Skip to main content
Erschienen in: Hernia 6/2020

30.04.2019 | Original Article

Evaluation of decellularization protocols for production of porcine small intestine submucosa for use in abdominal wall reconstruction

verfasst von: Y. Chai, J. Xu, Y. Zhang, J. Zhang, Z. Hu, H. Zhou

Erschienen in: Hernia | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Porcine-derived acellular biologic grafts are increasingly used in abdominal wall reconstruction and other soft tissue repairs. In a previous work, we have shown porcine small intestine submucosa (PSIS) exhibits clear advantages over porcine pericardium (PPC) and porcine acellular dermal matrix (PADM) in repairing full-thickness abdominal wall defects. In the present study, we aim to determine, quantify, and compare the effects of two most commonly used decellularization protocols on biomechanical and biocompatible properties of PSIS.

Materials and methods

After mechanical preparation, PSIS was treated with either alkaline and acid (AA) protocol or sodium dodecyl sulfate (SDS) protocol. Cellular content removal, preservation of matrix components, micro- and ultra- structures, and mechanical properties were compared. The host responses were evaluated using PSIS for repairing rat abdominal wall defects.

Results and conclusion

With regard to the absence of cellular contents, neatly arranged collagen fiber structures, better retention of growth factors, better mechanical strength, lower degrees of local and systemic inflammatory responses, higher degree of vascularization and tissue ingrowth, alkaline and acid protocol exhibits clear advantages over SDS protocol for the preparation of PSIS extracellular matrix.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Eriksson A, Rosenberg J, Bisgaard T (2014) Surgical treatment for giant incisional hernia: a qualitative systematic review. Hernia. 18:31–38CrossRef Eriksson A, Rosenberg J, Bisgaard T (2014) Surgical treatment for giant incisional hernia: a qualitative systematic review. Hernia. 18:31–38CrossRef
2.
Zurück zum Zitat Meintjes J, Yan S, Zhou L, Zheng S, Zheng M (2011) Synthetic, biological and composite scaffolds for abdominal wall reconstruction. Expert Rev Med Devices. 8:275–288CrossRef Meintjes J, Yan S, Zhou L, Zheng S, Zheng M (2011) Synthetic, biological and composite scaffolds for abdominal wall reconstruction. Expert Rev Med Devices. 8:275–288CrossRef
3.
Zurück zum Zitat Ibrahim AM, Vargas CR, Colakoglu S, Nguyen JT, Lin SJ, Lee BT (2015) Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes. J Reconstr Microsurg. 31:83–94CrossRef Ibrahim AM, Vargas CR, Colakoglu S, Nguyen JT, Lin SJ, Lee BT (2015) Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes. J Reconstr Microsurg. 31:83–94CrossRef
4.
Zurück zum Zitat Kamarajah SK, Chapman SJ, Glasbey J, Morton D, Smart N, Pinkney T et al (2018) Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure. BJS Open. 2:371–380CrossRef Kamarajah SK, Chapman SJ, Glasbey J, Morton D, Smart N, Pinkney T et al (2018) Systematic review of the stage of innovation of biological mesh for complex or contaminated abdominal wall closure. BJS Open. 2:371–380CrossRef
5.
Zurück zum Zitat Novitsky YW (2013) Biology of biological meshes used in hernia repair. Surg Clin North Am. 93:1211–1215CrossRef Novitsky YW (2013) Biology of biological meshes used in hernia repair. Surg Clin North Am. 93:1211–1215CrossRef
6.
Zurück zum Zitat Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR et al (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 15:157–164CrossRef Melman L, Jenkins ED, Hamilton NA, Bender LC, Brodt MD, Deeken CR et al (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia. 15:157–164CrossRef
7.
Zurück zum Zitat Nie X, Xiao D, Wang W, Song Z, Yang Z, Chen Y et al (2015) Comparison of porcine small intestinal submucosa versus polypropylene in open inguinal hernia repair: a systematic review and meta-analysis. PLoS One. 10:e0135073CrossRef Nie X, Xiao D, Wang W, Song Z, Yang Z, Chen Y et al (2015) Comparison of porcine small intestinal submucosa versus polypropylene in open inguinal hernia repair: a systematic review and meta-analysis. PLoS One. 10:e0135073CrossRef
8.
Zurück zum Zitat Kaufmann R, Jairam AP, Mulder IM, Wu Z, Verhelst J, Vennix S et al (2017) Characteristics of different mesh types for abdominal wall repair in an experimental model of peritonitis. Br J Surg. 104:1884–1893CrossRef Kaufmann R, Jairam AP, Mulder IM, Wu Z, Verhelst J, Vennix S et al (2017) Characteristics of different mesh types for abdominal wall repair in an experimental model of peritonitis. Br J Surg. 104:1884–1893CrossRef
9.
Zurück zum Zitat Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials. 27:3675–3683PubMed Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials. 27:3675–3683PubMed
10.
Zurück zum Zitat Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials. 32:3233–3243CrossRef Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials. 32:3233–3243CrossRef
11.
Zurück zum Zitat Keane TJ, Londono R, Turner NJ, Badylak SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 33:1771–1781CrossRef Keane TJ, Londono R, Turner NJ, Badylak SF (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 33:1771–1781CrossRef
12.
Zurück zum Zitat Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX et al (2010) The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 31:8626–8633CrossRef Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX et al (2010) The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 31:8626–8633CrossRef
13.
Zurück zum Zitat Zhang J, Wang GY, Xiao YP, Fan LY, Wang Q (2011) The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model. Biomaterials. 32:7086–7095CrossRef Zhang J, Wang GY, Xiao YP, Fan LY, Wang Q (2011) The biomechanical behavior and host response to porcine-derived small intestine submucosa, pericardium and dermal matrix acellular grafts in a rat abdominal defect model. Biomaterials. 32:7086–7095CrossRef
14.
Zurück zum Zitat Du L, Wu X (2011) Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artif Organs. 35:691–705CrossRef Du L, Wu X (2011) Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artif Organs. 35:691–705CrossRef
15.
Zurück zum Zitat Zhou HY, Zhang J, Yan RL, Wang Q, Fan LY, Zhang Q et al (2011) Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation: a promising biological material to address the need for contaminated defect repair. Ann Surg. 253:1033–1041CrossRef Zhou HY, Zhang J, Yan RL, Wang Q, Fan LY, Zhang Q et al (2011) Improving the antibacterial property of porcine small intestinal submucosa by nano-silver supplementation: a promising biological material to address the need for contaminated defect repair. Ann Surg. 253:1033–1041CrossRef
16.
Zurück zum Zitat Luo JC, Chen W, Chen XH, Qin TW, Huang YC, Xie HQ et al (2011) A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials. 32:706–713CrossRef Luo JC, Chen W, Chen XH, Qin TW, Huang YC, Xie HQ et al (2011) A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials. 32:706–713CrossRef
17.
Zurück zum Zitat Haupt J, Lutter G, Gorb SN, Simionescu DT, Frank D, Seiler J et al (2018) Detergent-based decellularization strategy preserves macro- and microstructure of heart valves. Interact Cardiovasc Thorac Surg. 26:230–236CrossRef Haupt J, Lutter G, Gorb SN, Simionescu DT, Frank D, Seiler J et al (2018) Detergent-based decellularization strategy preserves macro- and microstructure of heart valves. Interact Cardiovasc Thorac Surg. 26:230–236CrossRef
18.
Zurück zum Zitat Katsimpoulas M, Morticelli L, Michalopoulos E, Gontika I, Stavropoulos-Giokas C, Kostakis A et al (2015) Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transpl Proc. 47:1228–1233CrossRef Katsimpoulas M, Morticelli L, Michalopoulos E, Gontika I, Stavropoulos-Giokas C, Kostakis A et al (2015) Investigation of the biomechanical integrity of decellularized rat abdominal aorta. Transpl Proc. 47:1228–1233CrossRef
19.
Zurück zum Zitat Westerhoff M, Tretiakova M, Hovan L, Miller J, Noffsinger A, Hart J (2010) CD61, CD31, and CD34 improve diagnostic accuracy in gastric antral vascular ectasia and portal hypertensive gastropathy: An immunohistochemical and digital morphometric study. Am J Surg Pathol. 34:494–501CrossRef Westerhoff M, Tretiakova M, Hovan L, Miller J, Noffsinger A, Hart J (2010) CD61, CD31, and CD34 improve diagnostic accuracy in gastric antral vascular ectasia and portal hypertensive gastropathy: An immunohistochemical and digital morphometric study. Am J Surg Pathol. 34:494–501CrossRef
20.
Zurück zum Zitat Badylak SF, Brown BN, Gilbert TW, Daly KA, Huber A, Turner NJ (2011) Biologic scaffolds for constructive tissue remodeling. Biomaterials. 32:316–319CrossRef Badylak SF, Brown BN, Gilbert TW, Daly KA, Huber A, Turner NJ (2011) Biologic scaffolds for constructive tissue remodeling. Biomaterials. 32:316–319CrossRef
21.
Zurück zum Zitat Novitsky YW, Orenstein SB, Kreutzer DL (2014) Comparative analysis of histopathologic responses to implanted porcine biologic meshes. Hernia. 18:713–721CrossRef Novitsky YW, Orenstein SB, Kreutzer DL (2014) Comparative analysis of histopathologic responses to implanted porcine biologic meshes. Hernia. 18:713–721CrossRef
22.
Zurück zum Zitat Naji H, Foley J, Ehren H (2014) Use of surgisis for abdominal wall reconstruction in children with abdominal wall defects. Eur J Pediatr Surg. 24:94–96PubMed Naji H, Foley J, Ehren H (2014) Use of surgisis for abdominal wall reconstruction in children with abdominal wall defects. Eur J Pediatr Surg. 24:94–96PubMed
23.
Zurück zum Zitat Ginting N, Tremblay L, Kortbeek JB (2010) Surgisis® in the management of the complex abdominal wall in trauma: a case series and review of the literature. Injury. 41:970–973CrossRef Ginting N, Tremblay L, Kortbeek JB (2010) Surgisis® in the management of the complex abdominal wall in trauma: a case series and review of the literature. Injury. 41:970–973CrossRef
24.
Zurück zum Zitat Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 30:1482–1491CrossRef Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 30:1482–1491CrossRef
25.
Zurück zum Zitat Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 14:1835–1842CrossRef Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 14:1835–1842CrossRef
26.
Zurück zum Zitat Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res. 152:135–139CrossRef Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res. 152:135–139CrossRef
27.
Zurück zum Zitat McDevitt CA, Wildey GM, Cutrone RM (2003) Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A. 67:637–640CrossRef McDevitt CA, Wildey GM, Cutrone RM (2003) Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A. 67:637–640CrossRef
28.
Zurück zum Zitat Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 8:11–24CrossRef Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium. 8:11–24CrossRef
29.
Zurück zum Zitat Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol. 199:174–180CrossRef Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol. 199:174–180CrossRef
30.
Zurück zum Zitat Lovekamp JJ, Simionescu DT, Mercuri JJ, Zubiate B, Sacks MS, Vyavahare NR (2006) Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials. 27:1507–1518CrossRef Lovekamp JJ, Simionescu DT, Mercuri JJ, Zubiate B, Sacks MS, Vyavahare NR (2006) Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials. 27:1507–1518CrossRef
31.
Zurück zum Zitat MacLeod TM, Sarathchandra P, Williams G, Sanders R, Green CJ (2004) Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns. 30:431–437CrossRef MacLeod TM, Sarathchandra P, Williams G, Sanders R, Green CJ (2004) Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns. 30:431–437CrossRef
32.
Zurück zum Zitat Koscielny A, Widenmayer S, May T, Kalff J, Lingohr P (2018) Comparison of biological and alloplastic meshes in ventral incisional hernia repair. Langenbecks Arch Surg. 403:255–263PubMed Koscielny A, Widenmayer S, May T, Kalff J, Lingohr P (2018) Comparison of biological and alloplastic meshes in ventral incisional hernia repair. Langenbecks Arch Surg. 403:255–263PubMed
33.
Zurück zum Zitat Trippoli S, Caccese E, Tulli G, Ipponi P, Marinai C, Messori A (2018) Biological meshes for abdominal hernia: Lack of evidence-based recommendations for clinical use. Int J Surg. 52:278–284CrossRef Trippoli S, Caccese E, Tulli G, Ipponi P, Marinai C, Messori A (2018) Biological meshes for abdominal hernia: Lack of evidence-based recommendations for clinical use. Int J Surg. 52:278–284CrossRef
34.
Zurück zum Zitat Köckerling F, Alam NN, Antoniou SA, Daniels IR, Famiglietti F, Fortelny RH et al (2018) What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction? Hernia. 22:249–269CrossRef Köckerling F, Alam NN, Antoniou SA, Daniels IR, Famiglietti F, Fortelny RH et al (2018) What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction? Hernia. 22:249–269CrossRef
Metadaten
Titel
Evaluation of decellularization protocols for production of porcine small intestine submucosa for use in abdominal wall reconstruction
verfasst von
Y. Chai
J. Xu
Y. Zhang
J. Zhang
Z. Hu
H. Zhou
Publikationsdatum
30.04.2019
Verlag
Springer Paris
Erschienen in
Hernia / Ausgabe 6/2020
Print ISSN: 1265-4906
Elektronische ISSN: 1248-9204
DOI
https://doi.org/10.1007/s10029-019-01954-4

Weitere Artikel der Ausgabe 6/2020

Hernia 6/2020 Zur Ausgabe

HERNIA REVIEWERS

HERNIA REVIEWERS

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.