2015;
38.
Zurück zum Zitat Breteler MM. Vascular risk factors for Alzheimer’s disease:: An epidemiologic perspective. Neurobiol Aging. 2000;21:153–60.CrossRefPubMed Breteler MM. Vascular risk factors for Alzheimer’s disease:: An epidemiologic perspective. Neurobiol Aging. 2000;21:153–60.CrossRefPubMed
39.
Zurück zum Zitat Kalmijn S. Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging. 2000;4:202–7.PubMed Kalmijn S. Fatty acid intake and the risk of dementia and cognitive decline: a review of clinical and epidemiological studies. J Nutr Health Aging. 2000;4:202–7.PubMed
40.
Zurück zum Zitat Haag M. Essential fatty acids and the brain. Can J Psychiatr. 2003;48:195–203. Haag M. Essential fatty acids and the brain. Can J Psychiatr. 2003;48:195–203.
41.
Zurück zum Zitat Hemme T, Otte J, Echeverri Perico R, Paarlberg R, Walker I, Pino H, Horton D, Polanía Vorenberg J, Toro Calderón J, López Balmaceda C. Status and prospects for smallholder milk production, A global perspective. Roma (Italia): FAO; 2010. Hemme T, Otte J, Echeverri Perico R, Paarlberg R, Walker I, Pino H, Horton D, Polanía Vorenberg J, Toro Calderón J, López Balmaceda C. Status and prospects for smallholder milk production, A global perspective. Roma (Italia): FAO; 2010.
42.
Zurück zum Zitat Alabdulkarim B. Effect of camel milk on blood glucose, cholesterol, triglyceride and liver enzymes activities in female Albino rats. World Appl Sci J. 2012;17:1394–7. Alabdulkarim B. Effect of camel milk on blood glucose, cholesterol, triglyceride and liver enzymes activities in female Albino rats. World Appl Sci J. 2012;17:1394–7.
43.
Zurück zum Zitat Sabahelkhier M, Faten M, Omer F. Comparative Determination of Biochemical Constituents between Animals (Goat, Sheep, Cow and Camel) Milk with Human Milk. Res J Recent Sci. 2012;1:69–71. Sabahelkhier M, Faten M, Omer F. Comparative Determination of Biochemical Constituents between Animals (Goat, Sheep, Cow and Camel) Milk with Human Milk. Res J Recent Sci. 2012;1:69–71.
44.
Zurück zum Zitat Contarini G, Povolo M. Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies. Int J Mol Sci. 2013;14:2808–31.CrossRefPubMedPubMedCentral Contarini G, Povolo M. Phospholipids in milk fat: composition, biological and technological significance, and analytical strategies. Int J Mol Sci. 2013;14:2808–31.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Vats R, Thomas S. A study on use of animals as traditional medicine by Sukuma Tribe of Busega District in North-western Tanzania. J Ethnobiol Ethnomed. 2015;11:1.CrossRef Vats R, Thomas S. A study on use of animals as traditional medicine by Sukuma Tribe of Busega District in North-western Tanzania. J Ethnobiol Ethnomed. 2015;11:1.CrossRef
46.
Zurück zum Zitat Lohani U. Eroding ethnozoological knowledge among Magars in Central Nepal. Indian JTrad Knowl. 2011;10:466–73. Lohani U. Eroding ethnozoological knowledge among Magars in Central Nepal. Indian JTrad Knowl. 2011;10:466–73.
47.
Zurück zum Zitat Lohani U. Traditional uses of animals among jirels of Central Nepal. Ethno Med. 2011;5:115–24. Lohani U. Traditional uses of animals among jirels of Central Nepal. Ethno Med. 2011;5:115–24.
48.
Zurück zum Zitat Al-Yousef N, Gaafar A, Al-Otaibi B, Al-Jammaz I, Al-Hussein K, Aboussekhra A. Camel urine components display anti-cancer properties in vitro. J Ethnopharmacol. 2012;143:819–25.CrossRefPubMed Al-Yousef N, Gaafar A, Al-Otaibi B, Al-Jammaz I, Al-Hussein K, Aboussekhra A. Camel urine components display anti-cancer properties in vitro. J Ethnopharmacol. 2012;143:819–25.CrossRefPubMed
49.
Zurück zum Zitat Barros FB, Varela SA, Pereira HM, Vicente L. Medicinal use of fauna by a traditional community in the Brazilian Amazonia. J Ethnobiol Ethnomed. 2012;8:37.CrossRefPubMedPubMedCentral Barros FB, Varela SA, Pereira HM, Vicente L. Medicinal use of fauna by a traditional community in the Brazilian Amazonia. J Ethnobiol Ethnomed. 2012;8:37.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Kim H, Song MJ. Ethnozoological study of medicinal animals on Jeju Island. Korea J Ethnopharmacol. 2013;146:75–82.CrossRefPubMed Kim H, Song MJ. Ethnozoological study of medicinal animals on Jeju Island. Korea J Ethnopharmacol. 2013;146:75–82.CrossRefPubMed
51.
Zurück zum Zitat Kim H, Song MJ. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Indian J Trad Knowl. 2014;13:673–80. Kim H, Song MJ. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Indian J Trad Knowl. 2014;13:673–80.
52.
Zurück zum Zitat Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the Northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:423–39.CrossRef Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the Northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:423–39.CrossRef
53.
Zurück zum Zitat Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Intern J Pharm Pharmaceut Sci. 2014;6:20–2. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Intern J Pharm Pharmaceut Sci. 2014;6:20–2.
54.
Zurück zum Zitat Al-Awadi A, Al-Judaibi A. Effects of Heating and Storage on the Antifungal Activity of Camel Urine. Clin Microbiol. 2015;3:1–6. Al-Awadi A, Al-Judaibi A. Effects of Heating and Storage on the Antifungal Activity of Camel Urine. Clin Microbiol. 2015;3:1–6.
55.
Zurück zum Zitat Vijayakumar S, Prabhu S, Yabesh JM, Prakashraj R. A quantitative ethnozoological study of traditionally used animals in Pachamalai hills of Tamil Nadu. India J Ethnopharmacology. 2015;171:51–63.CrossRefPubMed Vijayakumar S, Prabhu S, Yabesh JM, Prakashraj R. A quantitative ethnozoological study of traditionally used animals in Pachamalai hills of Tamil Nadu. India J Ethnopharmacology. 2015;171:51–63.CrossRefPubMed
56.
Zurück zum Zitat Vijayakumar S, Yabesh JM, Prabhu S, Ayyanar M, Damodaran R. Ethnozoological study of animals used by traditional healers in Silent Valley of Kerala. India J Ethnopharmacol. 2015;162:296–305.CrossRefPubMed Vijayakumar S, Yabesh JM, Prabhu S, Ayyanar M, Damodaran R. Ethnozoological study of animals used by traditional healers in Silent Valley of Kerala. India J Ethnopharmacol. 2015;162:296–305.CrossRefPubMed
57.
Zurück zum Zitat Benarjee G, Srikanth K, Ramu G, Ramulua K. Ethnozoological study in a tropical wildlife sanctuary of Eturunagaram in the Warangal district, Andhra Pradesh. Ind J Trad Knowled. 2010;9:701–4. Benarjee G, Srikanth K, Ramu G, Ramulua K. Ethnozoological study in a tropical wildlife sanctuary of Eturunagaram in the Warangal district, Andhra Pradesh. Ind J Trad Knowled. 2010;9:701–4.
58.
Zurück zum Zitat Haileselasie TH. Traditional zootherapeutic studies in Degu’a Tembien, Northern Ethiopia. Cur Res J Biol Sci. 2012;4:563–9. Haileselasie TH. Traditional zootherapeutic studies in Degu’a Tembien, Northern Ethiopia. Cur Res J Biol Sci. 2012;4:563–9.
59.
Zurück zum Zitat Dixit A, Kadavul K, Rajalakshmi S, Shekhawat M. Ethno-medico-biological studies of South India. Indian J Trad Knowl. 2010;9:116–8. Dixit A, Kadavul K, Rajalakshmi S, Shekhawat M. Ethno-medico-biological studies of South India. Indian J Trad Knowl. 2010;9:116–8.
60.
Zurück zum Zitat Jaroli D, Mahawar MM, Vyas N. An ethnozoological study in the adjoining areas of Mount Abu wildlife sanctuary. India J Ethnobiol Ethnomed. 2010;6:6.CrossRefPubMed Jaroli D, Mahawar MM, Vyas N. An ethnozoological study in the adjoining areas of Mount Abu wildlife sanctuary. India J Ethnobiol Ethnomed. 2010;6:6.CrossRefPubMed
61.
Zurück zum Zitat Chellappandian M, Pandikumar P, Mutheeswaran S, Paulraj MG, Prabakaran S, Duraipandiyan V, Ignacimuthu S, Al-Dhabi N. Documentation and quantitative analysis of local ethnozoological knowledge among traditional healers of Theni district, Tamil Nadu. India J Ethnopharmacolo. 2014;154:116–30.CrossRef Chellappandian M, Pandikumar P, Mutheeswaran S, Paulraj MG, Prabakaran S, Duraipandiyan V, Ignacimuthu S, Al-Dhabi N. Documentation and quantitative analysis of local ethnozoological knowledge among traditional healers of Theni district, Tamil Nadu. India J Ethnopharmacolo. 2014;154:116–30.CrossRef
62.
Zurück zum Zitat Bagde N, Jain S. Study of traditional man-animal relationship in Chhindwara District Of Madhya Pradesh. India J Glob Bioscie. 2015;4:1456–63. Bagde N, Jain S. Study of traditional man-animal relationship in Chhindwara District Of Madhya Pradesh. India J Glob Bioscie. 2015;4:1456–63.
63.
Zurück zum Zitat Alonso-Castro AJ, Carranza-Álvarez C, Maldonado-Miranda JJ, del Rosario J-SM, Quezada-Rivera DA, Lorenzo-Márquez H, Figueroa-Zúñiga LA, Fernández-Galicia C, Ríos-Reyes NA, de León-Rubio MÁ. Zootherapeutic practices in Aquismón, San Luis Potosí México. J Ethnopharmacol. 2011;138:233–7.CrossRefPubMed Alonso-Castro AJ, Carranza-Álvarez C, Maldonado-Miranda JJ, del Rosario J-SM, Quezada-Rivera DA, Lorenzo-Márquez H, Figueroa-Zúñiga LA, Fernández-Galicia C, Ríos-Reyes NA, de León-Rubio MÁ. Zootherapeutic practices in Aquismón, San Luis Potosí México. J Ethnopharmacol. 2011;138:233–7.CrossRefPubMed
64.
Zurück zum Zitat Arshad M, Ahmad M, Ahmed E, Saboor A, Abbas A, Sadiq S. An ethnobiological study in Kala Chitta hills of Pothwar region, Pakistan: multinomial logit specification. J Ethnobiol Ethnomed. 2014;10:13.CrossRefPubMedPubMedCentral Arshad M, Ahmad M, Ahmed E, Saboor A, Abbas A, Sadiq S. An ethnobiological study in Kala Chitta hills of Pothwar region, Pakistan: multinomial logit specification. J Ethnobiol Ethnomed. 2014;10:13.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Mishra N, Rout S, Panda T. Ethno-zoological studies and medicinal values of Similipal Biosphere Reserve, Orissa India. African J Pharm and Pharmacol. 2011;5:6–11. Mishra N, Rout S, Panda T. Ethno-zoological studies and medicinal values of Similipal Biosphere Reserve, Orissa India. African J Pharm and Pharmacol. 2011;5:6–11.
66.
Zurück zum Zitat Kulkarni BD. Folk therapies of Katkaries from maharashtra. Indian J Trad Knowl. 2011;10:554–8. Kulkarni BD. Folk therapies of Katkaries from maharashtra. Indian J Trad Knowl. 2011;10:554–8.
67.
Zurück zum Zitat Mohapatra RK, Panda S, Acharjyo L, Nair M, Challender DW. A note on the illegal trade and use of pangolin body parts in India. Traffic Bull. 2015;27:33–40. Mohapatra RK, Panda S, Acharjyo L, Nair M, Challender DW. A note on the illegal trade and use of pangolin body parts in India. Traffic Bull. 2015;27:33–40.
68.
Zurück zum Zitat Zhou Z-M, Zhou Y, Newman C, Macdonald DW. Scaling up pangolin protection in China. Frontiers Ecol Environ. 2014;12:97–8.CrossRef Zhou Z-M, Zhou Y, Newman C, Macdonald DW. Scaling up pangolin protection in China. Frontiers Ecol Environ. 2014;12:97–8.CrossRef
69.
Zurück zum Zitat Mootoosamy A, Mahomoodally MF. A quantitative ethnozoological assessment of traditionally used animal-based therapies in the tropical island of Mauritius. J Ethnopharmacol. 2014;154:847–57.CrossRefPubMed Mootoosamy A, Mahomoodally MF. A quantitative ethnozoological assessment of traditionally used animal-based therapies in the tropical island of Mauritius. J Ethnopharmacol. 2014;154:847–57.CrossRefPubMed
70.
Zurück zum Zitat Chinlampianga M, Singh RK, Shukla AC. Ethnozoological diversity of Northeast India: Empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. Indian J Tradit Knowl. 2013;12:18–30. Chinlampianga M, Singh RK, Shukla AC. Ethnozoological diversity of Northeast India: Empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. Indian J Tradit Knowl. 2013;12:18–30.
71.
Zurück zum Zitat Van der Ploeg JVan Weerd M. Agta bird names: an ethno-ornithological survey in the Northern Sierra Madre Natural Park Philippines. Forktail. 2010:127–31. Van der Ploeg JVan Weerd M. Agta bird names: an ethno-ornithological survey in the Northern Sierra Madre Natural Park Philippines. Forktail. 2010:127–31.
72.
Zurück zum Zitat Alves RRN, Leite RCL, Souto WMS, Bezerra DM, Loures-Ribeiro A. Ethno-ornithology and conservation of wild birds in the semi-arid Caatinga of northeastern Brazil. J Ethnobiol Ethnomed. 2013;9:1–12.CrossRef Alves RRN, Leite RCL, Souto WMS, Bezerra DM, Loures-Ribeiro A. Ethno-ornithology and conservation of wild birds in the semi-arid Caatinga of northeastern Brazil. J Ethnobiol Ethnomed. 2013;9:1–12.CrossRef
73.
Zurück zum Zitat Teixeira PHR, Thel T, Ferreira J, Júnior S, Júnior W, Neves R. Local knowledge and exploitation of the avian fauna by a rural community in the semi-arid zone of northeastern Brazil. J Ethnobiol Ethnomed. 2014;10:81.CrossRefPubMedPubMedCentral Teixeira PHR, Thel T, Ferreira J, Júnior S, Júnior W, Neves R. Local knowledge and exploitation of the avian fauna by a rural community in the semi-arid zone of northeastern Brazil. J Ethnobiol Ethnomed. 2014;10:81.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Farooq A. AK Kayani. Prevalence of Superstitions and other Supernaturals in Rural Punjab: A Sociological Perspective. Res J South Asian Stud. 2012;5:335–44. Farooq A. AK Kayani. Prevalence of Superstitions and other Supernaturals in Rural Punjab: A Sociological Perspective. Res J South Asian Stud. 2012;5:335–44.
75.
Zurück zum Zitat Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J Ethnopharmacol. 2009;123:335–42.CrossRefPubMed Srithi K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J Ethnopharmacol. 2009;123:335–42.CrossRefPubMed
76.
Zurück zum Zitat Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman S-U, Sultana S, Zafar M, Yaseen G. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J Ethnopharmacol. 2014;157:79–89.CrossRefPubMed Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman S-U, Sultana S, Zafar M, Yaseen G. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J Ethnopharmacol. 2014;157:79–89.CrossRefPubMed
77.
Zurück zum Zitat Padmanabhan PSujana K. Animal products in traditional medicine from Attappady hills of Western Ghats. Indian J Tradit Knowl. 2008;7:326–9. Padmanabhan PSujana K. Animal products in traditional medicine from Attappady hills of Western Ghats. Indian J Tradit Knowl. 2008;7:326–9.
78.
Zurück zum Zitat Lohani U. Man-animal relationships in Central Nepal. J Ethnobiol Ethnomed. 2010;6:1–11.CrossRef Lohani U. Man-animal relationships in Central Nepal. J Ethnobiol Ethnomed. 2010;6:1–11.CrossRef
79.
Zurück zum Zitat Alves RR, Rosa IL, Santana GG. The role of animal-derived remedies as complementary medicine in Brazil. Bioscience. 2007;57:949–55.CrossRef Alves RR, Rosa IL, Santana GG. The role of animal-derived remedies as complementary medicine in Brazil. Bioscience. 2007;57:949–55.CrossRef
80.
Zurück zum Zitat Benítez G. Animals used for medicinal and magico-religious purposes in western Granada Province, Andalusia (Spain). J Ethnopharmacol. 2011;137:1113–23.CrossRefPubMed Benítez G. Animals used for medicinal and magico-religious purposes in western Granada Province, Andalusia (Spain). J Ethnopharmacol. 2011;137:1113–23.CrossRefPubMed
81.
Zurück zum Zitat Alves RR, Neto NAL, Brooks SE, Albuquerque UP. Commercialization of animal-derived remedies as complementary medicine in the semi-arid region of Northeastern Brazil. J Ethnopharmacol. 2009;124:600–8.CrossRefPubMed Alves RR, Neto NAL, Brooks SE, Albuquerque UP. Commercialization of animal-derived remedies as complementary medicine in the semi-arid region of Northeastern Brazil. J Ethnopharmacol. 2009;124:600–8.CrossRefPubMed
82.
Zurück zum Zitat Oliveira ES, Torres DF, Brooks SE, Alves RR. The medicinal animal markets in the metropolitan region of Natal City, Northeastern Brazil. J Ethnopharmacol. 2010;130:54–60.CrossRefPubMed Oliveira ES, Torres DF, Brooks SE, Alves RR. The medicinal animal markets in the metropolitan region of Natal City, Northeastern Brazil. J Ethnopharmacol. 2010;130:54–60.CrossRefPubMed
83.
Zurück zum Zitat Chakravorty J, Meyer-Rochow VB, Ghosh S. Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). J Ethnobiol Ethnomed. 2011;7:1.CrossRef Chakravorty J, Meyer-Rochow VB, Ghosh S. Vertebrates used for medicinal purposes by members of the Nyishi and Galo tribes in Arunachal Pradesh (North-East India). J Ethnobiol Ethnomed. 2011;7:1.CrossRef
84.
Zurück zum Zitat Betlu ALS. Indigenous knowledge of zootherapeutic use among the Biate tribe of Dima Hasao District, Assam, Northeastern India. J Ethnobiol Ethnomed. 2013;9:1.CrossRef Betlu ALS. Indigenous knowledge of zootherapeutic use among the Biate tribe of Dima Hasao District, Assam, Northeastern India. J Ethnobiol Ethnomed. 2013;9:1.CrossRef
Metadaten
Titel
Ethnomedicinal and cultural practices of mammals and birds in the vicinity of river Chenab, Punjab-Pakistan
verfasst von
Muhammad Altaf
Arshad Javid
Muhammad Umair
Khalid Javed Iqbal
Zahid Rasheed
Arshad Mehmood Abbasi
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Journal of Ethnobiology and Ethnomedicine / Ausgabe 1/2017
Elektronische ISSN: 1746-4269
DOI
https://doi.org/10.1186/s13002-017-0168-5

Weitere Artikel der Ausgabe 1/2017

Journal of Ethnobiology and Ethnomedicine 1/2017 Zur Ausgabe