Skip to main content
Erschienen in: Acta Neuropathologica 2/2019

04.04.2019 | Review

Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease

verfasst von: Steven Estus, Benjamin C. Shaw, Nicholas Devanney, Yuriko Katsumata, Eileen E. Press, David W. Fardo

Erschienen in: Acta Neuropathologica | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

In 2011, genome-wide association studies implicated a polymorphism near CD33 as a genetic risk factor for Alzheimer’s disease. This finding sparked interest in this member of the sialic acid-binding immunoglobulin-type lectin family which is linked to innate immunity. Subsequent studies found that CD33 is expressed in microglia in the brain and then investigated the molecular mechanism underlying the CD33 genetic association with Alzheimer’s disease. The allele that protects from Alzheimer’s disease acts predominately to increase a CD33 isoform lacking exon 2 at the expense of the prototypic, full-length CD33 that contains exon 2. Since this exon encodes the sialic acid ligand-binding domain, the finding that the loss of exon 2 was associated with decreased Alzheimer’s disease risk was interpreted as meaning that a decrease in functional CD33 and its associated immune suppression was protective from Alzheimer’s disease. However, this interpretation may need to be reconsidered given current findings that a genetic deletion which abrogates CD33 is not associated with Alzheimer’s disease risk. Therefore, integrating currently available findings leads us to propose a model wherein the CD33 isoform lacking the ligand-binding domain represents a gain of function variant that reduces Alzheimer’s disease risk.
Literatur
1.
Zurück zum Zitat Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435PubMedPubMedCentral Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435PubMedPubMedCentral
2.
Zurück zum Zitat Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441PubMedPubMedCentral Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441PubMedPubMedCentral
3.
Zurück zum Zitat Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458PubMedPubMedCentral Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458PubMedPubMedCentral
4.
Zurück zum Zitat Efthymiou AG, Goate AM (2017) Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12(1):43PubMedPubMedCentral Efthymiou AG, Goate AM (2017) Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12(1):43PubMedPubMedCentral
5.
Zurück zum Zitat Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G et al (2015) Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener 10:52PubMedPubMedCentral Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G et al (2015) Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener 10:52PubMedPubMedCentral
7.
Zurück zum Zitat Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83(5):623–632PubMedPubMedCentral Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, Hogan MF et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83(5):623–632PubMedPubMedCentral
8.
Zurück zum Zitat Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 51(3):414–430PubMedPubMedCentral Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 51(3):414–430PubMedPubMedCentral
9.
Zurück zum Zitat Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51(3):404–413PubMedPubMedCentral Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51(3):404–413PubMedPubMedCentral
10.
Zurück zum Zitat Schwarz F, Fong JJ, Varki A (2015) Human-specific evolutionary changes in the biology of siglecs. Adv Exp Med Biol 842:1–16PubMed Schwarz F, Fong JJ, Varki A (2015) Human-specific evolutionary changes in the biology of siglecs. Adv Exp Med Biol 842:1–16PubMed
11.
Zurück zum Zitat Salminen A, Kaarniranta K (2009) Siglec receptors and hiding plaques in Alzheimer’s disease. J Mol Med (Berl) 87(7):697–701 Salminen A, Kaarniranta K (2009) Siglec receptors and hiding plaques in Alzheimer’s disease. J Mol Med (Berl) 87(7):697–701
12.
Zurück zum Zitat Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274(17):11505–11512PubMed Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274(17):11505–11512PubMed
14.
Zurück zum Zitat Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H et al (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28(3):1280–1293PubMedPubMedCentral Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H et al (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28(3):1280–1293PubMedPubMedCentral
15.
Zurück zum Zitat Ishii T, Angata T, Wan ES, Cho MH, Motegi T, Gao C et al (2017) Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency. Respirology 22(4):684–690PubMed Ishii T, Angata T, Wan ES, Cho MH, Motegi T, Gao C et al (2017) Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency. Respirology 22(4):684–690PubMed
16.
Zurück zum Zitat Graustein AD, Horne DJ, Fong JJ, Schwarz F, Mefford HC, Peterson GJ et al (2017) The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis (Edinb) 104:38–45 Graustein AD, Horne DJ, Fong JJ, Schwarz F, Mefford HC, Peterson GJ et al (2017) The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis (Edinb) 104:38–45
17.
Zurück zum Zitat Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19(8):841–846PubMed Yamanaka M, Kato Y, Angata T, Narimatsu H (2009) Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology 19(8):841–846PubMed
18.
Zurück zum Zitat Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21(9):1121–1124PubMedPubMedCentral Varki A (2011) Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21(9):1121–1124PubMedPubMedCentral
19.
Zurück zum Zitat Angata T (2018) Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. Front Immunol 9:2885PubMedPubMedCentral Angata T (2018) Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. Front Immunol 9:2885PubMedPubMedCentral
20.
Zurück zum Zitat Lubbers J, Rodriguez E, van Kooyk Y (2018) Modulation of immune tolerance via siglec–sialic acid interactions. Front Immunol 9:2807PubMedPubMedCentral Lubbers J, Rodriguez E, van Kooyk Y (2018) Modulation of immune tolerance via siglec–sialic acid interactions. Front Immunol 9:2807PubMedPubMedCentral
21.
Zurück zum Zitat Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113(14):3333–3336PubMedPubMedCentral Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113(14):3333–3336PubMedPubMedCentral
22.
Zurück zum Zitat Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101(36):13251–13256PubMedPubMedCentral Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101(36):13251–13256PubMedPubMedCentral
23.
Zurück zum Zitat Cao H, Crocker PR (2011) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132(1):18–26PubMedPubMedCentral Cao H, Crocker PR (2011) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132(1):18–26PubMedPubMedCentral
24.
Zurück zum Zitat Bornhofft KF, Goldammer T, Rebl A, Galuska SP (2018) Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol 86:219–231PubMed Bornhofft KF, Goldammer T, Rebl A, Galuska SP (2018) Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol 86:219–231PubMed
25.
Zurück zum Zitat Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20(12):1964–1973PubMed Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20(12):1964–1973PubMed
26.
Zurück zum Zitat Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38(8):2303–2315PubMed Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38(8):2303–2315PubMed
27.
Zurück zum Zitat Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666PubMedPubMedCentral Macauley MS, Crocker PR, Paulson JC (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666PubMedPubMedCentral
28.
Zurück zum Zitat Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266PubMed Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266PubMed
29.
Zurück zum Zitat Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290(5489):84–89PubMed Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290(5489):84–89PubMed
30.
Zurück zum Zitat Paul SP, Taylor LS, Stansbury EK, McVicar DW (2000) Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96(2):483–490PubMed Paul SP, Taylor LS, Stansbury EK, McVicar DW (2000) Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96(2):483–490PubMed
31.
Zurück zum Zitat Walter RB, Hausermann P, Raden BW, Teckchandani AM, Kamikura DM, Bernstein ID et al (2008) Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic 9(2):267–279PubMed Walter RB, Hausermann P, Raden BW, Teckchandani AM, Kamikura DM, Bernstein ID et al (2008) Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic 9(2):267–279PubMed
32.
Zurück zum Zitat Perez-Oliva AB, Martinez-Esparza M, Vicente-Fernandez JJ, Corral-San Miguel R, Garcia-Penarrubia P, Hernandez-Caselles T (2011) Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33 M and CD33 m) on lymphoid and myeloid human cells. Glycobiology 21(6):757–770PubMed Perez-Oliva AB, Martinez-Esparza M, Vicente-Fernandez JJ, Corral-San Miguel R, Garcia-Penarrubia P, Hernandez-Caselles T (2011) Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33 M and CD33 m) on lymphoid and myeloid human cells. Glycobiology 21(6):757–770PubMed
33.
Zurück zum Zitat Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML (1999) The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 29(11):3440–3449PubMed Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML (1999) The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 29(11):3440–3449PubMed
34.
Zurück zum Zitat Mizuno K, Tagawa Y, Mitomo K, Arimura Y, Hatano N, Katagiri T et al (2000) Src homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells. J Immunol 165(3):1344–1351PubMed Mizuno K, Tagawa Y, Mitomo K, Arimura Y, Hatano N, Katagiri T et al (2000) Src homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells. J Immunol 165(3):1344–1351PubMed
35.
Zurück zum Zitat Mizuno K, Tagawa Y, Mitomo K, Watanabe N, Katagiri T, Ogimoto M et al (2002) Src homology region 2 domain-containing phosphatase 1 positively regulates B cell receptor-induced apoptosis by modulating association of B cell linker protein with Nck and activation of c-Jun NH2-terminal kinase. J Immunol 169(2):778–786PubMed Mizuno K, Tagawa Y, Mitomo K, Watanabe N, Katagiri T, Ogimoto M et al (2002) Src homology region 2 domain-containing phosphatase 1 positively regulates B cell receptor-induced apoptosis by modulating association of B cell linker protein with Nck and activation of c-Jun NH2-terminal kinase. J Immunol 169(2):778–786PubMed
36.
Zurück zum Zitat Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, McVicar DW et al (2007) CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 109(3):1061–1068PubMed Orr SJ, Morgan NM, Elliott J, Burrows JF, Scott CJ, McVicar DW et al (2007) CD33 responses are blocked by SOCS3 through accelerated proteasomal-mediated turnover. Blood 109(3):1061–1068PubMed
37.
Zurück zum Zitat Hernandez-Caselles T, Martinez-Esparza M, Perez-Oliva AB, Quintanilla-Cecconi AM, Garcia-Alonso A, Alvarez-Lopez DM et al (2006) A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol 79(1):46–58PubMed Hernandez-Caselles T, Martinez-Esparza M, Perez-Oliva AB, Quintanilla-Cecconi AM, Garcia-Alonso A, Alvarez-Lopez DM et al (2006) A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol 79(1):46–58PubMed
38.
Zurück zum Zitat Sutherland MK, Yu C, Lewis TS, Miyamoto JB, Morris-Tilden CA, Jonas M et al (2009) Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs 1(5):481–490PubMedPubMedCentral Sutherland MK, Yu C, Lewis TS, Miyamoto JB, Morris-Tilden CA, Jonas M et al (2009) Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs 1(5):481–490PubMedPubMedCentral
40.
Zurück zum Zitat Duan S, Koziol-White CJ, Jester WF Jr, Nycholat CM, Macauley MS, Panettieri RA Jr et al (2019) CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Investig 129(3):1387–1401PubMed Duan S, Koziol-White CJ, Jester WF Jr, Nycholat CM, Macauley MS, Panettieri RA Jr et al (2019) CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Investig 129(3):1387–1401PubMed
41.
Zurück zum Zitat Linnartz B, Neumann H (2013) Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia 61(1):37–46PubMed Linnartz B, Neumann H (2013) Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia 61(1):37–46PubMed
42.
Zurück zum Zitat Gratuze M, Leyns CEG, Holtzman DM (2018) New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener 13(1):66PubMedPubMedCentral Gratuze M, Leyns CEG, Holtzman DM (2018) New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener 13(1):66PubMedPubMedCentral
43.
Zurück zum Zitat Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18(12):759–772PubMedPubMedCentral Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18(12):759–772PubMedPubMedCentral
44.
45.
Zurück zum Zitat Sada K, Takano T, Yanagi S, Yamamura H (2001) Structure and function of Syk protein-tyrosine kinase. J Biochem 130(2):177–186PubMed Sada K, Takano T, Yanagi S, Yamamura H (2001) Structure and function of Syk protein-tyrosine kinase. J Biochem 130(2):177–186PubMed
46.
Zurück zum Zitat Underhill DM, Goodridge HS (2007) The many faces of ITAMs. Trends Immunol 28(2):66–73PubMed Underhill DM, Goodridge HS (2007) The many faces of ITAMs. Trends Immunol 28(2):66–73PubMed
47.
Zurück zum Zitat Strzelecka A, Kwiatkowska K, Sobota A (1997) Tyrosine phosphorylation and Fcgamma receptor-mediated phagocytosis. FEBS Lett 400(1):11–14PubMed Strzelecka A, Kwiatkowska K, Sobota A (1997) Tyrosine phosphorylation and Fcgamma receptor-mediated phagocytosis. FEBS Lett 400(1):11–14PubMed
48.
Zurück zum Zitat Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA (2009) The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev 232(1):42–58PubMedPubMedCentral Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA (2009) The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev 232(1):42–58PubMedPubMedCentral
49.
Zurück zum Zitat Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36(7):1646–1653PubMed Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36(7):1646–1653PubMed
50.
Zurück zum Zitat Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C et al (2005) Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22(1):31–42PubMed Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C et al (2005) Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22(1):31–42PubMed
51.
Zurück zum Zitat Ganesan LP, Fang H, Marsh CB, Tridandapani S (2003) The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma RIIa to modulate signaling events in myeloid cells. J Biol Chem 278(37):35710–35717PubMed Ganesan LP, Fang H, Marsh CB, Tridandapani S (2003) The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma RIIa to modulate signaling events in myeloid cells. J Biol Chem 278(37):35710–35717PubMed
52.
Zurück zum Zitat Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3(122):ra38PubMedPubMedCentral Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci Signal 3(122):ra38PubMedPubMedCentral
53.
Zurück zum Zitat Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177(4):2051–2055PubMed Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177(4):2051–2055PubMed
54.
Zurück zum Zitat Billadeau DD, Leibson PJ (2002) ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Investig 109(2):161–168PubMedPubMedCentral Billadeau DD, Leibson PJ (2002) ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Investig 109(2):161–168PubMedPubMedCentral
55.
Zurück zum Zitat Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643PubMedPubMedCentral Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643PubMedPubMedCentral
56.
Zurück zum Zitat Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT et al (2013) CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 33(33):13320–13325PubMedPubMedCentral Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT et al (2013) CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci 33(33):13320–13325PubMedPubMedCentral
57.
Zurück zum Zitat Walker DG, Whetzel AM, Serrano G, Sue LI, Beach TG, Lue LF (2015) Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 36(2):571–582PubMed Walker DG, Whetzel AM, Serrano G, Sue LI, Beach TG, Lue LF (2015) Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 36(2):571–582PubMed
58.
Zurück zum Zitat Raj T, Ryan KJ, Replogle JM, Chibnik LB, Rosenkrantz L, Tang A et al (2014) CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23(10):2729–2736PubMed Raj T, Ryan KJ, Replogle JM, Chibnik LB, Rosenkrantz L, Tang A et al (2014) CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23(10):2729–2736PubMed
59.
Zurück zum Zitat Malik M, Chiles J 3rd, Xi HS, Medway C, Simpson J, Potluri S et al (2015) Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet 24:3557–3570PubMedPubMedCentral Malik M, Chiles J 3rd, Xi HS, Medway C, Simpson J, Potluri S et al (2015) Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet 24:3557–3570PubMedPubMedCentral
60.
Zurück zum Zitat Mortland L, Alonzo TA, Walter RB, Gerbing RB, Mitra AK, Pollard JA et al (2013) Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin-containing chemotherapy. Clin Cancer Res 19(6):1620–1627PubMedPubMedCentral Mortland L, Alonzo TA, Walter RB, Gerbing RB, Mitra AK, Pollard JA et al (2013) Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin-containing chemotherapy. Clin Cancer Res 19(6):1620–1627PubMedPubMedCentral
61.
Zurück zum Zitat Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC et al (2017) CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol 35(23):2674–2682PubMedPubMedCentral Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC et al (2017) CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol 35(23):2674–2682PubMedPubMedCentral
62.
Zurück zum Zitat Laszlo GS, Beddoe ME, Godwin CD, Bates OM, Gudgeon CJ, Harrington KH et al (2018) Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTErAMG 330. Haematologica 104:e59–e62PubMed Laszlo GS, Beddoe ME, Godwin CD, Bates OM, Gudgeon CJ, Harrington KH et al (2018) Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTErAMG 330. Haematologica 104:e59–e62PubMed
63.
Zurück zum Zitat Gbadamosi M, Meshinchi S, Lamba JK (2018) Gemtuzumab ozogamicin for treatment of newly diagnosed CD33-positive acute myeloid leukemia. Future Oncol 14:3199–3213PubMedPubMedCentral Gbadamosi M, Meshinchi S, Lamba JK (2018) Gemtuzumab ozogamicin for treatment of newly diagnosed CD33-positive acute myeloid leukemia. Future Oncol 14:3199–3213PubMedPubMedCentral
64.
Zurück zum Zitat Laszlo GS, Harrington KH, Gudgeon CJ, Beddoe ME, Fitzgibbon MP, Ries RE et al (2016) Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget 7(28):43281–43294PubMedPubMedCentral Laszlo GS, Harrington KH, Gudgeon CJ, Beddoe ME, Fitzgibbon MP, Ries RE et al (2016) Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia. Oncotarget 7(28):43281–43294PubMedPubMedCentral
65.
Zurück zum Zitat Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16(7):848–850PubMedPubMedCentral Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16(7):848–850PubMedPubMedCentral
66.
Zurück zum Zitat Schwarz F, Springer SA, Altheide TK, Varki NM, Gagneux P, Varki A (2016) Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. Proc Natl Acad Sci USA 113(1):74–79PubMed Schwarz F, Springer SA, Altheide TK, Varki NM, Gagneux P, Varki A (2016) Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. Proc Natl Acad Sci USA 113(1):74–79PubMed
67.
Zurück zum Zitat Siddiqui S, Schwarz F, Springer S, Khedri Z, Yu H, Deng L et al (2017) Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse siglec-E. J Biol Chem 292(3):1029–1037PubMed Siddiqui S, Schwarz F, Springer S, Khedri Z, Yu H, Deng L et al (2017) Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse siglec-E. J Biol Chem 292(3):1029–1037PubMed
68.
Zurück zum Zitat Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290PubMed Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290PubMed
69.
Zurück zum Zitat Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA et al (2016) Large-scale exome-wide association analysis identifies loci for white blood cell traits and pleiotropy with immune-mediated diseases. Am J Hum Genet 99(1):22–39PubMedPubMedCentral Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA et al (2016) Large-scale exome-wide association analysis identifies loci for white blood cell traits and pleiotropy with immune-mediated diseases. Am J Hum Genet 99(1):22–39PubMedPubMedCentral
70.
Zurück zum Zitat Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ (2007) Tooth loss, dementia and neuropathology in the Nun study. J Am Dent Assoc 138(10):1314–1322PubMed Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ (2007) Tooth loss, dementia and neuropathology in the Nun study. J Am Dent Assoc 138(10):1314–1322PubMed
71.
Zurück zum Zitat Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5(1):eaau3333PubMedPubMedCentral Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5(1):eaau3333PubMedPubMedCentral
73.
Zurück zum Zitat Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55(1):19–24 Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55(1):19–24
74.
Zurück zum Zitat Wang J, Wu Y, Hu H, Wang W, Lu Y, Mao H et al (2011) Syk protein tyrosine kinase involves PECAM-1 signaling through tandem immunotyrosine inhibitory motifs in human THP-1 macrophages. Cell Immunol 272(1):39–44PubMed Wang J, Wu Y, Hu H, Wang W, Lu Y, Mao H et al (2011) Syk protein tyrosine kinase involves PECAM-1 signaling through tandem immunotyrosine inhibitory motifs in human THP-1 macrophages. Cell Immunol 272(1):39–44PubMed
75.
Zurück zum Zitat Balaian L, Zhong RK, Ball ED (2003) The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with Syk and/or ZAP-70 expression. Exp Hematol 31(5):363–371PubMed Balaian L, Zhong RK, Ball ED (2003) The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with Syk and/or ZAP-70 expression. Exp Hematol 31(5):363–371PubMed
76.
Zurück zum Zitat Konishi H, Kiyama H (2018) Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci 12:206PubMedPubMedCentral Konishi H, Kiyama H (2018) Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front Cell Neurosci 12:206PubMedPubMedCentral
77.
Zurück zum Zitat Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53PubMed Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53PubMed
78.
Zurück zum Zitat Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9(1):539PubMedPubMedCentral Olah M, Patrick E, Villani AC, Xu J, White CC, Ryan KJ et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9(1):539PubMedPubMedCentral
79.
Zurück zum Zitat Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose PW (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34(21):3755–3758PubMedPubMedCentral Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlic A, Rose PW (2018) NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34(21):3755–3758PubMedPubMedCentral
80.
Zurück zum Zitat Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22(6):337–342PubMed Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22(6):337–342PubMed
81.
Zurück zum Zitat Marczynke M, Groger K, Seitz O (2017) Selective binders of the tandem src homology 2 domains in Syk and Zap70 protein kinases by DNA-programmed spatial screening. Bioconjug Chem 28(9):2384–2392PubMed Marczynke M, Groger K, Seitz O (2017) Selective binders of the tandem src homology 2 domains in Syk and Zap70 protein kinases by DNA-programmed spatial screening. Bioconjug Chem 28(9):2384–2392PubMed
Metadaten
Titel
Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease
verfasst von
Steven Estus
Benjamin C. Shaw
Nicholas Devanney
Yuriko Katsumata
Eileen E. Press
David W. Fardo
Publikationsdatum
04.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Acta Neuropathologica / Ausgabe 2/2019
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-019-02000-4

Weitere Artikel der Ausgabe 2/2019

Acta Neuropathologica 2/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.