Skip to main content
Erschienen in: European Radiology 4/2017

05.07.2016 | Magnetic Resonance

Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years

verfasst von: René-Maxime Gracien, Lucas Nürnberger, Pavel Hok, Stephanie-Michelle Hof, Sarah C. Reitz, Udo Rüb, Helmuth Steinmetz, Rüdiger Hilker-Roggendorf, Johannes C. Klein, Ralf Deichmann, Simon Baudrexel

Erschienen in: European Radiology | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Objectives

T1 relaxometry is a promising tool for the assessment of microstructural changes during brain ageing. Previous cross-sectional studies demonstrated increasing T1 values in white and decreasing T1 values in grey matter over the lifetime. However, these findings have not yet been confirmed on the basis of a longitudinal study. In this longitudinal study over 7 years, T1 relaxometry was used to investigate the dynamics of age-related microstructural changes in older healthy subjects.

Methods

T1 mapping was performed in 17 healthy subjects (range 51–77 years) at baseline and after 7 years. Advanced cortical and white matter segmentation was used to determine mean T1 values in the cortex and white matter.

Results

The analysis revealed a decrease of mean cortical T1 values over 7 years, the rate of T1 reduction being more prominent in subjects with higher age. T1 decreases were predominantly localized in the lateral frontal, parietal and temporal cortex. In contrast, mean white matter T1 values remained stable.

Conclusions

T1 mapping is shown to be sensitive to age-related microstructural changes in healthy ageing subjects in a longitudinal setting. Data of a cohort in late adulthood and the senescence period demonstrate a decrease of cortical T1 values over 7 years, most likely reflecting decreasing water content and increased iron concentrations.

Key Points

T1 mapping is sensitive to age-related microstructural changes in a longitudinal setting.
T1 decreases were predominantly localized in the lateral frontal, parietal and temporal cortex.
The rate of T1 reduction was more prominent in subjects with higher age.
These changes most likely reflect decreasing cortical water and increasing iron concentrations.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Connell J, Brazier J, O’Cathain A, Lloyd-Jones M, Paisley S (2012) Quality of life of people with mental health problems: a synthesis of qualitative research. Health Qual Life Outcomes 10:138CrossRefPubMedPubMedCentral Connell J, Brazier J, O’Cathain A, Lloyd-Jones M, Paisley S (2012) Quality of life of people with mental health problems: a synthesis of qualitative research. Health Qual Life Outcomes 10:138CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40CrossRefPubMedPubMedCentral Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2014) What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol 117:20–40CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. NeuroImage 52:1215–1223CrossRefPubMedPubMedCentral Thambisetty M, Wan J, Carass A, An Y, Prince JL, Resnick SM (2010) Longitudinal changes in cortical thickness associated with normal aging. NeuroImage 52:1215–1223CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Long X, Liao W, Jiang C, Liang D, Qiu B, Zhang L (2012) Healthy aging: an automatic analysis of global and regional morphological alterations of human brain. Acad Radiol 19:785–793CrossRefPubMed Long X, Liao W, Jiang C, Liang D, Qiu B, Zhang L (2012) Healthy aging: an automatic analysis of global and regional morphological alterations of human brain. Acad Radiol 19:785–793CrossRefPubMed
5.
Zurück zum Zitat Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR et al (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1-9CrossRefPubMed Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR et al (2012) Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1-9CrossRefPubMed
6.
Zurück zum Zitat Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester
8.
Zurück zum Zitat Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872CrossRefPubMedPubMedCentral Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 93:176–188CrossRefPubMed Lutti A, Dick F, Sereno MI, Weiskopf N (2014) Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 93:176–188CrossRefPubMed
10.
Zurück zum Zitat Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP (1991) In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 17:402–413CrossRefPubMed Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP (1991) In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 17:402–413CrossRefPubMed
11.
Zurück zum Zitat Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K et al (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K et al (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed
12.
Zurück zum Zitat Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45:71–79CrossRefPubMed Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45:71–79CrossRefPubMed
13.
Zurück zum Zitat Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, Nyengaard JR et al (2003) Aging and the human neocortex. Exp Gerontol 38:95–99CrossRefPubMed Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, Nyengaard JR et al (2003) Aging and the human neocortex. Exp Gerontol 38:95–99CrossRefPubMed
14.
Zurück zum Zitat Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP et al (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212CrossRefPubMedPubMedCentral Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP et al (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Neeb H, Zilles K, Shah NJ (2006) Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. NeuroImage 29:910–922CrossRefPubMed Neeb H, Zilles K, Shah NJ (2006) Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. NeuroImage 29:910–922CrossRefPubMed
16.
Zurück zum Zitat Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed
17.
Zurück zum Zitat Steen RG, Gronemeyer SA, Taylor JS (1995) Age-related changes in proton T1 values of normal human brain. J Magn Reson Imaging 5:43–48CrossRefPubMed Steen RG, Gronemeyer SA, Taylor JS (1995) Age-related changes in proton T1 values of normal human brain. J Magn Reson Imaging 5:43–48CrossRefPubMed
18.
Zurück zum Zitat Cho S, Jones D, Reddick WE, Ogg RJ, Steen RG (1997) Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging 15:1133–1143CrossRefPubMed Cho S, Jones D, Reddick WE, Ogg RJ, Steen RG (1997) Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging 15:1133–1143CrossRefPubMed
19.
Zurück zum Zitat Saito N, Sakai O, Ozonoff A, Jara H (2009) Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Magn Reson Imaging 27:895–906CrossRefPubMed Saito N, Sakai O, Ozonoff A, Jara H (2009) Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns. Magn Reson Imaging 27:895–906CrossRefPubMed
20.
Zurück zum Zitat Suzuki S, Sakai O, Jara H (2006) Combined volumetric T1, T2 and secular-T2 quantitative MRI of the brain: age-related global changes (preliminary results). Magn Reson Imaging 24:877–887CrossRefPubMed Suzuki S, Sakai O, Jara H (2006) Combined volumetric T1, T2 and secular-T2 quantitative MRI of the brain: age-related global changes (preliminary results). Magn Reson Imaging 24:877–887CrossRefPubMed
21.
Zurück zum Zitat Wahlund LO, Agartz I, Almqvist O, Basun H, Forssell L, Sääf J et al (1990) The brain in healthy aged individuals: MR imaging. Radiology 174:675–679CrossRefPubMed Wahlund LO, Agartz I, Almqvist O, Basun H, Forssell L, Sääf J et al (1990) The brain in healthy aged individuals: MR imaging. Radiology 174:675–679CrossRefPubMed
22.
Zurück zum Zitat Breger RK, Yetkin FZ, Fischer ME, Papke RA, Haughton VM, Rimm AA (1991) T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 181:545–547CrossRefPubMed Breger RK, Yetkin FZ, Fischer ME, Papke RA, Haughton VM, Rimm AA (1991) T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 181:545–547CrossRefPubMed
23.
Zurück zum Zitat Papadopoulos K, Tozer DJ, Fisniku L, Altmann DR, Davies G, Rashid W et al (2010) TI-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 16:427–433CrossRefPubMed Papadopoulos K, Tozer DJ, Fisniku L, Altmann DR, Davies G, Rashid W et al (2010) TI-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler 16:427–433CrossRefPubMed
24.
Zurück zum Zitat Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135CrossRefPubMed Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61:125–135CrossRefPubMed
25.
Zurück zum Zitat Gracien R-M, Reitz SC, Hof SM, Fleischer V, Zimmermann H, Droby A et al (2015) Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur Rad. doi:10.1007/s00330-015-4072-x Gracien R-M, Reitz SC, Hof SM, Fleischer V, Zimmermann H, Droby A et al (2015) Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur Rad. doi:10.​1007/​s00330-015-4072-x
26.
Zurück zum Zitat Baudrexel S, Nürnberger L, Rüb U, Seifried C, Klein JC, Deller T et al (2010) Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. NeuroImage 51:512–520CrossRefPubMed Baudrexel S, Nürnberger L, Rüb U, Seifried C, Klein JC, Deller T et al (2010) Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. NeuroImage 51:512–520CrossRefPubMed
27.
Zurück zum Zitat Deoni SCL, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53:237–241CrossRefPubMed Deoni SCL, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53:237–241CrossRefPubMed
28.
Zurück zum Zitat Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200CrossRefPubMed Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57:192–200CrossRefPubMed
29.
Zurück zum Zitat Nöth U, Hattingen E, Bähr O, Tichy J, Deichmann R (2015) Improved visibility of brain tumors in synthetic MP-RAGE anatomies with pure T1 weighting. NMR Biomed 28:818–830CrossRefPubMed Nöth U, Hattingen E, Bähr O, Tichy J, Deichmann R (2015) Improved visibility of brain tumors in synthetic MP-RAGE anatomies with pure T1 weighting. NMR Biomed 28:818–830CrossRefPubMed
30.
Zurück zum Zitat Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):19 Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):19
31.
Zurück zum Zitat Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMed
32.
Zurück zum Zitat Gracien RM, Jurcoane A, Wagner M, Reitz SC, Mayer C, Volz S et al (2016) Multimodal quantitative MRI assessment of cortical damage in relapsing-remitting multiple sclerosis. J Magn Reson Imaging. doi:10.1002/jmri.25297 PubMed Gracien RM, Jurcoane A, Wagner M, Reitz SC, Mayer C, Volz S et al (2016) Multimodal quantitative MRI assessment of cortical damage in relapsing-remitting multiple sclerosis. J Magn Reson Imaging. doi:10.​1002/​jmri.​25297 PubMed
33.
34.
35.
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed
36.
Zurück zum Zitat Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMed
37.
Zurück zum Zitat Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61:1402–1418CrossRefPubMedPubMedCentral Reuter M, Schmansky NJ, Rosas HD, Fischl B (2012) Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61:1402–1418CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Oros-Peusquens AM, Laurila M, Shah NJ (2008) Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. Magn Reson Mater Phys 21:131–147CrossRef Oros-Peusquens AM, Laurila M, Shah NJ (2008) Magnetic field dependence of the distribution of NMR relaxation times in the living human brain. Magn Reson Mater Phys 21:131–147CrossRef
39.
Zurück zum Zitat Ogg RJ, Steen RG (1998) Age-related changes in brain T1 are correlated with iron concentration. Magn Reson Med 40:749–753CrossRefPubMed Ogg RJ, Steen RG (1998) Age-related changes in brain T1 are correlated with iron concentration. Magn Reson Med 40:749–753CrossRefPubMed
40.
Zurück zum Zitat Sedlacik J, Boelmans K, Löbel U, Holst B, Siemonsen S, Fiehler J (2014) Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T. NeuroImage 84:1032–1041CrossRefPubMed Sedlacik J, Boelmans K, Löbel U, Holst B, Siemonsen S, Fiehler J (2014) Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T. NeuroImage 84:1032–1041CrossRefPubMed
41.
Zurück zum Zitat Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA (1994) Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341CrossRefPubMed Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA (1994) Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341CrossRefPubMed
42.
Zurück zum Zitat Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611CrossRefPubMed Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27:595–611CrossRefPubMed
43.
Zurück zum Zitat Koenig SH, Brown RD, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14:482–495CrossRefPubMed Koenig SH, Brown RD, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14:482–495CrossRefPubMed
44.
Zurück zum Zitat Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20:285–291CrossRefPubMed Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20:285–291CrossRefPubMed
45.
Zurück zum Zitat Lintl P, Braak H (1983) Loss of intracortical myelinated fibers: a distinctive age-related alteration in the human striate area. Acta Neuropathol 61:178–182CrossRefPubMed Lintl P, Braak H (1983) Loss of intracortical myelinated fibers: a distinctive age-related alteration in the human striate area. Acta Neuropathol 61:178–182CrossRefPubMed
46.
Zurück zum Zitat Dinse J, Härtwich N, Waehnert MD, Tardif CL, Schäfer A, Geyer S et al (2015) A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI. NeuroImage 114:71–87CrossRefPubMed Dinse J, Härtwich N, Waehnert MD, Tardif CL, Schäfer A, Geyer S et al (2015) A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI. NeuroImage 114:71–87CrossRefPubMed
47.
Zurück zum Zitat Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185:15–22CrossRefPubMedPubMedCentral Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185:15–22CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Andersen C (1997) In vivo estimation of water content in cerebral white matter of brain tumour patients and normal individuals: towards a quantitative brain oedema definition. Acta Neurochir (Wein) 139:249–255, discussion 255–6CrossRef Andersen C (1997) In vivo estimation of water content in cerebral white matter of brain tumour patients and normal individuals: towards a quantitative brain oedema definition. Acta Neurochir (Wein) 139:249–255, discussion 255–6CrossRef
49.
Zurück zum Zitat Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2013) Brain changes in older adults at very low risk for Alzheimer’s disease. J Neurosci 33:8237–8242CrossRefPubMedPubMedCentral Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB (2013) Brain changes in older adults at very low risk for Alzheimer’s disease. J Neurosci 33:8237–8242CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187–221CrossRefPubMed Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187–221CrossRefPubMed
Metadaten
Titel
Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years
verfasst von
René-Maxime Gracien
Lucas Nürnberger
Pavel Hok
Stephanie-Michelle Hof
Sarah C. Reitz
Udo Rüb
Helmuth Steinmetz
Rüdiger Hilker-Roggendorf
Johannes C. Klein
Ralf Deichmann
Simon Baudrexel
Publikationsdatum
05.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 4/2017
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4485-1

Weitere Artikel der Ausgabe 4/2017

European Radiology 4/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.