Skip to main content
Erschienen in: European Journal of Trauma and Emergency Surgery 2/2022

Open Access 19.04.2021 | Original Article

Evaluation of a standardized instrument for post hoc analysis of trauma-team-activation-criteria in 75,613 injured patients an analysis of the TraumaRegister DGU®

verfasst von: Dan Bieler, Heiko Trentzsch, Axel Franke, Markus Baacke, Rolf Lefering, Thomas Paffrath, Lars Becker, Helena Düsing, Björn Heindl, Kai Oliver Jensen, Orkun Oezkurtul, Uwe Schweigkofler, Kai Sprengel, Bernd Wohlrath, Christian Waydhas, the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU)

Erschienen in: European Journal of Trauma and Emergency Surgery | Ausgabe 2/2022

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction

To improve the quality of criteria for trauma-team-activation it is necessary to identify patients who benefited from the treatment by a trauma team. Therefore, we evaluated a post hoc criteria catalogue for trauma-team-activation which was developed in a consensus process by an expert group and published recently.
The objective was to examine whether the catalogue can identify patients that died after admission to the hospital and therefore can benefit from a specialized trauma team mostly.

Materials and methods

The catalogue was applied to the data of 75,613 patients from the TraumaRegister DGU® between the 01/2007 and 12/2016 with a maximum abbreviated injury score (AIS) severity ≥ 2. The endpoint was hospital mortality, which was defined as death before discharge from acute care.

Results

The TraumaRegister DGU® dataset contains 18 of the 20 proposed criteria within the catalogue which identified 99.6% of the patients who were admitted to the trauma room following an accident and who died during their hospital stay. Moreover, our analysis showed that at least one criterion was fulfilled in 59,785 cases (79.1%). The average ISS in this group was 21.2 points (SD 9.9). None of the examined criteria applied to 15,828 cases (average ISS 8.6; SD 5). The number of consensus-based criteria correlated with the severity of injury and mortality. Of all deceased patients (8,451), only 31 (0.37%) could not be identified on the basis of the 18 examined criteria. Where only one criterion was fulfilled, mortality was 1.7%; with 2 or more criteria, mortality was at least 4.6%.

Discussion

The consensus-based criteria identified nearly all patients who died as a result of their injuries. If only one criterion was fulfilled, mortality was relatively low. However, it increased to almost 5% if two criteria were fulfilled. Further studies are necessary to analyse and examine the relative weighting of the various criteria.

Summary

Our instrument is capable to identify severely injured patients with increased in-hospital mortality and injury severity. However, a minimum of two criteria needs to be fulfilled. Based on these findings, we conclude that the criteria list is useful for post hoc analysis of the quality of field triage in patients with severe injury.
Abkürzungen
AIS
Abbreviated injury score
SD
Standard deviation
Sektion NIS
Committee on Emergency Medicine, Intensive Care and Trauma Management
DGU
German Trauma Society
ISS
Injury severity score
CDC
Centers for disease control and prevention
ACS
American College of Surgeon
CPR
Cardiopulmonary resuscitation
ICU
Intensive care unit
SpO2
Saturation of peripheral oxygen
GCS
Glasgow coma scale
D
Days

Introduction

Severe trauma is one of the most frequent causes of death in patients under 45 years of age and is primarily caused by traffic accidents and falls from heights [13]. The management of these patients constitutes an enormous medical, logistic, and socio-economic challenge due to the complexity of injuries, medical support around the clock, and the necessity of rapid and careful action in the shortest time possible and involving various medical fields [4, 5]. Today it is generally agreed that trauma room management and initial care are of prime importance for the survival of patients.
A series of preclinical situations and conditions (field triage criteria) have been established. Should they occur, the trauma room should be notified and, as a rule, the trauma team should be activated (Level 3 guideline on the treatment of patients with severe/multiple injuries, American College of Surgeon (ACS) criteria, Guidelines for Field Triage of Injured Patients by CDC) [68]. These criteria include the disruption of vital functions, obvious severe injuries, and accident mechanisms. Trauma team activation criteria are often based on a certain injury severity (e.g. an Injury Severity Score (ISS) of 16 points or more [9, 10]), death in the emergency department, admission to an intensive care unit, or the necessity of life-saving surgery or interventions [11]. While there is little data on the extent of over- and undertriage in Germany, figures published in other countries differ considerably. For example, overtriage rates vary between 12 and 85% and undertriage rates between 0.4% and 21%. Publications from the United States show that, despite an overtriage rate of 72%, undertriage rates are still between 10 and 19% [7, 1214]. Studies from France, whose emergency medical system is more similar to the German system than that of North America, present a different picture. These studies report an overtriage rate of 60% and an undertriage rate of merely 1% [15, 16]. The considerable differences noted here depend not least on the different criteria used to define overtriage and undertriage.
The criteria on trauma team activation in the German Level 3 guideline have been in the focus of an intense debate for a number of years. This debate revolves around the predictive value of the field triage criteria; in particular, whether B criteria (trauma team activation on account of the type of accident) unnecessarily increase the number of patients who, from a medical point of view, do not require trauma room care with full trauma team activation. Patients who are admitted via trauma room with full trauma team activation and who do not require this level of care even though they do not need it consume unnecessarily valuable resources (over-triage). Patients who would have required trauma team activation but who bypass the trauma room because they were missed by field triage criteria and thus did not receive appropriate care are rated as under-triaged. While over-triage places a strain on resources and thus involves economic and procedural risks, under-triage involves the risk that patients receive insufficient care and may, in extreme cases, even suffer unfavourable outcome. There are practically no studies that examine the quality of triage decisions in Germany based on the Level 3 guideline.
Thus, little is known on the true rate of over and under-triage and weather resources are used optimally. The reason why such studies are difficult to conduct is that there was no commonly accepted golden standard for deciding whether a patient has benefited from trauma room care or not. Such retrospective classification is necessary to distinguish between true positive, true negative, false-positive and false-negative cases. This, however, is the basic requirement to be able to estimate over-triage and under-triage meaningfully.
Recently, the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU) prepared a consensus-based criteria catalogue (see Table 1) that serves as a standardised instrument for classifying severely injured patients post hoc with regard to the quality of triage [15]. According to this consensus, treatment in the resuscitation bay by a trauma team is necessary when one of these criteria is fulfilled. If it was provided, triage is true positive.
Table 1
Consensus-based criteria catalogue for the retrospective identification of patients requiring trauma room care [17]
Injury severity
 Abbreviated injury scale (AIS) severity ≥ 4TR
Intensive medical care (without intermediate care)
 ICU stay > 24 hTR
Mortality
 Death within 24 hTR
Invasive measures (prehospital or in trauma room)&
 ResuscitationTR
 Advanced airway managementTR
Chest tube or needle decompression
 Pericardiocentesis
 Application of tourniquet (prehospital)
 Administration of catecholaminesTR
 TransfusionTR
 Chest tubeTR
Surgical/radiological therapeutic intervention*
 Life-saving/organ-savingTR
extremity-saving surgery#
 Radiological therapeutic intervention§, TR
  ≥ 2 external fixators (humerus, femur, pelvis)TR
Impaired vital functions
 Pulse oximetry (SpO2) < 90% TR
 Respiratory rate < 9 or > 29/min TR
Systolic blood pressure < 90 mmHg
 Shock index > 0.9TR
 Systolic blood pressure < 90 mmHgTR
 Glasgow coma scale (GCS) < 9TR
 Drop in GCS of 2 points or more prior to admissionTR
 Hypothermia < 35TR
If at least one criterion is fulfilled, trauma room care provided by a trauma team is considered necessary
&Not including intraoperative invasive measures or measures to prepare for non-emergency surgery (e.g. intubation)
*Performed in the emergency department or immediately after, but prior to admission to intensive care (or another department)
§Only therapeutic measures such as embolisation, coiling, and stenting
TRVerifiable and verified on the basis of TraumaRegister DGU®
To verify whether the catalogue can correctly identify the need for trauma team activation, we carried out a validation process on the basis of TraumaRegister DGU® data. The goal was to examine whether the catalogue can identify severely injured patients with an increased mortality risk to evaluate in the future especially with regard to the positive predictive value of new and existing activation criteria for trauma teams.

Materials and methods

TraumaRegister DGU® of the German Trauma Society (Deutsche Gesellschaft für Unfallchirurgie, DGU) was founded in 1993. The purpose of this multi-centre database is to collect pseudonymised data on severely injured patients in a standardised manner.
Data are collected prospectively in four consecutive phases: (A) prehospital phase, (B) trauma room and subsequent surgery, (C) intensive care, and (D) discharge. Data include detailed information on demographics, injury patterns, comorbidities, prehospital and clinical management, intensive care, important laboratory findings including data on transfusion, and outcome. The inclusion criterion is admission to the hospital via the trauma room followed by intensive care or arrival at the hospital with vital signs and death before transfer to intensive care.
The infrastructure for documentation, data management, and data analysis is provided by the Academy for Trauma Surgery (Akademie der Unfallchirurgie GmbH), which is affiliated with the German Trauma Society. Scientific supervision is provided by the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society. Participating hospitals submit pseudonymised data to a central database via a web-based application. Scientific studies are authorised in accordance with a peer-review process, which is stipulated in the publication guideline of the German Trauma Society.
Participating hospitals are primarily located in Germany (90%), but an increasing number of hospitals from other countries contribute data as well (Austria, Belgium, China, Finland, Luxembourg, Slovenia, Switzerland, the Netherlands, and the United Arab Emirates). Currently, approximately 33,000 cases from more than 650 hospitals are entered into the database every year. Participation in TraumaRegister DGU® is voluntary. Hospitals in TraumaNetzwerk DGU®, however, are required to enter at least a basic set of data for reasons of quality assurance.
We included data from adult patients (age ≥ 16) treated in Germany and documented with the standard dataset between the years 2007 and 2016. We excluded patients with a maximum injury severity of 1 according to the abbreviated injury scale (AIS). Patients transferred in as well as patients transferred out within 48 h were excluded since admission data or final outcome were missing, respectively.
Statistical analysis was carried out using SPSS (Version 23, IBM Inc., Armonk, NY, USA). Number of cases with percentage or mean with standard deviation (SD) were used for descriptive analysis of categorical and metric variables, respectively. Missing values were excluded on a case-by-case basis.
This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. It was performed in accordance with the publication guideline of TraumaRegister DGU® and is registered as TR-DGU Project ID 2017–024. According to the guidelines of the responsible state medical association, an ethical vote was not necessary for retrospective anonymous analysis.

Results

We were able to examine 18 of 20 criteria of the consensus-based catalogue using TraumaRegister DGU® data.
Our analysis showed that 75,613 TraumaRegister DGU® patients who were evaluated, 59,785 cases (79.1%) fulfilled at least one criterion. The average ISS of this group was 21.2 points (SD 9.9). In 15,828 cases, none of the 18 evaluated criteria applied (average ISS 8.6; SD 5.0).
Table 2 provides an overview of the prevalence of each criterion and the related mortality rate. Depending on the criterion, mortality varied between 9.3% (intensive care >  = 2 calendar days) and 76.2% (CPR). It was evident that higher mortality rates occurred when several criteria were fulfilled at the same time. (Table 3, Fig. 1). Only one criterion applied in 16,365 cases; in almost two-thirds of all cases, this criterion was the duration of ICU stay. In the group with only one criterion fulfilled, the highest mortality rate was 2.3% and thus comparatively low. When none of the catalogue criteria were fulfilled, mortality was only 0.2% (n = 31).
Table 2
Prevalence of criteria and mortality
Criterion
Prevalence
Mortality
Prevalence, only this criterion
Mortality, only this criterion
N
%
N
%
n
%
n
%
AIS ≥ 4
28,798
38.1
7162
24.9
1551
5.4
35
2.3
Intensive care ≥ 2 calendar days
46,208
61.1
4308
9.3
10,545
22.8
201
1.9
Died within 24 h
4122
5.5
4122
100.0
26
0.6
26
100.0
Cardio-pulmonary resuscitation (CPR)
3162
4.2
2409
76.2
14
0.4
0
0.0
Advanced Airway
22,771
30.1
6154
27.0
592
2.6
3
0.5
Chest tube
8823
11.7
2033
23.0
263
3.0
0
0.0
Administration of catecholamine
13,150
17.4
4692
35.7
94
0.7
0
0.0
Blood transfusion
7712
10.2
2439
31.6
66
0.9
0
0.0
GCS score < 9
15,099
20
5660
37.5
166
1.1
0
0.0
Drop in GCS ≥ 2
3706
4.9
477
12.9
420
11.3
6
1.4
Systolic blood pressure < 90 mmHg
11,212
14.8
3322
29.6
186
1.7
0
0.0
SpO2 < 90%
9484
12.5
2989
31.5
514
5.4
7
1.4
Hypothermia < 35 °C
3040
4
880
28.9
88
2.9
1
1.1
Shock index > 0.9
17,720
23.4
3165
17.9
1639
9.2
3
0.2
Respiratory rate < 9 or > 29
3207
4.2
1452
45.3
45
1.4
1
2.2
Life-saving surgery
6030
8
1642
27.2
126
2.1
0
0.0
Radiological therapeutic intervention
419
0.6
73
17.4
19
4.5
0
0.0
2 or more external fixators (humerus, femur, tibia, pelvis)
937
1.2
118
12.6
11
1.2
0
0.0
AIS abbreviated injury scale, GCS glasgow coma scale, SpO2 saturation of peripheral oxygen
Table 3
Mortality in relation to the number of criteria fulfilled
Number of fulfilled criteria
n
Died
Injury severity score
Average
SD
0
15,828
31
0.2%
8.6
5.0
1
16,365
283
1.7%
12.1
6.5
2
12,287
562
4.6%
17.8
9.2
3
8134
616
7.6%
19.9
9.7
4
6376
1003
15.7%
23.6
10.6
5
4922
1060
21.5%
26.4
11.3
6
3609
993
27.5%
29.4
13.0
7
2687
910
33.9%
32.6
14.0
8
2026
915
45.2%
35.5
14.8
9
1517
814
53.7%
40.0
15.9
10
1011
634
62.7%
44.0
16.3
11
562
395
70.3%
47.2
16.1
12
233
189
81.1%
47.7
15.0
13
51
41
80.4%
49.9
15.3
14
5
5
100.0%
45.8
12.0
Total
75,613
8451
11.2%
18.6
13.1
SD standard deviation
These 31 cases constitute 0.37% of all 8451 deaths. Table 3 shows all patients without any consensus-based risk criteria who died. It should be noted that, in this subgroup, the average age of 75.7 years is much higher than the average age of the overall group (48.1 years), death occurred at the earliest on the third day of the hospital stay (minimum 3 days, maximum 73 days), and the average ISS of 10.7 was far below the overall group (18.6). Further, we observed that most of these patients were not treated on the intensive care unit; 15 of these patients did not receive any intensive care at any time.

Discussion

The objective of our study was to examine the recently published consensus-based criteria [17] for the activation of a trauma team on the basis of TraumaRegister DGU® data. Almost all of the criteria could be evaluated by the data of the registry. We were unable to verify the criteria “application of a tourniquet” and “performance of pericardiocentesis” using TraumaRegister DGU® as it does not yet include data on these criteria. According to the literature, the frequency of cardiac tamponade is 0.04% for blunt trauma and as high as 6% for penetrating trauma [1820]. Penetrating injuries are present in approximately only 4% of all severely injured patients in Germany. For this reason, it is rarely necessary to perform pericardiocentesis in trauma patients [21]. The prehospital application of tourniquets has been on the rise only since late 2016. As a result, the significance of this variable can only be evaluated in the future.
We found that consensus-based criteria covered nearly all patients who died. For this reason, the chances of incorrectly assessing a patient are negligible with these criteria with regard to mortality.
In our study group of more than 75,000 patients, we also found that accident-related mortality and severity of injury increase with the number of applicable criteria. That shows that relevant criteria were chosen in the consensus-based process. It is important to note that a single criterion often cannot reflect the complexity of severely injured patients.[10] When only one criterion was present, mortality was at most 2.3% (AIS ≥ 4). The mortality was 0% when the only criterion was a respiration rate of < 9 or > 29 breaths per minute, an ICU stay > 2 days, a drop in GCS of ≥ 2 points, SpO2 < 90%, hypothermia < 35, advanced airway and a shock index > 0.9. The criterion “died within 24 h” deserves a special mention in this context. Of course, if it is present, the death rate is 100%. However, the criterion “died within 24 h” is only in 0.6% (n = 26) of the cases as a single criterion present. Furthermore, it is particular with a prevalence of only 5.5% a rather rare criterion compared to the other criteria.
It should be noted that possible criteria for trauma team activation, which are yet to be defined, should take various aspects into consideration. Table 2 indicates that perhaps not all post-hoc criteria are highly relevant, and it may be possible to reduce the post-hoc criteria catalogue. In addition, tourniquet and pericardiocentesis could not be evaluated, although it should be noted that these criteria would most likely be coincident with the evaluated criteria. The advantage of these two criteria is that they could also be assessed in the prehospital setting and therefore could be good trauma team activation criteria.
Mortality as an outcome parameter is defined clearly and well documented [22]. To evaluate the quality of trauma-treatment, more aspects like functional results or quality of life might be important parameters for further studies.
In many cases, initial treatment already is indicatory for a good functional outcome [5]. One example is a spinal injury with neurological symptoms. Although the functional outcome is not taken into consideration, the authors nevertheless believe that mortality is a suitable outcome parameter for activation criteria because trauma teams are primarily activated for the treatment of life-threatening injuries. From this perspective, the identification of 99.6% of cases by means of consensus-based criteria is sufficient. This rate is higher than some described in the current literature [7, 23] and is comparable to figures published by other author groups [24].
The fact that 31 deceased patients did not fulfil any consensus-based risk criteria should not be considered to be a fault of the criteria. Whether these deceased patients (Table 4) would have been detected by the two non-verifiable criteria is highly unlikely as injuries requiring pericardiocentesis or a tourniquet generally coincide with a much higher ISS and severe disturbance of vital functions [25]. In view of the advanced age of most of these patients, it is possible that an advance health care directive, a living will or patient wish communicated by family members prevented further treatment. A number of lethal courses (without any of the consensus-based criteria) could have been caused by complications that were not connected to the activation of a trauma room team, for example, thromboembolic events (n = 5) and multi-organ failure (n = 7). This argument is supported by the fact that the earliest death was observed on the third day of hospital stay (minimum 3 days, maximum 73 days).
Table 4
Deceased patients who did not fulfil a criterion
No
Age
Sex
Max. AIS
ISS
ICU stay (d)
Hospital stay (d)
Sepsis
Multiple organ failure
Thromboembolic event
1
19
M
3
9
0
73
No data
No data
No data
2
37
M
3
10
0
7
No
Yes
No data
3
52
M
3
9
1
7
No
No
Yes
4
64
M
2
5
0
3
No data
No data
No data
5
64
F
3
10
0
3
No
Yes
No
6
67
F
3
17
1
7
No
No
No data
7
72
M
3
27
1
12
No
No
Yes
8
73
M
3
13
0
9
No
No
No
9
73
M
3
17
0
9
No
No
No
10
75
M
2
8
0
8
No data
No data
No
11
76
M
3
22
1
33
Yes
No
No
12
77
M
3
13
1
3
No
No
No data
13
77
M
3
13
1
3
No
No
No
14
78
M
3
19
1
5
No
No
No
15
80
M
2
6
0
13
No data
No data
No data
16
80
M
2
12
0
40
No
No
Yes
17
80
M
2
4
0
33
No
No
Yes
18
80
F
3
10
0
62
No data
No data
No
19
83
M
2
8
1
3
Yes
Yes
No
20
83
F
3
9
0
8
No data
No data
No
21
83
F
2
9
1
3
Yes
Yes
No
22
84
M
2
5
1
5
Yes
Yes
No data
23
85
M
3
9
1
3
No
No
No data
24
86
M
3
9
1
6
No
Yes
No
25
86
F
3
10
1
5
No
Yes
No
26
86
M
3
11
1
5
No
No
No
27
88
M
2
5
0
8
No
No
No
28
88
M
3
9
0
21
No
No
No
29
89
M
3
9
0
3
No data
No data
No
30
89
M
3
9
1
4
No
No
No
31
92
F
2
5
1
3
No
No
Yes
 
75.7 years
M = 77%
Average 2.7
Average 10.7
0.5 d
13.1 d
Yes = 4
Yes = 7
Yes = 5
AIS abbreviated injury scale, ISS injury severity score, ICU intensive care unit
It should be emphasized that some criteria (e.g. duration of intensive care treatment) can only be assessed post hoc, but in view of our findings, it should be considered that variables from the criteria catalogue could also be appropriate as criteria for trauma room activation if they can be determined in a prehospital setting. In addition to the three criteria of the S3 guideline classified as Grade of Recommendation (GoR) A, namely advanced airway, GCS < 9 and systolic blood pressure < 90 mmHg, the following criteria are of extended importance (Table 5):
  • Resuscitation
  • Insertion of a chest tube
  • Administration of catecholamine
  • Drop in GCS ≥ 2 points
  • SpO2 < 90%
  • Hypothermia < 35 °C
  • Shock index > 0.9
  • Respiratory rate < 9 or > 29
Table 5
Criteria of extended importance which can be determined in a prehospital setting
Criteria of extended importance
Resuscitation
Insertion of a chest tube
Administration of catecholamine
 Drop in GCS ≥ 2 points
 SpO2 < 90%
 Hypothermia < 35 °C
 Shock index > 0.9
 Respiratory rate < 9 or > 29
GCS glasgow coma score, SpO2 saturation of peripheral oxygen

Limitations

This is a retrospective analysis based on registry data. Availability of data was > 95% for most criteria but unsatisfactory for temperature and respiratory rate. The selected approach is not a final validation of the criteria list. On account of the data available in TraumaRegister DGU®, the endpoint was mortality. An important aspect for the evaluation of triage quality would be emergency interventions that stabilise the patient and prevent mortality. Another important aspect is organ function, which trauma room treatment aims to stabilise. Further studies should evaluate whether some criteria can be excluded and whether certain criteria combinations could be relevant. In addition, only patients who were entered in the TraumaRegister DGU were available for the evaluation of the consensus-based catalogue of criteria. Patients with undertriage and did not receive trauma team treatment were not part of this cohort.

Conclusion

The criteria catalogue identified 99.6% of all trauma patients who were admitted to the hospital through the trauma room and then died during their hospital stay.
On the basis of the assumption that patients who die in hospital belong to the group of patients that should have been admitted through the trauma room and should have received trauma care, the consensus-based criteria catalogue has proven itself suitable for the evaluation of triage quality. With regard to other aspects such as the stabilisation of vital functions and functional outcome, further studies are needed for the validation of the catalogue. Further studies are necessary to evaluate whether some criteria can be excluded and whether certain criteria combinations are relevant. In addition, this post hoc consensus-based criteria catalogue can already be used as an evaluation tool for new and existing criteria for activating trauma teams.

Acknowledgements

We would like to thank the members of the Polytrauma Study Group of the German Trauma Society for their many years of hard work and commitment to Trauma Register DGU®. In 2007, the Polytrauma Study Group was integrated into the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). The authors would like to thank the German Office of Languages in Hürth for linguistic support.

Declarations

Conflict of interest

All authors are members of the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU). RL is a consultant for AUC GmbH and has received research support (third-party funds) from AUC GmbH. The other authors declare that they have no financial competing interests. They received no financial funding.

Ethical approval

Not applicable. The manuscript does not report on or involve the use of any animal or human tissue.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Neuer Inhalt

Print-Titel

Literatur
1.
Zurück zum Zitat Kuhne CA, Ruchholtz S, Buschmann C, Sturm J, Lackner CK, Wentzensen A, Bouillon B, Waydhas C, Weber C. Trauma centers in Germany. Status report. Unfallchirurg. 2006;109(5):357–66.CrossRef Kuhne CA, Ruchholtz S, Buschmann C, Sturm J, Lackner CK, Wentzensen A, Bouillon B, Waydhas C, Weber C. Trauma centers in Germany. Status report. Unfallchirurg. 2006;109(5):357–66.CrossRef
2.
Zurück zum Zitat Paffrath T, Lefering R, Flohe S. How to define severely injured patients?—an injury severity score (ISS) based approach alone is not sufficient. Injury. 2014;45(Suppl 3):S64-69.CrossRef Paffrath T, Lefering R, Flohe S. How to define severely injured patients?—an injury severity score (ISS) based approach alone is not sufficient. Injury. 2014;45(Suppl 3):S64-69.CrossRef
3.
Zurück zum Zitat Debus F, Lefering R, Frink M, Kuhne CA, Mand C, Bucking B, Ruchholtz S. Numbers of severely injured patients in Germany. A retrospective analysis from the dgu (German Society for Trauma Surgery) trauma registry. Dtsch Arztebl Int. 2015;112(49):823–9.PubMedPubMedCentral Debus F, Lefering R, Frink M, Kuhne CA, Mand C, Bucking B, Ruchholtz S. Numbers of severely injured patients in Germany. A retrospective analysis from the dgu (German Society for Trauma Surgery) trauma registry. Dtsch Arztebl Int. 2015;112(49):823–9.PubMedPubMedCentral
4.
Zurück zum Zitat Tscherne H, Regel G, Sturm JA, Friedl HP. Degree of severity and priorities in multiple injuries. Chirurg. 1987;58(10):631–40.PubMed Tscherne H, Regel G, Sturm JA, Friedl HP. Degree of severity and priorities in multiple injuries. Chirurg. 1987;58(10):631–40.PubMed
5.
Zurück zum Zitat Bouillon B, Pieper D, Flohé S, Eikermann M, Prengel P, Ruchholtz S, Stürmer KM, Waydhas C, Trentzsch H, Lendemans S, et al. Level 3 guideline on the treatment of patients with severe/multiple injuries. Eur J Trauma Emerg Surg. 2018;44(Suppl 1):3–271. Bouillon B, Pieper D, Flohé S, Eikermann M, Prengel P, Ruchholtz S, Stürmer KM, Waydhas C, Trentzsch H, Lendemans S, et al. Level 3 guideline on the treatment of patients with severe/multiple injuries. Eur J Trauma Emerg Surg. 2018;44(Suppl 1):3–271.
6.
Zurück zum Zitat Mohan D, Rosengart MR, Farris C, Cohen E, Angus DC, Barnato AE. Assessing the feasibility of the American College of Surgeons’ benchmarks for the triage of trauma patients. Arch Surg. 2011;146(7):786–92.CrossRef Mohan D, Rosengart MR, Farris C, Cohen E, Angus DC, Barnato AE. Assessing the feasibility of the American College of Surgeons’ benchmarks for the triage of trauma patients. Arch Surg. 2011;146(7):786–92.CrossRef
7.
Zurück zum Zitat Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, Wald MM, Jurkovich GJ, Newgard CD, Lerner EB. Guidelines for field triage of injured patients: recommendations of the national expert panel on field triage, 2011. MMWR Recomm Rep. 2012;61(1):1–20.PubMed Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, Wald MM, Jurkovich GJ, Newgard CD, Lerner EB. Guidelines for field triage of injured patients: recommendations of the national expert panel on field triage, 2011. MMWR Recomm Rep. 2012;61(1):1–20.PubMed
8.
Zurück zum Zitat Davis JW, Dirks RC, Sue LP, Kaups KL. Attempting to validate the overtriage/undertriage matrix at a level I trauma center. J Trauma Acute Care Surg. 2017;83(6):1173–8.CrossRef Davis JW, Dirks RC, Sue LP, Kaups KL. Attempting to validate the overtriage/undertriage matrix at a level I trauma center. J Trauma Acute Care Surg. 2017;83(6):1173–8.CrossRef
9.
Zurück zum Zitat Lerner EB, Willenbring BD, Pirrallo RG, Brasel KJ, Cady CE, Colella MR, Cooper A, Cushman JT, Gourlay DM, Jurkovich GJ, et al. A consensus-based criterion standard for trauma center need. J Trauma Acute Care Surg. 2014;76(4):1157–63.CrossRef Lerner EB, Willenbring BD, Pirrallo RG, Brasel KJ, Cady CE, Colella MR, Cooper A, Cushman JT, Gourlay DM, Jurkovich GJ, et al. A consensus-based criterion standard for trauma center need. J Trauma Acute Care Surg. 2014;76(4):1157–63.CrossRef
10.
Zurück zum Zitat Ciesla DJ, Pracht EE, Tepas JJ 3rd, Namias N, Moore FA, Cha JY, Kerwin A, Langland-Orban B. Measuring trauma system performance: Right patient, right place-mission accomplished? J Trauma Acute Care Surg. 2015;79(2):263–8.CrossRef Ciesla DJ, Pracht EE, Tepas JJ 3rd, Namias N, Moore FA, Cha JY, Kerwin A, Langland-Orban B. Measuring trauma system performance: Right patient, right place-mission accomplished? J Trauma Acute Care Surg. 2015;79(2):263–8.CrossRef
11.
Zurück zum Zitat McCoy CE, Chakravarthy B, Lotfipour S. Guidelines for field triage of injured patients: in conjunction with the morbidity and mortality weekly report published by the center for disease control and prevention. West J Emerg Med. 2013;14(1):69–76.CrossRef McCoy CE, Chakravarthy B, Lotfipour S. Guidelines for field triage of injured patients: in conjunction with the morbidity and mortality weekly report published by the center for disease control and prevention. West J Emerg Med. 2013;14(1):69–76.CrossRef
12.
Zurück zum Zitat Jensen KO, Heyard R, Schmitt D, Mica L, Ossendorf C, Simmen HP, Wanner GA, Werner CML, Held L, Sprengel K. Which pre-hospital triage parameters indicate a need for immediate evaluation and treatment of severely injured patients in the resuscitation area? Eur J Trauma Emerg Surg. 2019;45(1):91–8.CrossRef Jensen KO, Heyard R, Schmitt D, Mica L, Ossendorf C, Simmen HP, Wanner GA, Werner CML, Held L, Sprengel K. Which pre-hospital triage parameters indicate a need for immediate evaluation and treatment of severely injured patients in the resuscitation area? Eur J Trauma Emerg Surg. 2019;45(1):91–8.CrossRef
13.
Zurück zum Zitat Dehli T, Monsen SA, Fredriksen K, Bartnes K. Evaluation of a trauma team activation protocol revision: a prospective cohort study. Scand J Trauma Resusc Emerg Med. 2016;24(1):105.CrossRef Dehli T, Monsen SA, Fredriksen K, Bartnes K. Evaluation of a trauma team activation protocol revision: a prospective cohort study. Scand J Trauma Resusc Emerg Med. 2016;24(1):105.CrossRef
14.
Zurück zum Zitat Follin A, Jacqmin S, Chhor V, Bellenfant F, Robin S, Guinvarc’h A, Thomas F, Loeb T, Mantz J, Pirracchio R. Tree-based algorithm for prehospital triage of polytrauma patients. Injury. 2016;47(7):1555–61.CrossRef Follin A, Jacqmin S, Chhor V, Bellenfant F, Robin S, Guinvarc’h A, Thomas F, Loeb T, Mantz J, Pirracchio R. Tree-based algorithm for prehospital triage of polytrauma patients. Injury. 2016;47(7):1555–61.CrossRef
15.
Zurück zum Zitat Waydhas C, Baacke M, Becker L, Buck B, Dusing H, Heindl B, Jensen KO, Lefering R, Mand C, Paffrath T, et al. A consensus-based criterion standard for the requirement of a trauma team. World J Surg. 2018;42(9):2800–9.CrossRef Waydhas C, Baacke M, Becker L, Buck B, Dusing H, Heindl B, Jensen KO, Lefering R, Mand C, Paffrath T, et al. A consensus-based criterion standard for the requirement of a trauma team. World J Surg. 2018;42(9):2800–9.CrossRef
16.
Zurück zum Zitat Araujo AO, Westphal FL, Lima LC, Correia JO, Gomes PH, Costa EN, Salomao LML, Costa CN. Fatal cardiac trauma in the city of Manaus, Amazonas state, Brazil. Rev Col Bras Cir. 2018;45(4):e1888.CrossRef Araujo AO, Westphal FL, Lima LC, Correia JO, Gomes PH, Costa EN, Salomao LML, Costa CN. Fatal cardiac trauma in the city of Manaus, Amazonas state, Brazil. Rev Col Bras Cir. 2018;45(4):e1888.CrossRef
17.
Zurück zum Zitat Teixeira PG, Inaba K, Oncel D, DuBose J, Chan L, Rhee P, Salim A, Browder T, Brown C, Demetriades D. Blunt cardiac rupture: a 5-year NTDB analysis. J Trauma. 2009;67(4):788–91.PubMed Teixeira PG, Inaba K, Oncel D, DuBose J, Chan L, Rhee P, Salim A, Browder T, Brown C, Demetriades D. Blunt cardiac rupture: a 5-year NTDB analysis. J Trauma. 2009;67(4):788–91.PubMed
18.
Zurück zum Zitat Yun JH, Byun JH, Kim SH, Moon SH, Park HO, Hwang SW, Kim YH. Blunt traumatic cardiac rupture: single-institution experiences over 14 years. Korean J Thorac Cardiovasc Surg. 2016;49(6):435–42.CrossRef Yun JH, Byun JH, Kim SH, Moon SH, Park HO, Hwang SW, Kim YH. Blunt traumatic cardiac rupture: single-institution experiences over 14 years. Korean J Thorac Cardiovasc Surg. 2016;49(6):435–42.CrossRef
20.
Zurück zum Zitat Pape HC, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, Lichte P, Josten C, Bouillon B, Schmucker U, et al. The definition of polytrauma revisited: an international consensus process and proposal of the new “Berlin definition.” J Trauma Acute Care Surg. 2014;77(5):780–6.CrossRef Pape HC, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, Lichte P, Josten C, Bouillon B, Schmucker U, et al. The definition of polytrauma revisited: an international consensus process and proposal of the new “Berlin definition.” J Trauma Acute Care Surg. 2014;77(5):780–6.CrossRef
21.
Zurück zum Zitat Tignanelli CJ, Vander Kolk WE, Mikhail JN, Delano MJ, Hemmila MR. Non-compliance with ACS-COT recommended criteria for full trauma team activation is associated with undertriage deaths. J Trauma Acute Care Surg. 2017;84(2):287–94.CrossRef Tignanelli CJ, Vander Kolk WE, Mikhail JN, Delano MJ, Hemmila MR. Non-compliance with ACS-COT recommended criteria for full trauma team activation is associated with undertriage deaths. J Trauma Acute Care Surg. 2017;84(2):287–94.CrossRef
22.
Zurück zum Zitat Hamada SR, Gauss T, Duchateau FX, Truchot J, Harrois A, Raux M, Duranteau J, Mantz J, Paugam-Burtz C. Evaluation of the performance of French physician-staffed emergency medical service in the triage of major trauma patients. J Trauma Acute Care Surg. 2014;76(6):1476–83.CrossRef Hamada SR, Gauss T, Duchateau FX, Truchot J, Harrois A, Raux M, Duranteau J, Mantz J, Paugam-Burtz C. Evaluation of the performance of French physician-staffed emergency medical service in the triage of major trauma patients. J Trauma Acute Care Surg. 2014;76(6):1476–83.CrossRef
23.
Zurück zum Zitat Nan YY, Lu MS, Liu KS, Huang YK, Tsai FC, Chu JJ, Lin PJ. Blunt traumatic cardiac rupture: therapeutic options and outcomes. Injury. 2009;40(9):938–45.CrossRef Nan YY, Lu MS, Liu KS, Huang YK, Tsai FC, Chu JJ, Lin PJ. Blunt traumatic cardiac rupture: therapeutic options and outcomes. Injury. 2009;40(9):938–45.CrossRef
Metadaten
Titel
Evaluation of a standardized instrument for post hoc analysis of trauma-team-activation-criteria in 75,613 injured patients an analysis of the TraumaRegister DGU®
verfasst von
Dan Bieler
Heiko Trentzsch
Axel Franke
Markus Baacke
Rolf Lefering
Thomas Paffrath
Lars Becker
Helena Düsing
Björn Heindl
Kai Oliver Jensen
Orkun Oezkurtul
Uwe Schweigkofler
Kai Sprengel
Bernd Wohlrath
Christian Waydhas
the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society (DGU)
Publikationsdatum
19.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Trauma and Emergency Surgery / Ausgabe 2/2022
Print ISSN: 1863-9933
Elektronische ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-021-01668-2

Weitere Artikel der Ausgabe 2/2022

European Journal of Trauma and Emergency Surgery 2/2022 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.