Skip to main content
Erschienen in: Clinical Oral Investigations 1/2021

Open Access 30.05.2020 | Original Article

Evaluation of a systematic digitized training program on the effectivity of subgingival instrumentation with curettes and sonic scalers in vitro

verfasst von: Christian Graetz, Paula Fecke, Miriam Seidel, Anne Sophie Engel, Susanne Schorr, Johanna Sentker, Christof E. Dörfer, Sonja Sälzer

Erschienen in: Clinical Oral Investigations | Ausgabe 1/2021

Abstract

Objectives

Whereas the key role of subgingival instrumentation in periodontal therapy is well known, the influence of operators’ experience/training with different devices on treatment results is yet uncertain. Therefore, we assessed untrained undergraduate students, working on manikins, as to how effectively they learn to use curettes (GRA) and sonic scalers (AIR); hypothesizing that AIR will result in higher relative cleaning efficacy (RCE) than GRA.

Material and methods

Before baseline evaluation (T0), 30 operators (9 males, 21 females) received a 2-h theoretical lesson for both instruments, followed by a 12-week period with a weekly digitized training program for 45 min. During three sessions (T1–T3), the operators had to instrument six equivalent test teeth with GRA and AIR. At T0–T3, treatment time, proportion of removed simulated biofilm (RCE-b), and hard deposits (RCE-d) were measured.

Results

At T0, RCE-b was in mean(SD) 64.18(25.74) % for GRA, 62.25(26.69) % for AIR; (p = 0.172) and RCE-d 85.48(12.32) %/ 65.71(15.27) % (p < 0.001). At T3, operators reached highest RCE-b in both groups (GRA/AIR 71.54(23.90) %/71.75(23.05)%; p = 0.864); RCE-d GRA/AIR: 84.68(16.84) %/77.85(13.98) %; p < 0.001). Both groups achieved shorter treatment times after training. At T3, using curettes was faster (GRA/AIR 16.67(3.31) min/19.80(4.52) min; p < 0.001).

Conclusions

After systematic digitized training, untrained operators were able to clean 70% of the root surfaces with curettes and sonic scalers.

Clinical relevance

It can be concluded that a systematic digitized and interactive training program in manikin heads is helpful in the training of root surface debridement.
Hinweise

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Periodontitis is described as a multifactorial inflammatory disease associated with dysbiotic plaque biofilms and characterized by progressive destruction of the tooth-supporting apparatus [1]. Whereas untreated periodontitis eventually leads to tooth loss, an adequate periodontal therapy achieves biological compatibility of the previously diseased root surfaces [2, 3], thereby, allowing reattachment of adjacent tissues [47]. To do so, nonsurgical mechanical elimination of biofilm and/or hard deposits (mineralized biofilm) with, e.g., hand instruments or powered scaler [8, 9] is the cornerstone of each periodontal therapy and until now without any equivalent alternative [10]. Hence, it is the first step in a comprehensive periodontal disease treatment plan and further surgical interventions are not needed in most cases [11]. However, an effective performance of mechanical plaque removal is a prerequisite and needs to be trained intensely. Usually, before treating in clinical conditions, manual skills of dental students are trained in manikin heads. The challenge is to correctly and effectively apply appropriate instruments on a dentition. Hence, such a systematic training should include repetitive practical procedures [12]. Hereby, the aim is to increase the students’ experience and effectiveness in removal of simulated biofilm/hard deposits as well as to minimize adverse impacts [13]. Although the artificial models do not simulate a perfect realistic situation, the training is an important step to shorten treatment time and improve results [14]. Furthermore, a direct visualization of the percentage of biofilm and hard deposit removal is only possible in an in vitro situation.
Therefore, the aim of the study was to assess the training effect of a new digitally supported education program with regard to efficacy as well as time for removal of simulated biofilm and of hard deposits, with different instruments on untrained undergraduate students. Our main hypothesis was that the training effect for sonic scalers (AIR) compared with curettes (GRA) is greater at the end of the observation time, and the effect will be determined by specific factors, e.g., tooth type or jaw.

Material and methods

Experimental setup

All operators had the same setup and options to choose their instruments for root surface instrumentation; (1) Gracey normal-shape curettes nos. 5/6, 7/8, 11/12, and 13/14 (American Eagle Instruments, Missoula, MT, USA) and (2) sonic scaler (Synea, W&H, Bürmoos, Austria) with air pressure and water-cooling (30 ml/min) as recommended by the manufacturer on level two, which means “medium” amplitude, combined with a straight, right and left curved slimline tip (1AP, 2APr, 2APl, W&H, Bürmoos, Austria) with round cross-section.
New instruments were used only at baseline (T0), for following visits the curettes were randomized to each operator, whereby prior to each test day (T1–T3), the curettes were controlled by a trained dental hygienist regarding sharpness and if necessary sharpened with an Arkansas stone and grinding oil. Similarly, each tip for the sonic device was controlled for their length as advised by the manufacturer or any possible destruction.

Operators training program and instrumentation procedure

All participants received the same training program including two lectures of theoretical application information according to our clinical and the manufacture’s guideline as well as practical sessions in vitro before baseline test (Fig. 1). Afterwards, both groups of instruments were trained equivalently 10 times for 45 min over a 14-week period by using a digitally modified learning program (for AIR/GRA 24/32 working steps) based on a program introduced in 1994 [12]. Concomitant to the digitized training program the group was supervised and monitored through the education staff (3 board certified specialist of periodontology). In a previously published study [15], we could demonstrate that training of root surface instrumentation should not only focus on efficacy, but also on ergonomics. The digitized visualization program is supposed to support the teaching of the necessary working steps and ergonomic aspects separately for each instrument, and concomitantly reduces time effort for supervision by the staff. Partly by animated GIF or short video sequences the whole set up, technique and sitting position of the operator and patient are explained. Additionally, all participants were during training sessions clinically calibrated regarding the application pressure (3–5 N for GRA and < 1 N for AIR), but no measuring of the root surface destruction or roughness were done at the test days.
Before the study, at the beginning of the workshop all students of the 7th semester (n = 31) were asked to participate in the study, and after their written consent (n = 30), they received a 2-h theoretical introduction for both instruments and to the training program, but without practical exercises. One student, refused to take part in the study.
Participants were evaluated at baseline (T0) and between the training weeks at week 6 (T1), week 11 (T2) and week 14 (T3) while instrumenting 12 comparable test teeth with GRA (tooth 11, 14, 16, 31, 37, 45) and with AIR (tooth 21, 25, 17, 34, 36, 43). The instrument to begin with was randomized (Microsoft Excel 16, Microsoft Corporation, One Microsoft Way Redmond, WA, USA) for each test day and participant. Participants were asked to instrument the test teeth until they achieved subjective maximal elimination of simulated hard and soft deposits. Time for treating the predetermined six teeth per instrument was recorded for each participant.

Manikin heads and test teeth

Both groups of instruments were performed in similar manikin heads, equipped with modified periodontitis models (Frasaco, Tettnang, Germany), exhibiting pronounced periodontitis with moderate to advanced horizontal bone loss, isolated and deep vertical pockets, resulting in teeth being differently difficult to instrument regarding both anatomy and accessibility. Mean (SD) pocket probing depth (PPD) was 5.8 (2.1) mm (range, 3–11 mm), separated for test teeth in GRA group (5.69 (2.01) mm (range, 3–9 mm)) versus AIR-group (5.67 (2.22) mm (range, 3–9 mm)). Gingival masks were fixed that no operator was able to lift the mask during the test trials.
Twelve teeth and seven single- and five multi-rooted teeth, were coated with a thin layer of transparent fluorescent varnish (Shiny White–Rival de Loop Young, Berlin, Germany) between the artificial cemento-enamel junction and the alveolar bone in order to simulate adhering plaque. Coating was performed by a reproducible and standardized procedure of dipping to provide similar thickness of the applied varnish [16]. The used varnish fluoresced with bright blue color when exposed to ultraviolet light. Gingival masks of persistently pliable silicon (Frasaco, Tettnang, Germany) were used to cover the models to ascertain instrumentation without visual control. Beside this simulation of biofilm, test-teeth were also randomly coated with commercial varnish (A-CK, Frasaco, Tettnang, Germany), modified for the ratio of varnish/thickener, to simulate adhering subgingival hard deposits. The hard deposits were located in spot size (diameter around 1.5 mm) at each tooth type at the same area by one investigator (P.F.) according to pictures taken during the first test. The varnish on the root surfaces was placed at a distance of at least 2 mm from the bottom of the pocket and 1 mm subgingival from the marginal gingiva, to simulate the pathologic circumstances as realistic as possible.
Artificial biofilm and hard deposits as well as teeth and gingival masks were renewed after each test day (T0–T3).

Planimetric evaluation

After each test day T0–T3, the effectivity of instrumentation was planimetrically assessed. Instrumented teeth were mounted on standardized prepared plastic units (Lego GmbH, Grasbrunn, Germany), individually fitting to each of the 12 teeth. Plastic units with mounted teeth were then fixed on the camera table in a reproducible position. Following, teeth were submitted to ultraviolet light (UV-A, 350–370 nm), and one image of each of the four tooth surfaces (mesial, distal, vestibular, oral) (in total 1728) was taken using a camera with a 100-mm macro-zoom (Canon EOS D30, Tokyo, Japan). The images were used to subsequently perform an evaluation of the cleaned surface area by digital image subtraction (Image J, NIH, Bethesda, USA) to calculate the relative cleaning efficacy of simulated biofilm removal subgingival (RCE-b in %) (Fig. 2). For multi-rooted teeth with furcation involvement (16, 37, 17, 36), no evaluation of the furcation area was done (please see Fig. 2c for details). The relative cleaning efficacy of hard deposits (RCE-d) was assessed through one investigator (P.F.) by counting the non-removed hard deposits on reproducible images of each tooth site.

Outcomes

As the primary outcome, the percentage of removed artificial biofilm and hard deposits were determined. Secondary outcomes were treatment time, difference between test days and instruments according to the cleaning effectiveness as well as operators’ experience reports.

Relative cleaning efficacy of simulated biofilm removal—RCE-b in%

Measuring RCE as the difference of the area with simulated biofilm before and after cleaning the four different root surface areas of each test tooth (n = 48 of 12 test teeth) and each operator (n = 30), separately for the two types of instrumentation (GRA vs. AIR) and the four test days (T0-T3).

Relative cleaning efficacy of hard deposit removal—RCE-d in%

Measuring RCE-d as the difference of the number of simulated hard deposits before and after cleaning root surface areas of all test teeth (n = 12) and operators (n = 30), separately for the two types of instrumentation (GRA versus AIR) and the four test days (T0 T3). It should be noted in comparison to RCE-b, for RCE-d only the percentage of the number of removed hard deposits compared with the total number of deposits was evaluated. It was no evaluation undertaken to measure the size of the cleaned area as hard deposits were only simulated in a small spot.

Treatment time in min

Accordingly, time for treating test teeth (n = 6) per group of instruments (GRA versus AIR) was measured separately for each operator (n = 30) at the four test days (T0 -T3). Duration for changing instruments was taken into consideration.
The investigator (J.S.) was blinded to the used instruments and test days. For cleaning efficacy, two levels were defined. For level one, ≥70% of simulated biofilm or hard deposits had to be removed, for level two ≥80%. Not adequate was set as 0-69% of removed simulated biofilm or hard deposits.

Questionnaire

At each test day (T0 -T3), operators answered a questionnaire to estimate their own effectiveness in removing simulated biofilm/hard deposits for each group of instruments as well as questions according gender, age and previous vocational training only at T0 (closed-ended question).

Statistical analysis

According to the sample size calculation with data of a comparable investigation [12] we found n = 175 teeth per group at each test day as sufficient to detect under five percent difference for removed hard deposits between the groups of instruments (power of 80%).
Randomization, means, percentages and standard deviations were calculated using Microsoft Excel (Microsoft Excel 16, Microsoft Corporation, One Microsoft Way Redmond, WA, USA). Values were mostly ordinal (yes/no) and with the use of Microsoft Excel, crosstabs have been drawn up. Data were entered into SPSS Statistics (SPSS Statistics 24, IBM, Chicago, IL, USA). Normal distribution of artificial biofilm, residual hard deposits and treatment time were tested by Kolmogorov-Smirnov, Shapiro-Wilk as well as Chi Quadrat Test. The artificial biofilm at the two test days (T2 and T3) was not normally distributed (p > 0.0001). Artificial biofilm removal, therefore, were tested with non-parametric tests. All tests were two-sided; statistical significance was assumed p ≤ 0.05 and adjusted with the Bonferroni method for multiple comparison (p = 0.05 / 6 = 0.0083). Associations between variables were analyzed using Pearson correlation and Spearman's rank correlation coefficient analysis.

Results

Operators’ characteristics

All 30 operators were in the seventh semester at Kiel dental school (female/male 21/9) and in mean (SD) 25.50(4.11) years of age (range 21-42). Eleven had a previous education in dentistry e.g. dental assistants or technician (female/male 7/4).

Removal of simulated biofilm and hard deposits—efficacy and learning curve

In general, the learning curve of the yet-untrained operators begins with a nearly equal efficacy level for GRA of 63.18(25.74) % and for AIR of 62.25(26.69) % RCE-b at T0 (p = 0.172). In the GRA-group RCE-b decreases until T1 to 58.62(24.18) % (p < 0.001) and subsequently improves significantly at T2 (RCE-b 64.05(24.51) %, p < 0.001) and reaches highest efficacy at T3 (RCE-b 71.54(23.90) %, p < 0.001) (Table 1, Fig. 3). For AIR-group, we found a different performance with continually improvement of the RCE-b values after T0 until T3. At T1, the operators showed a 63.56(24.55) % efficacy without significant changes between T0 and T1 (p = 0.203), whereas at T2 (69.17(23.55) % and T3 (71.75(23.05) % efficacy significantly improved (T1–T2: p < 0.001 and T2–T3: p = 0.001) (Table 1, Fig. 3). Despite the different progression during the training phase, all operators removed simulated biofilm without significant difference between both groups of instruments at the final evaluation (T3: p = 0.864).
Table 1
Efficacy of removed simulated biofilm (RCE-b in %) and hard deposits (RCE-d in %) with hand (GRA) or airscaler (AIR) and the treatment time (in min) for all 12 test teeth at four different test days (T0-T3). Average values (SD) and p-values (aBonferroni adjustment (p ≤ 0.0083)). *(N of RCE-b in total 720 and N of RCE-d in total 420)
Mean (SD)
Test day
RCE-b in %
RCE-d in %
Treatment time in min per 6 test teeth in min
N of GRA*
N of AIR*
GRA
AIR
Differences between groups
N of GRA*
N of AIR*
GRA
AIR
Differences between groups
N of GRA*
N of AIR*
GRA
AIR
Differences between groups
T0
672
712
64.18(25.74)
62.25(26.69)
p = 0.172
386
414
85.48(12.32)
65.71(15.27)
p < 0.001
30
27
28.63(4.77)
32.41(7.17)
p < 0.001
T1
700
712
58.62(24.18)
63.56(24.55)
p < 0.001
407
414
84.52(13.58)
65,48(14.90)
p < 0.001
30
30
21.87(4.18)
23.57(4.34)
p < 0.001
T2
640
680
64.05(24.51)
69.17(23.55)
p < 0.001
374
398
79,26(15.71)
67.49(16.11)
p < 0.001
30
30
19.67(3.40)
19.67(3,78)
p = 1.000
T3
660
704
71.54(23.90)
71.75(23.05)
p = 0.864
378
413
84.68(16.84)
77.85(13.98)
p < 0.001
30
30
16.67(3.31)
19.80(4.52)
p < 0.001
Differences between test days T0–T3 for RCE-b, RCE-d and treatment time
 
p valuesa
p valuesa
 
p valuesa
p valuesa
 
p valuesa
p valuesa
 
T0 vs. T1
p < 0.001
p = 0.203
p = 0.257
p = 0.750
p < 0.001
p < 0.001
T0 vs. T2
p = 0.627
p < 0.001
p < 0.001
p = 0.274
p < 0.001
p < 0.001
T0 vs. T3
p < 0.001
p < 0.001
p = 0.417
p < 0.001
p < 0.001
p < 0.001
T1 vs. T2
p < 0.001
p < 0.001
p < 0.001
p = 0.012
p < 0.001
p < 0.001
T1 vs. T3
p < 0.001
p < 0.001
p = 0.885
p < 0.001
p < 0.001
p < 0.001
T2 vs. T3
p < 0.001
p = 0.001
p < 0.001
p < 0.001
p < 0.001
p = 0.393
Considering hard deposits (RCE-d), the learning curves in the AIR-group are comparable with RCE-b. The comparison of RCE-d of both groups of instruments demonstrates significant superiority of the GRA-group at all time points (T0: GRA 85.48(12.32) % versus AIR 65.71(15.27) % efficacy; p < 0.001 and T3: GRA 84.68(16.84) % versus AIR 77.85(13.98) % efficacy; p < 0.001). RCE-d values for AIR at T0 and T1/T2 (65.48(14.90) %, p = 0.750/67.49 (16.11) %, p = 0.012 (adjusted to Bonferroni)) do not differ significantly. The improvement between T0 and T3 for RCE-d in the AIR-group is significant ((77.85(13.98) %, p < 0.001) (Table 1). The learning performance for GRA had a different pattern; after equal efficacy at T0 to T1 (84.52(13.58) %, p = 0.257) the lowest efficacy was found at T2 (79.26(15.71) %, p < 0.001) and increased again until T3 (84.68(16.84) %, p < 0.001). The difference between T0 and T3, however, was not significant (p = 0.417) (Table 1, Fig. 3).
Before the beginning of the training phase, for both groups of instrument no significant difference for removing simulated biofilm in the upper jaw versus the lower jaw were measured (GRA/AIR: p = 0.011 (adjusted to Bonferroni)/p = 0.367) (Table 2). At T3, both groups of instruments were able to reach a significant higher efficacy in the lower (GRA/AIR 68.88(23.36) %/70.05(23.18) %) versus upper jaw (GRA/AIR 74.23(24.18) %/AIR 73.39(22.38) %) (all groups T0–T3: p ≤ 0.001) without significant differences between the groups of instruments (upper jaw/lower jaw: p = 0.514/p = 0.638). For removal of hard deposits at T3 we found compared with RCE-b in the AIR-group, a higher efficacy in the upper jaw versus lower jaw (83.68(19.76) %/74.26(12.11) %, p < 0.001), but for GRA, results were nearly similar (95.95(11.52) %/(93.14(11.28) %, p = 0.311). Contrary to the training effect in simulated biofilm removal in both groups, an improvement in hard deposit removal was only observed for AIR.
Table 2
Efficacy of removed simulated biofilm (RCE-b in %) and hard deposits (RCE-d in %) with hand (GRA) or airscaler (AIR) at test days T0, T1, T2, and T3 separated for jaw (upper and lower) and tooth type (front teeth, premolar, and molar). Average values (SD) and p values (aBonferroni adjustment (p ≤ 0.0083)). Data for RCE-d on tooth level were not available (n.a.)
Mean (SD)
 
Test day
GRA
AIR
Differences between GRA vs. AIR
  
Differences between jaws
  
Differences between jaws
RCE-b
RCE-d
RCE-b
RCE-d
RCE-b
RCE-d
RCE-b
RCE-d
RCE-b
RCE-d
Upper jaw
T0
66.63 (23.91)
92.95 (10.80)
p = 0.011
p = 0.822
63.16 (25.61)
71.66 (26.82)
p = 0.367
p = 0.099
p = 0.065
p < 0.001
T1
56.49 (24.0)
84.01 (15.1)
p = 0.022
p = 0.140
66.49 (22.50)
71.90 (25.29)
p = 0.001
p = 0.049
p < 0.001
p = 0.028
T2
61.67 (24.02)
87.68 (17.53)
p = 0.018
p = 0.586
68.52 (22.69)
74.87 (22.14)
p = 0.473
p = 0.055
p < 0.001
p = 0.018
T3
68.88 (23.36)
95.95 (11.52)
p = 0.004
p = 0.311
70.05 (23.18)
83.68 (19.76
p = 0.055
p = 0.030
p = 0.514
p = 0.005
Lower jaw
T0
61.60 (27.33)
92.38 (16.66)
  
61.35 (27.70)
62.37 (14.25)
  
p = 0.907
p < 0.001
T1
60.69 (24.21)
90.0 (13.62)
60.63 (26.15)
61.41 (13.19)
p = 0.979
p < 0.001
T2
66.26 (24.80)
85.19 (16.26)
69.81 (24.39)
64.98 (15.20)
p = 0.061
p < 0.001
T3
74.23 (24.18)
93.14 (11.28)
73.39 (22.83)
74.26 (12.11)
p = 0.638
p < 0.001
  
RCE-b
RCE-d
Differences between test day for RCE-ba
RCE-b
RCE-d
Differences between test day for RCE-ba
RCE-ba
RCE-d
Front teeth
T0
58.60 (27.22)
n.a.
T0–T1: p = 0.157
T1–T3: p ≤ 0.001
65.08 (26.59)
n.a.
T0–T1: p = 0.298
T1–T3: p = 0.089
p = 0.010
n.a.
T1
55.23 (25.10)
T0–T2: p = 0575
T2–T3: p ≤ 0.001
66.74 (23.14)
T0–T2: p = 0.321
T2–T3: p = 0.207
p < 0.001
T2
60.39 (27.28)
T0–T3: p ≤ 0.001
 
67.42 (23.13)
T0–T3: p = 0.013
 
p = 0.004
T3
71.14 (26.36)
T1–T2: p = 0.064
69.19 (22.59)
T1–T2: p = 0.958
p = 0.401
Pre-molar
T0
67.36 (25.22)
n.a.
T0–T1: p = 0.235
T1–T3: p = 0.001
65.33 (25.42)
n.a.
T0–T1: p = 0.010
T1–T3: p ≤ 0.001
p = 0.388
n.a.
T1
65.21 (24.55)
T0–T2: p = 0.490
T2–T3: p = 0.211
70.18 (20.05)
T0–T2: p ≤ 0.001
T2–T3: p = 0.017
p = 0.017
T2
68.05 (23.08)
T0–T3: p = 0.048
 
78.83 (19.56)
T0–T3: p ≤ 0.001
 
p < 0.001
T3
71.35 (22.09)
T1–T2: p = 0.264
81.28 (19.0)
T1–T2: p ≤ 0.001
p < 0.001
Molar
T0
66.69 (23.72)
n.a.
T0–T1: p ≤ 0.001
T1–T3: p ≤ 0.001
56.42 (27.14)
k
T0–T1: p = 0.201
T1–T3: p ≤ 0.001
p < 0.001
n.a.
T1
55.49 (21.56)
T0–T2: p = 0.017
T2–T3: p ≤ 0.001
53.99 (26.91)
T0–T2: p = 0.012
T2–T3: p = 0.028
p = 0.504
T2
64.01 (22.38)
T0–T3: p = 0.040
 
61.53 (24.32)
T0–T3: p ≤ 0.001
 
p = 0.258
T3
72.08 (23.35)
T1–T2: p ≤ 0.001
64.95 (24.10)
T1–T2: p ≤ 0.001
p = 0.001
On tooth-level, at T3 in the AIR group, most simulated biofilm was removed in premolars compared to molars and front teeth (p < 0.001), but there are no such differences for the GRA group in RCE-b (Table 2). Using GRA in molars lead to significant better RCE-b results (p = 0.001) compared with AIR, whereas in premolars efficacy was higher in the AIR group (81.28(19.0) %; GRA 71.35(22.09); p < 0.001).

Removal of simulated biofilm and hard deposits—treatment time

With only one exception at T2 (p = 1.000), the treatment time for the six teeth per group was always shorter with GRA (Table 1, p < 0.001). At the final evaluation (T3), the calculated time per tooth was 2.78 (0.55) min per tooth for GRA (AIR 3.30(0.75) min). As illustrated in Fig. 3c, from baseline T0 until T3 the treatment time per tooth with curettes decreased around 2.0 min (AIR 2.1 min) (both: p < 0.001) and the majority of all thirty operators in both groups of instruments treated under 4 min (GRA: n = 29 and AIR: n = 23) (Fig. 4c). All operators reduced their own treatment time during the training phase with curettes, whereas with sonic scalers two operators failed to improve their own treatment time between T0 and T3. Regarding the performance as efficacy of RCE-b over treatment time, a continuous improvement from T0 to T3 can be observed for GRA and AIR (Fig. 3d).

Removal of simulated biofilm and hard deposits—operators influence and self-assessment

At baseline T0, 60% of all operators in the GRA group were unable to reach an efficacy of RCE-b of 70% (73.33% of the AIR group). After the systematic training phase at T3 in both groups of instruments, this number of operators could be reduced to 33.33% (GRA) and 36.67% (AIR). For RCE-d, the learning curve was similar. Accordingly, at T0, no proband in the AIR group was able to remove all hard deposits (GRA 26.67%), but 10% at T3 (GRA 36.67%). Further changes in individual efficacy levels of RCE-b and RCE-d are shown in Fig. 4.
Furthermore, 18 operators showed higher efficacy to remove simulated biofilm with curettes at T3 versus T0 (AIR 24 operator) and 12 operators a lower efficacy (AIR 6 operators), respectively. For removal of hard deposits, 13 operators in the GRA group improved their own efficacy (AIR 22 operators), and 12 operators deteriorated (AIR 6 operators). Five operators showed similar results at T0 and T3 for RCE-d (AIR 2 operators).
At all test days, the operators self-estimated their efficacy of simulated biofilm removal (RCE-b) in both groups of instruments equally high with 60%-70% (Table 3).
Table 3:
Average values (SD) of efficacy of removed simulated biofilm (RCE-b) and self-estimated (in %) by the operators for Gracey curettes (GRA) and for sonic scaler (AIR).
 
GRA
AIR
 
RCE-b
Self-estimated RCE-b
after
RCE-b
Self-estimated RCE-b
T0
64.18(25.74)
70.0(9.88)
62.25(26.69)
64.79(10.52)
T1
58.62(24.18)
65.3(10.20)
63.56(24.55)
65.21(8.94)
T2
64.05(24.51)
67.50(8.14)
69.17(23.55)
63.33(10.80)
T3
71.54(23.90)
72.08(11.04)
71.75(23.05)
69.17(11.06)

Discussion

In a consensus report of the 1st European Workshop on Periodontal Education [13] for the undergraduate, dental curriculum and under supporting competences is recommended that dentists must be competent in “ … undertaking supra-gingival and sub-gingival scaling and root surface debridement, using both powered and manual instrumentation including stain removal and prophylactic procedures … ”. According to the common three levels of competence-based curricula, this corresponds to the highest level, as students should have a “ … theoretical knowledge and understanding of the subject together with an adequate clinical experience to be able to resolve clinical problems encountered, independently or without assistance … ” [13]. Although the necessity of theoretical and practical training within the framework of curricular education is indisputable, the key question remains on how to gain adequate clinical experience.
We could demonstrate in the current investigation that after a theoretical demonstration alone, untrained students were able to reach an efficacy to remove subgingival simulated biofilm (RCE-b) in mean of 64% (GRA) or 62% (AIR), and after 6 months of training once a week for 45 Minutes, they reached 71.5% (GRA) and 72% (AIR), corresponding to a significant improvement of 7.5%/10% (p ≤ 0.001). Interestingly, at T0, 40% of all 30 students already achieved an efficacy of over 70% for RCE-b with curette versus 27% only with AIR. During the training phase, more than half of all operators could improve their own efficacy to remove simulated biofilm. Though, more operators were able to reach this improvement by sonic scaler (GRA/AIR 18/24 operators).
For removal of hard deposits, we found only 13 operators, which improved their own efficacy using curettes between T0 and T3 versus 22 operators using sonic scalers. The observed superior efficacy at the beginning using GRA and the concomitant lack of improvement (T0 vs T3 for GRA 85.5% vs. 85%; p = 0.417) as well as the lower amount of operators demonstrating an improvement might be due to a structured training program on manikin heads teaching the application of a universal curette/scaler half a year before. This knowledge might now be transferred to the application of special curettes. On the other hand, they were totally inexperienced and not familiar with powered devices. Previous studies on undergraduate students, less-experienced or even experienced operators observed a similar phenomenon already [12, 16].
It does not seem to be surprising that the evaluated undergraduate students spend much more time for root surface debridement per tooth at the beginning of the training program (Table 2). Removal of invisible biofilm (subgingival) is difficult for less-experienced operator as they are yet not well trained in their tactility profound knowledge of the complex root morphology is missing. This leads to a significant increase of the results for RCE-b in the AIR-group already after a short time (T0–T1) and with a time delay also in the GRA-group (T0–T2). The time delay for GRA might be explicable by the more complex handling.
At T3, we found 85% of all operators achieved an efficacy of 70% for RCE-b (AIR 87%). For RCE-b, we failed to show significant differences between both groups of instruments before (T0) and after training (T3).

Treatment time

Contrary to older position paper, in which powered devices were often described as more effective while, e.g., saving treatment time compared with hand instruments [17] which could not be supported by the results of our study. However, differences between a manikin model and a real clinical situation should be kept in mind. Untrained operators needed in the beginning of their systematic training phase independent of the instrument used nearly five Minutes per tooth improving to about 3 min at T3, favoring GRA at both time points (Table 1, p < 0.001). Therefore, we have to reject one part of our hypothesis that less-experienced operators after 6 months of training with sonic scaler will neither reach a higher efficacy nor save treatment time compared with curettes. We can only hypothesize on these differences. In the present study, the amplitude for the sonic scaler was fixed at medium level as advised by the manufacturer, but power adjustment of powered devices will influence the results significantly [18, 19]. However, these findings are in line with previous investigations [12, 16]. Our research underlines the recommendation for a comprehensively training of all powered devices, whose often times supposed perceived as simpler than that for hand instruments [20].

Self-estimation

The operators of the current study could, however, estimate their own efficacy and treatment time more realistically compared with previous investigations for both instruments [21]. The training took the same amount of time, but our digitized training was supported by less supervisors (here with a ratio of 1:10). Nevertheless, the influence of motivation for the training seems to be enormous [21]. Motivated students (e.g., prizes for good performance, atmosphere of competition and enthusiasm during the whole training program) can achieve about 25% higher efficacy in removal of simulated biofilm compared with a group without motivational incentives [21]. Furthermore, motivation helped to estimate the efficacy more precisely and will greatly influence learning of effective root debridement [21]. Future studies could evaluate further developed digitized training programs with, e.g., personalized digital animation and immediate feedback function.
Furthermore, magnifying loupes might be of major importance already during training. They increase visual acuity and can therefore improve clinical outcomes in dentistry [2224]. Despite the potential advantages in wearing loupes, in the current investigation their use was allowed, but not obligatory. However, the benefit of loupes during periodontal treatments is controversially discussed in literature [2327], although a better view into the sulcus can be assumed.

Limitations

For successful periodontal therapy, a major goal besides effective removal of biofilm and hard deposits is not to damage the root surface [28]. This outcome was however not assessed in the present study. According to our previous in vitro investigations focusing solely on simulated biofilm [15, 16] or on hard deposits [27], it might be helpful to consider the goal of the treatment for unexperienced operators. Thus, given the great variety of scope of interest and study designs, all comparisons between studies require caution [16, 19, 2834]. Further on, due to the character of the in vitro simulation, e.g., using varnish to simulate the subgingival biofilm and hard deposits on the root surface of plastic teeth does not allow transferring our findings to clinical settings in general [29]. Using varnish to simulate subgingival biofilm and hard deposits allowed reproducible and standardized conditions in vitro, but the location of artificial biofilm under the simulated hard deposits as done in the current investigation is not comparably with a clinical situation. In vivo the development of hard deposits is a dynamic process that starts with a non-mineralized biofilm, which eventually calcifies. Nevertheless, it can also be seen that it does not matter whether there is a biofilm under or above a hard deposit as both have to be removed. Complete removal of hard deposits inevitably correlates with simultaneous removal of biofilm. Further, we failed to sub-analyze results of removed simulate hard deposits on jaw/tooth level, as we calculated only the percentage of the number of removed deposits compared with the total number of deposits due to technical reasons. Also, we cannot quantify possible effects of the used gingival masks, with a possible limited penetration of curettes into the sulcus and also possible damping of oscillating instruments [12, 16, 29, 35]. Furthermore, the morphology of the jaw and the tooth type are likely to have influenced our results as mentioned before. The furcation area of the involved molars was not assessed in this study, which might explain, why AIR failed to show better cleaning efficacy in molars as we assumed [17], whereas another in vitro investigation showed good accessibility when the horizontal pocket depth was less than 2 mm for both type of instruments [36]. Furthermore, as the tests were performed within one periodontitis model, the test teeth were not exactly corresponding but much with regard to type of tooth (front teeth, premolar, molar) in the upper and lower jaw and the profile of the used periodontitis models for both groups of instruments (AIR all quadrants vs. GRA: right upper and both lower quadrants). Therefore, we failed to control for possible confounder of handedness [37]. The analyzed teeth were selected to be comparable in terms of position (tooth type) and simulated probing depth/loss of attachment. Although, there is a difference in the location of the teeth between the two groups of instruments for premolars (teeth 14, 25 in the upper jaw and 34, 45 in the lower jaw), the morphology of the roots of all premolars are comparable (no furcation involvement).
Additionally, the haptic of the plaster material could as well have influenced our results due to the difficulties of simulating realistic bone morphology and haptic. However, the presented in vitro analyses allow investigating defined and clinically not measurable parameters under reproducible conditions, thereby increasing the sensitivity of the comparisons. Last but not least, the authors want to point out that the present study focused on the evaluation of the modified training program in routine teaching procedure and not to the best possible effectiveness of removal of simulated biofilm or hard deposits of undergraduate students.
Future studies should investigate during routine students’ workshops the combination of sonic scalers and curettes versus ultrasonic and subgingival air polishing with non-abrasive powder under clinical setting [10]. By teaching all these treatment methods for periodontal non-surgical therapy in dental school routine, it can be presumed that the next generation of dentists will work with the highest effectiveness concomitant with the lowest presumed number of side-effects. However, this was not evaluated in the current study. Therefore, all efforts should be done to improve the training programs and lectures in periodontology.

Conclusions

Within the limitations of the present study, it can be concluded that a systematic digitized and interactive training program in manikin heads is helpful in the training of root surface debridement in less-experienced operators. After such training, the participants are able to remove simulated biofilm with an efficacy of more than 70% in mean and nearly 80% of the hard deposits. The performance as efficacy over treatment time improved continuously for both groups of instruments. Future studies should evaluate the interaction of direct digital feedback systems and user motivation during training.

Acknowledgment

The authors would like to thank José Muñoz of the Young Innovation Company (Young Innovations Europe GmbH, Heidelberg, Germany) for technical support. This study was technically (instruments provided) supported by Young Innovation Company (Young Innovations Europe GmbH, Heidelberg, Germany).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (local approved: D509/18) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual participants included in the study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Literatur
1.
Zurück zum Zitat Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS (2018) Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol 45(Suppl 20):S162–S170PubMed Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS (2018) Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol 45(Suppl 20):S162–S170PubMed
2.
Zurück zum Zitat Petersilka GJ, Ehmke B, Flemmig TF (2000) Antimicrobial effects of mechanical debridement. Periodontol 2002(28):56–71 Petersilka GJ, Ehmke B, Flemmig TF (2000) Antimicrobial effects of mechanical debridement. Periodontol 2002(28):56–71
3.
Zurück zum Zitat Westfelt E (1996) Rationale of mechanical plaque control. J Clin Periodontol 23(3 Pt 2):263–267PubMed Westfelt E (1996) Rationale of mechanical plaque control. J Clin Periodontol 23(3 Pt 2):263–267PubMed
4.
Zurück zum Zitat Lowenberg B, Thibault J, Lawrence C, Sodek J (1986) The influence of chemically-induced modifications of root surfaces on cell migration, attachment, and orientation. J Dent Res 65(7):1010–1015PubMed Lowenberg B, Thibault J, Lawrence C, Sodek J (1986) The influence of chemically-induced modifications of root surfaces on cell migration, attachment, and orientation. J Dent Res 65(7):1010–1015PubMed
5.
Zurück zum Zitat Frantz B, Polson A (1988) Tissue interactions with dentin specimens after demineralization using tetracycline. J Periodontol 59(11):714–721PubMed Frantz B, Polson A (1988) Tissue interactions with dentin specimens after demineralization using tetracycline. J Periodontol 59(11):714–721PubMed
6.
Zurück zum Zitat Babay N (2000) Comparative SEM study on the effect of root conditioning with EDTA or tetracycline Hcl on periodontally involved root surfaces. Indian J Dent Res 11(2):53–57PubMed Babay N (2000) Comparative SEM study on the effect of root conditioning with EDTA or tetracycline Hcl on periodontally involved root surfaces. Indian J Dent Res 11(2):53–57PubMed
7.
Zurück zum Zitat Khosravi M, Bahrami ZS, Atabaki MSJ, Shokrgozar MA, Shokri F (2004) Comparative effectiveness of hand and ultrasonic instrumentations in root surface planing in vitro. J Clin Periodontol 31(3):160–165PubMed Khosravi M, Bahrami ZS, Atabaki MSJ, Shokrgozar MA, Shokri F (2004) Comparative effectiveness of hand and ultrasonic instrumentations in root surface planing in vitro. J Clin Periodontol 31(3):160–165PubMed
8.
Zurück zum Zitat Badersten A, Nilveus R, Egelberg J (1984) Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J Clin Periodontol 11(1):63–76PubMed Badersten A, Nilveus R, Egelberg J (1984) Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J Clin Periodontol 11(1):63–76PubMed
9.
Zurück zum Zitat Badersten A, Nilveus R, Egelberg J (1981) Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J Clin Periodontol 8(1):57–72PubMed Badersten A, Nilveus R, Egelberg J (1981) Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. J Clin Periodontol 8(1):57–72PubMed
10.
Zurück zum Zitat Laleman I et al (2017) Subgingival debridement: end point, methods and how often? Periodontol 75(1):189–204 Laleman I et al (2017) Subgingival debridement: end point, methods and how often? Periodontol 75(1):189–204
11.
Zurück zum Zitat Van der Weijden GAF, Dekkers GJ, Slot DE (2019) Success of non-surgical periodontal therapy in adult periodontitis patients: a retrospective analysis. Int J Dent Hyg 17(4):309–317PubMedPubMedCentral Van der Weijden GAF, Dekkers GJ, Slot DE (2019) Success of non-surgical periodontal therapy in adult periodontitis patients: a retrospective analysis. Int J Dent Hyg 17(4):309–317PubMedPubMedCentral
12.
Zurück zum Zitat Rühling A et al (2002) Learning root debridement with curettes and power-driven instruments. Part I: a training program to increase effectivity. J Clin Periodontol 29(7):622–629PubMed Rühling A et al (2002) Learning root debridement with curettes and power-driven instruments. Part I: a training program to increase effectivity. J Clin Periodontol 29(7):622–629PubMed
13.
Zurück zum Zitat Sanz M, Meyle J (2010) Scope, competences, learning outcomes and methods of periodontal education within the undergraduate dental curriculum: a consensus report of the 1st European Workshop on Periodontal Education--position paper 2 and consensus view 2. Eur J Dent Educ 14(Suppl 1):25–33PubMed Sanz M, Meyle J (2010) Scope, competences, learning outcomes and methods of periodontal education within the undergraduate dental curriculum: a consensus report of the 1st European Workshop on Periodontal Education--position paper 2 and consensus view 2. Eur J Dent Educ 14(Suppl 1):25–33PubMed
14.
Zurück zum Zitat Rühling A et al (2003) Learning root debridement with curettes and power-driven instruments. Part II: Clinical results following mechanical, nonsurgical therapy. J Clin Periodontol 30(7):611–615PubMed Rühling A et al (2003) Learning root debridement with curettes and power-driven instruments. Part II: Clinical results following mechanical, nonsurgical therapy. J Clin Periodontol 30(7):611–615PubMed
15.
Zurück zum Zitat Graetz C, Plaumann A, Rauschenbach S, Bielfeldt J, Dörfer CE, Schwendicke F (2016) Removal of simulated biofilm: a preclinical ergonomic comparison of instruments and operators. Clin Oral Investig 20(6):1193–1201PubMed Graetz C, Plaumann A, Rauschenbach S, Bielfeldt J, Dörfer CE, Schwendicke F (2016) Removal of simulated biofilm: a preclinical ergonomic comparison of instruments and operators. Clin Oral Investig 20(6):1193–1201PubMed
16.
Zurück zum Zitat Graetz C, Schwendicke F, Plaumann A, Rauschenbach S, Springer C, Kahl M, Sälzer S, Dörfer CE (2015) Subgingival instrumentation to remove simulated plaque in vitro: influence of operators' experience and type of instrument. Clin Oral Investig 19(5):987–995PubMed Graetz C, Schwendicke F, Plaumann A, Rauschenbach S, Springer C, Kahl M, Sälzer S, Dörfer CE (2015) Subgingival instrumentation to remove simulated plaque in vitro: influence of operators' experience and type of instrument. Clin Oral Investig 19(5):987–995PubMed
17.
Zurück zum Zitat Tunkel J, Heinecke A, Flemmig TF (2002) A systematic review of efficacy of machine-driven and manual subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol 29(Suppl 3):72–81 discussion 90-1PubMed Tunkel J, Heinecke A, Flemmig TF (2002) A systematic review of efficacy of machine-driven and manual subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol 29(Suppl 3):72–81 discussion 90-1PubMed
18.
Zurück zum Zitat Flemmig TF, Petersilka GJ, Mehl A, Rüdiger S, Hickel R, Klaiber B (1997) Working parameters of a sonic scaler influencing root substance removal in vitro. Clin Oral Investig 1(2):55–60PubMed Flemmig TF, Petersilka GJ, Mehl A, Rüdiger S, Hickel R, Klaiber B (1997) Working parameters of a sonic scaler influencing root substance removal in vitro. Clin Oral Investig 1(2):55–60PubMed
19.
Zurück zum Zitat Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B (1998) The effect of working parameters on root substance removal using a piezoelectric ultrasonic scaler in vitro. J Clin Periodontol 25(2):158–163PubMed Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B (1998) The effect of working parameters on root substance removal using a piezoelectric ultrasonic scaler in vitro. J Clin Periodontol 25(2):158–163PubMed
20.
Zurück zum Zitat Asadoorian J, Botbyl D, Goulding MJ (2015) Dental hygienists' perception of preparation and use for ultrasonic instrumentation. Int J Dent Hyg 13(1):30–41PubMed Asadoorian J, Botbyl D, Goulding MJ (2015) Dental hygienists' perception of preparation and use for ultrasonic instrumentation. Int J Dent Hyg 13(1):30–41PubMed
21.
Zurück zum Zitat König J, Rühling A, Schlemme H, Kocher T, Schwahn C, Plagmann HC (2002) Learning root debridement with curettes and power-driven instruments in vitro: the role of operator motivation and self-assessment. Eur J Dent Educ 6(4):169–175PubMed König J, Rühling A, Schlemme H, Kocher T, Schwahn C, Plagmann HC (2002) Learning root debridement with curettes and power-driven instruments in vitro: the role of operator motivation and self-assessment. Eur J Dent Educ 6(4):169–175PubMed
22.
Zurück zum Zitat Eichenberger M, Perrin P, Neuhaus KW, Bringolf U, Lussi A (2011) Influence of loupes and age on the near visual acuity of practicing dentists. J Biomed Opt 16(3):035003PubMed Eichenberger M, Perrin P, Neuhaus KW, Bringolf U, Lussi A (2011) Influence of loupes and age on the near visual acuity of practicing dentists. J Biomed Opt 16(3):035003PubMed
23.
Zurück zum Zitat Dadwal A, Kaur R, Jindal V, Jain A, Mahajan A, Goel A (2018) Comparative evaluation of manual scaling and root planing with or without magnification loupes using scanning electron microscope: a pilot study. J Indian Soc Periodontol 22(4):317–321PubMedPubMedCentral Dadwal A, Kaur R, Jindal V, Jain A, Mahajan A, Goel A (2018) Comparative evaluation of manual scaling and root planing with or without magnification loupes using scanning electron microscope: a pilot study. J Indian Soc Periodontol 22(4):317–321PubMedPubMedCentral
24.
Zurück zum Zitat Corbella S, Taschieri S, Cavalli N, Francetti L (2018) Comparative evaluation of the use of magnification loupes in supragingival scaling procedures. J Investig Clin Dent 9(2):e12315PubMed Corbella S, Taschieri S, Cavalli N, Francetti L (2018) Comparative evaluation of the use of magnification loupes in supragingival scaling procedures. J Investig Clin Dent 9(2):e12315PubMed
25.
Zurück zum Zitat Sunell S, Rucker L (2004) Surgical magnification in dental hygiene practice. Int J Dent Hyg 2(1):26–35PubMed Sunell S, Rucker L (2004) Surgical magnification in dental hygiene practice. Int J Dent Hyg 2(1):26–35PubMed
26.
Zurück zum Zitat Hayes MJ, Taylor JA, Smith DR (2016) Introducing loupes to clinical practice: dental hygienists experiences and opinions. Int J Dent Hyg 14(3):226–230PubMed Hayes MJ, Taylor JA, Smith DR (2016) Introducing loupes to clinical practice: dental hygienists experiences and opinions. Int J Dent Hyg 14(3):226–230PubMed
27.
Zurück zum Zitat Graetz C, Schorr S, Christofzik D, Dörfer CE, Sälzer S (2020) How to train periodontal endoscopy? Results of a pilot study removing simulated hard deposits in vitro. Clin Oral Investig 24(2):607–617PubMed Graetz C, Schorr S, Christofzik D, Dörfer CE, Sälzer S (2020) How to train periodontal endoscopy? Results of a pilot study removing simulated hard deposits in vitro. Clin Oral Investig 24(2):607–617PubMed
28.
Zurück zum Zitat Graetz C, Plaumann A, Wittich R, Springer C, Kahl M, Dörfer CE, el-Sayed KF (2017) Removal of simulated biofilm: an evaluation of the effect on root surfaces roughness after scaling. Clin Oral Investig 21(4):1021–1028PubMed Graetz C, Plaumann A, Wittich R, Springer C, Kahl M, Dörfer CE, el-Sayed KF (2017) Removal of simulated biofilm: an evaluation of the effect on root surfaces roughness after scaling. Clin Oral Investig 21(4):1021–1028PubMed
29.
Zurück zum Zitat Kocher T, Ruhling A, Momsen H, Plagmann HC (1997) Effectiveness of subgingival instrumentation with power-driven instruments in the hands of experienced and inexperienced operators. A study on manikins. J Clin Periodontol 24(7):498–504PubMed Kocher T, Ruhling A, Momsen H, Plagmann HC (1997) Effectiveness of subgingival instrumentation with power-driven instruments in the hands of experienced and inexperienced operators. A study on manikins. J Clin Periodontol 24(7):498–504PubMed
30.
Zurück zum Zitat Auplish G, Needleman IG, Moles DR, Newman HN (2000) Diamond-coated sonic tips are more efficient for open debridement of molar furcations. A comparative manikin study. J Clin Periodontol 27(5):302–307PubMed Auplish G, Needleman IG, Moles DR, Newman HN (2000) Diamond-coated sonic tips are more efficient for open debridement of molar furcations. A comparative manikin study. J Clin Periodontol 27(5):302–307PubMed
31.
Zurück zum Zitat Kumar P, Das SJ, Sonowal ST, Chawla J (2015) Comparison of root surface roughness produced by hand instruments and ultrasonic scalers: an invitro study. J Clin Diagn Res 9(11):ZC56–ZC60PubMedPubMedCentral Kumar P, Das SJ, Sonowal ST, Chawla J (2015) Comparison of root surface roughness produced by hand instruments and ultrasonic scalers: an invitro study. J Clin Diagn Res 9(11):ZC56–ZC60PubMedPubMedCentral
32.
Zurück zum Zitat Aspriello SD, Piemontese M, Levrini L, Sauro S (2011) Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments: an in vitro study. J Appl Oral Sci 19(1):74–81PubMed Aspriello SD, Piemontese M, Levrini L, Sauro S (2011) Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments: an in vitro study. J Appl Oral Sci 19(1):74–81PubMed
33.
Zurück zum Zitat Zappa U, Smith B, Simona C, Graf H, Case D, Kim W (1991) Root substance removal by scaling and root planing. J Periodontol 62(12):750–754PubMed Zappa U, Smith B, Simona C, Graf H, Case D, Kim W (1991) Root substance removal by scaling and root planing. J Periodontol 62(12):750–754PubMed
34.
Zurück zum Zitat Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B (1998) Working parameters of a magnetostrictive ultrasonic scaler influencing root substance removal in vitro. J Periodontol 69(5):547–553PubMed Flemmig TF, Petersilka GJ, Mehl A, Hickel R, Klaiber B (1998) Working parameters of a magnetostrictive ultrasonic scaler influencing root substance removal in vitro. J Periodontol 69(5):547–553PubMed
35.
Zurück zum Zitat Gankerseer EJ, Walmsley AD (1987) Preliminary investigation into the performance of a sonic scaler. J Periodontol 58(11):780–784PubMed Gankerseer EJ, Walmsley AD (1987) Preliminary investigation into the performance of a sonic scaler. J Periodontol 58(11):780–784PubMed
36.
Zurück zum Zitat Sugaya T, Kawanami M, Kato H (2002) Accessibility of an ultrasonic furcation tip to furcation areas of mandibular first and second molars. J Int Acad Periodontol 4(4):132–137PubMed Sugaya T, Kawanami M, Kato H (2002) Accessibility of an ultrasonic furcation tip to furcation areas of mandibular first and second molars. J Int Acad Periodontol 4(4):132–137PubMed
37.
Zurück zum Zitat Canakci V et al (2004) Effect of handedness on learning subgingival scaling with curettes: a study on manikins. Int J Neurosci 114(11):1463–1482PubMed Canakci V et al (2004) Effect of handedness on learning subgingival scaling with curettes: a study on manikins. Int J Neurosci 114(11):1463–1482PubMed
Metadaten
Titel
Evaluation of a systematic digitized training program on the effectivity of subgingival instrumentation with curettes and sonic scalers in vitro
verfasst von
Christian Graetz
Paula Fecke
Miriam Seidel
Anne Sophie Engel
Susanne Schorr
Johanna Sentker
Christof E. Dörfer
Sonja Sälzer
Publikationsdatum
30.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 1/2021
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-020-03356-8

Weitere Artikel der Ausgabe 1/2021

Clinical Oral Investigations 1/2021 Zur Ausgabe

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.