Skip to main content
Erschienen in: Neuroradiology 5/2019

23.01.2019 | Diagnostic Neuroradiology

Evaluation of 3D fat-navigator based retrospective motion correction in the clinical setting of patients with brain tumors

verfasst von: Carl Glessgen, Daniel Gallichan, Manuela Moor, Nicolin Hainc, Christian Federau

Erschienen in: Neuroradiology | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

A 3D fat-navigator (3D FatNavs)-based retrospective motion correction is an elegant approach to correct for motion as it requires no additional hardware and can be acquired during existing ‘dead-time’ within common 3D protocols. The purpose of this study was to clinically evaluate 3D FatNavs in the work-up of brain tumors.

Methods

An MRI-based fat-excitation motion navigator incorporated into a standard MPRAGE sequence was acquired in 40 consecutive patients with (or with suspected) brain tumors, pre and post-Gadolinium injection. Each case was categorized into key anatomical landmarks, the temporal lobes, the infra-tentorial region, the basal ganglia, the bifurcations of the middle cerebral artery, and the A2 segment of the anterior cerebral artery. First, the severity of motion in the non-corrected MPRAGE was assessed for each landmark, using a 5-point score from 0 (no artifacts) to 4 (non-diagnostic). Second, the improvement in image quality in each pair and for each landmark was assessed blindly using a 4-point score from 0 (identical) to 3 (strong correction).

Results

The mean image improvement score throughout the datasets was 0.54. Uncorrected cases with light and no artifacts displayed scores of 0.50 and 0.13, respectively, while cases with moderate artifacts, severe artifacts, and non-diagnostic image quality revealed a mean score of 1.17, 2.25, and 1.38, respectively.

Conclusion

Fat-navigator-based retrospective motion correction significantly improved MPRAGE image quality in restless patients during MRI acquisition. There was no loss of image quality in patients with little or no motion, and improvements were consistent in patients who moved more.
Literatur
1.
Zurück zum Zitat Andre JB, Bresnahan BW, Mossa-Basha M, Hoff MN, Smith CP, Anzai Y, Cohen WA (2015) Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol 12:689–695CrossRefPubMed Andre JB, Bresnahan BW, Mossa-Basha M, Hoff MN, Smith CP, Anzai Y, Cohen WA (2015) Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J Am Coll Radiol 12:689–695CrossRefPubMed
2.
Zurück zum Zitat Haacke EM, Patrick JL (1986) Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging 4:359–376CrossRefPubMed Haacke EM, Patrick JL (1986) Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging 4:359–376CrossRefPubMed
3.
Zurück zum Zitat Ackerman J (1986) Rapid 3D tracking of small RF coils. In: Proc 5th annual meeting of ISMRM. Montréal, pp 1131–2 Ackerman J (1986) Rapid 3D tracking of small RF coils. In: Proc 5th annual meeting of ISMRM. Montréal, pp 1131–2
4.
Zurück zum Zitat Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050CrossRefPubMed Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050CrossRefPubMed
5.
Zurück zum Zitat Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH (2009) Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 62:924–934CrossRefPubMedPubMedCentral Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH (2009) Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 62:924–934CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. Magn Reson Mater Physics Biol Med 25:443–453CrossRef Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. Magn Reson Mater Physics Biol Med 25:443–453CrossRef
7.
Zurück zum Zitat Maclaren J, Armstrong BSR, Barrows RT, Danishad KA, Ernst T, Foster CL, Gumus K, Herbst M, Kadashevich IY, Kusik TP, Li Q, Lovell-Smith C, Prieto T, Schulze P, Speck O, Stucht D, Zaitsev M (2012) Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One 7:e48088CrossRefPubMedPubMedCentral Maclaren J, Armstrong BSR, Barrows RT, Danishad KA, Ernst T, Foster CL, Gumus K, Herbst M, Kadashevich IY, Kusik TP, Li Q, Lovell-Smith C, Prieto T, Schulze P, Speck O, Stucht D, Zaitsev M (2012) Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One 7:e48088CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMed
9.
Zurück zum Zitat Lin W, Huang F, Börnert P, Li Y, Reykowski A (2010) Motion correction using an enhanced floating navigator and GRAPPA operations. Magn Reson Med 63:339–348CrossRefPubMed Lin W, Huang F, Börnert P, Li Y, Reykowski A (2010) Motion correction using an enhanced floating navigator and GRAPPA operations. Magn Reson Med 63:339–348CrossRefPubMed
10.
Zurück zum Zitat Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465CrossRefPubMed Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465CrossRefPubMed
11.
Zurück zum Zitat Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJW (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 68:389–399CrossRefPubMed Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJW (2012) Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 68:389–399CrossRefPubMed
12.
Zurück zum Zitat White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A (2010) PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 63:91–105CrossRefPubMedPubMedCentral White N, Roddey C, Shankaranarayanan A, Han E, Rettmann D, Santos J, Kuperman J, Dale A (2010) PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 63:91–105CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Skare S, Hartwig A, Mårtensson M, Avventi E, Engström M (2015) Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI. Magn Reson Med 73:1110–1119CrossRefPubMed Skare S, Hartwig A, Mårtensson M, Avventi E, Engström M (2015) Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI. Magn Reson Med 73:1110–1119CrossRefPubMed
14.
Zurück zum Zitat Engström M, Mårtensson M, Avventi E, Norbeck O, Skare S (2015) Collapsed fat navigators for brain 3D rigid body motion. Magn Reson Imaging 33:984–991CrossRefPubMed Engström M, Mårtensson M, Avventi E, Norbeck O, Skare S (2015) Collapsed fat navigators for brain 3D rigid body motion. Magn Reson Imaging 33:984–991CrossRefPubMed
15.
Zurück zum Zitat Kochunov P, Lancaster JL, Glahn DC, Purdy D, Laird AR, Gao F, Fox P (2006) Retrospective motion correction protocol for high-resolution anatomical MRI. Hum Brain Mapp 27:957–962CrossRefPubMed Kochunov P, Lancaster JL, Glahn DC, Purdy D, Laird AR, Gao F, Fox P (2006) Retrospective motion correction protocol for high-resolution anatomical MRI. Hum Brain Mapp 27:957–962CrossRefPubMed
16.
Zurück zum Zitat Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM (2010) Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 53:139–145CrossRefPubMedPubMedCentral Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM (2010) Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 53:139–145CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Vos SB, Micallef C, Barkhof F, Hill A, Winston GP, Ourselin S, Duncan JS (2018) Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients. J Neuroradiol 45:368–373CrossRefPubMedPubMedCentral Vos SB, Micallef C, Barkhof F, Hill A, Winston GP, Ourselin S, Duncan JS (2018) Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients. J Neuroradiol 45:368–373CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Gallichan D, Marques JP, Gruetter R (2016) Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn Reson Med 75:1030–1039CrossRefPubMed Gallichan D, Marques JP, Gruetter R (2016) Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn Reson Med 75:1030–1039CrossRefPubMed
20.
Zurück zum Zitat Lüsebrink F, Sciarra A, Mattern H, Yakupov R, Speck O (2017) T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm. Sci Data 4:170032CrossRefPubMedPubMedCentral Lüsebrink F, Sciarra A, Mattern H, Yakupov R, Speck O (2017) T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm. Sci Data 4:170032CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology 182:769–775CrossRefPubMed Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology 182:769–775CrossRefPubMed
24.
Zurück zum Zitat Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England) 1:307–310CrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England) 1:307–310CrossRef
25.
Zurück zum Zitat McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Medica 22:276–282CrossRef McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Medica 22:276–282CrossRef
26.
Zurück zum Zitat van Minde D, Klaming L, Weda H (2013) Pinpointing moments of high anxiety during an MRI examination. Int J Behav Med 21:487–495 van Minde D, Klaming L, Weda H (2013) Pinpointing moments of high anxiety during an MRI examination. Int J Behav Med 21:487–495
Metadaten
Titel
Evaluation of 3D fat-navigator based retrospective motion correction in the clinical setting of patients with brain tumors
verfasst von
Carl Glessgen
Daniel Gallichan
Manuela Moor
Nicolin Hainc
Christian Federau
Publikationsdatum
23.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Neuroradiology / Ausgabe 5/2019
Print ISSN: 0028-3940
Elektronische ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-019-02160-w

Weitere Artikel der Ausgabe 5/2019

Neuroradiology 5/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.