Skip to main content
Erschienen in:

27.02.2024 | Original Article

Evaluating the impact of reinforcement learning on automatic deep brain stimulation planning

verfasst von: Anja Pantovic, Caroline Essert

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Traditional techniques for automating the planning of brain electrode placement based on multi-objective optimization involving many parameters are subject to limitations, especially in terms of sensitivity to local optima, and tend to be replaced by machine learning approaches. This paper explores the feasibility of using deep reinforcement learning (DRL) in this context, starting with the single-electrode use-case of deep brain stimulation (DBS).

Methods

We propose a DRL approach based on deep Q-learning where the states represent the electrode trajectory and associated information, and actions are the possible motions. Deep neural networks allow to navigate the complex state space derived from MRI data. The chosen reward function emphasizes safety and accuracy in reaching the target structure. The results were compared with a reference (segmented electrode) and a conventional technique.

Results

The DRL approach excelled in navigating the complex anatomy, consistently providing safer and more precise electrode placements than the reference. Compared to conventional techniques, it showed an improvement in accuracy of 2.3% in average proximity to obstacles and 19.4% in average orientation angle. Expectedly, computation times rose significantly, from 2 to 18 min.

Conclusion

Our investigation into DRL for DBS electrode trajectory planning has showcased its promising potential. Despite only delivering modest accuracy gains compared to traditional methods in the single-electrode case, its relevance for problems with high-dimensional state and action spaces and its resilience against local optima highlight its promising role for complex scenarios. This preliminary study constitutes a first step toward the more challenging problem of multiple-electrodes planning.
Literatur
1.
Zurück zum Zitat Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81CrossRefPubMed Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81CrossRefPubMed
2.
Zurück zum Zitat Talairach J, Bancaud J (1966) Lesion, “irritative" zone and epileptogenic focus. Stereotact Funct Neurosurg 27(1–3):91–94CrossRef Talairach J, Bancaud J (1966) Lesion, “irritative" zone and epileptogenic focus. Stereotact Funct Neurosurg 27(1–3):91–94CrossRef
3.
Zurück zum Zitat Scorza D, El Hadji S, Cortés C, Bertelsen A, Cardinale F, Baselli G, Essert C, De Momi E (2021) Surgical planning assistance in keyhole and percutaneous surgery: a systematic review. Med Image Anal 67:101820CrossRefPubMed Scorza D, El Hadji S, Cortés C, Bertelsen A, Cardinale F, Baselli G, Essert C, De Momi E (2021) Surgical planning assistance in keyhole and percutaneous surgery: a systematic review. Med Image Anal 67:101820CrossRefPubMed
4.
Zurück zum Zitat Bourbakis N, Awad M (2003) A 3-D visualization method for image-guided brain surgery. IEEE Trans Syst Man Cybern B Cybern 33(5):766–781CrossRefPubMed Bourbakis N, Awad M (2003) A 3-D visualization method for image-guided brain surgery. IEEE Trans Syst Man Cybern B Cybern 33(5):766–781CrossRefPubMed
5.
Zurück zum Zitat Fujii T, Emoto H, Sugou N, Mito T, Shibata I (2003) Neuropath planner-automatic path searching for neurosurgery. In: Proceedings of CARS’03, vol 1256. Elsevier, pp 587–596 Fujii T, Emoto H, Sugou N, Mito T, Shibata I (2003) Neuropath planner-automatic path searching for neurosurgery. In: Proceedings of CARS’03, vol 1256. Elsevier, pp 587–596
6.
Zurück zum Zitat Vaillant M, Davatzikos C, Taylor R, Bryan R (1997) A path-planning algorithm for image-guided neurosurgery. In: Proceedings of CVRMed-MRCAS’97. Springer LNCS, vol 1205, pp 467–476 Vaillant M, Davatzikos C, Taylor R, Bryan R (1997) A path-planning algorithm for image-guided neurosurgery. In: Proceedings of CVRMed-MRCAS’97. Springer LNCS, vol 1205, pp 467–476
7.
Zurück zum Zitat Bériault S, Subaie FA, Collins DL, Sadikot AF, Pike GB (2012) A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J Comput Assist Radiol Surg 7(5):687–704CrossRefPubMed Bériault S, Subaie FA, Collins DL, Sadikot AF, Pike GB (2012) A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J Comput Assist Radiol Surg 7(5):687–704CrossRefPubMed
8.
Zurück zum Zitat Brunenberg EJL, Vilanova A, Visser-Vandewalle V, Temel Y, Ackermans L, Platel B, Haar Romeny BM (2007) Automatic trajectory planning for deep brain stimulation: a feasibility study. In: Proceedings of MICCAI’07. Springer LNCS, vol 4791, pp 584–592 Brunenberg EJL, Vilanova A, Visser-Vandewalle V, Temel Y, Ackermans L, Platel B, Haar Romeny BM (2007) Automatic trajectory planning for deep brain stimulation: a feasibility study. In: Proceedings of MICCAI’07. Springer LNCS, vol 4791, pp 584–592
9.
Zurück zum Zitat Essert C, Haegelen C, Lalys F, Abadie A, Jannin P (2012) Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 7(4):517–532CrossRefPubMed Essert C, Haegelen C, Lalys F, Abadie A, Jannin P (2012) Automatic computation of electrode trajectories for deep brain stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 7(4):517–532CrossRefPubMed
10.
Zurück zum Zitat Essert C, Fernandez-Vidal S, Capobianco A, Haegelen C, Karachi C, Bardinet E, Marchal M, Jannin P (2015) Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories. Int J Comput Assist Radiol Surg 10(12):1973–1983CrossRefPubMed Essert C, Fernandez-Vidal S, Capobianco A, Haegelen C, Karachi C, Bardinet E, Marchal M, Jannin P (2015) Statistical study of parameters for deep brain stimulation automatic preoperative planning of electrodes trajectories. Int J Comput Assist Radiol Surg 10(12):1973–1983CrossRefPubMed
11.
Zurück zum Zitat Shamir R, Tamir I, Dabool E, Joskowicz L, Shoshan Y (2010) A method for planning safe trajectories in image-guided keyhole neurosurgery. In: Proceedings of MICCAI’10. Springer LNCS, vol 6363, pp 457–464 Shamir R, Tamir I, Dabool E, Joskowicz L, Shoshan Y (2010) A method for planning safe trajectories in image-guided keyhole neurosurgery. In: Proceedings of MICCAI’10. Springer LNCS, vol 6363, pp 457–464
12.
Zurück zum Zitat Liu Y, Konrad PE, Neimat JS, Tatter SB, Yu H, Datteri RD, Landman BA, Noble JH, Pallavaram S, Dawant BM, D’Haese P-F (2014) Multisurgeon, multisite validation of a trajectory planning algorithm for deep brain stimulation procedures. IEEE Trans Biomed Eng 61(9):2479–2487CrossRefPubMedPubMedCentral Liu Y, Konrad PE, Neimat JS, Tatter SB, Yu H, Datteri RD, Landman BA, Noble JH, Pallavaram S, Dawant BM, D’Haese P-F (2014) Multisurgeon, multisite validation of a trajectory planning algorithm for deep brain stimulation procedures. IEEE Trans Biomed Eng 61(9):2479–2487CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hamzé N, Voirin J, Collet P, Jannin P, Haegelen C, Essert C (2016) Pareto front vs. weighted sum for automatic trajectory planning of deep brain stimulation. In: Proceedings of MICCAI’16. Springer LNCS, vol 9900, pp 534–541 Hamzé N, Voirin J, Collet P, Jannin P, Haegelen C, Essert C (2016) Pareto front vs. weighted sum for automatic trajectory planning of deep brain stimulation. In: Proceedings of MICCAI’16. Springer LNCS, vol 9900, pp 534–541
14.
Zurück zum Zitat Segato A, Sestini L, Castellano A, De Momi E (2020) GA3C reinforcement learning for surgical steerable catheter path planning. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 2429–2435 Segato A, Sestini L, Castellano A, De Momi E (2020) GA3C reinforcement learning for surgical steerable catheter path planning. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 2429–2435
15.
Zurück zum Zitat Guanglin J, Qian G, Tianwei Z, Lin C, Zhenglong S (2023) A heuristically accelerated reinforcement learning-based neurosurgical path planner. Cyborg Bionic Syst 4:0026CrossRef Guanglin J, Qian G, Tianwei Z, Lin C, Zhenglong S (2023) A heuristically accelerated reinforcement learning-based neurosurgical path planner. Cyborg Bionic Syst 4:0026CrossRef
16.
Zurück zum Zitat Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533CrossRefPubMed Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533CrossRefPubMed
17.
18.
Zurück zum Zitat Kikinis R, Pieper SD, Vosburgh KG (2014) 3D Slicer:A platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative imaging and image-guided therapy. Springer, New York, pp 277–289 Kikinis R, Pieper SD, Vosburgh KG (2014) 3D Slicer:A platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative imaging and image-guided therapy. Springer, New York, pp 277–289
20.
Zurück zum Zitat Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. In: Proceedings of HBM’03, NeuroImage 19(2, Supplement):1825–1826 Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. In: Proceedings of HBM’03, NeuroImage 19(2, Supplement):1825–1826
Metadaten
Titel
Evaluating the impact of reinforcement learning on automatic deep brain stimulation planning
verfasst von
Anja Pantovic
Caroline Essert
Publikationsdatum
27.02.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 6/2024
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03078-2

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.