Skip to main content
Erschienen in: Journal of Orthopaedics and Traumatology 2/2017

Open Access 30.03.2017 | Original Article

Evaluation of lower limb kinetics during gait, sprint and hop tests before and after anterior cruciate ligament reconstruction

verfasst von: Joaquín Moya-Angeler, Javier Vaquero, Francisco Forriol

Erschienen in: Journal of Orthopaedics and Traumatology | Ausgabe 2/2017

Abstract

Background

The purpose of this study was to evaluate the functional status prior to and at different times after anterior cruciate ligament reconstruction (ACLR), and to analyze the changes in the kinetic patterns of the involved and uninvolved lower limb during gait, sprint and three hop tests.

Materials and methods

Seventy-four male patients with an ACL injury were included in the study. All patients performed a standardized kinetic protocol including gait, sprint and three hop tests (single-leg hop, drop vertical jump and vertical jump tests), preoperatively and at 3, 6, and 12 months after ACLR with a semitendinosus gracilis tendon autograft. Measurements were performed with two force plates. The lower limb symmetry index (LSI) was calculated to determine whether a side-to-side leg difference was classified as normal (LSI >90%) or abnormal (LSI <90%).

Results

The LSI presented high values (>90%) at almost all times before and after ACLR in gait, sprint and single-leg hop tests (p < 0.005), with a tendency to increase postoperatively. A lower LSI was observed (<90%) in tests where both extremities were tested simultaneously, such as the drop vertical jump and vertical hop tests (p < 0.05).

Conclusion

We observed a tendency to increase symmetry restoration in the kinetics of the involved and uninvolved limb up to twelve months after ACLR, especially in those tests, in which, both limbs were tested individually (gait analysis, sprint and single-leg hop tests). Therefore, the isolation of the involved and uninvolved limb seems to be a critical component in the functional rehabilitation and evaluation of patients before and after ACLR.

Level of evidence

level III.
Hinweise
This work was carried out at the Hospital FREMAP Majadahonda in Madrid.

Introduction

Anterior cruciate ligament (ACL) injuries commonly lead to abnormal kinematics, kinetics, and muscle activity of the injured extremity. For that reason, it has been suggested that knee function should be examined and considered in the decision making process for ACL reconstruction (ACLR) [1, 2]. Including functional assessments in the evaluation of patients after ACL injury increases our ability to decide who should later undergo ACLR (non-copers) and who may benefit from non-operative management (copers) [3]. These performance-based measures are also important indicators of knee function after ACLR [4, 5].
Knee instability in ACL-deficient individuals has traditionally been assessed using static measures; however, knee instability during dynamic activities is not related to passive measures [6]. Different gait adaptations have been observed in non-copers (individuals who experience knee instability after ACL rupture) soon after ACL injury, which seem to be consistent with their movement and muscle activity during jogging [68]. Hop tests are performance-based measures used to assess the combination of muscle strength, neuromuscular control, confidence in the limb, and the ability to tolerate loads related to sports-specific activities [912]. These tests can detect limb asymmetries in patients before and after ACLR. However, while unilateral deficits are present in patients after ACLR, these may not be evident during activities involving both lower extremities. For this reason, it has been suggested that isolation of the involved limb with unilateral hop tests should be performed to detect discrepancies in function [13]. Previous studies have shown symmetry restoration and functional recovery before and after ACLR after evaluating the hop distances and times of the involved and uninvolved extremity [14, 15]. However, to our knowledge, this is the first study evaluating the kinetics of the injured and non-injured limb (before and after ACLR) during different strenuous activities, ranging from simple walking (gait analysis) to sprint, and different hop tests (including single-leg and bilateral tests).
The purpose of this study was, therefore, to evaluate the functional status prior to and at different times after ACLR, and to analyze the changes in the kinetic patterns of the involved and uninvolved limb lower during gait, sprint and three hop tests.

Materials and methods

Between January 2007 and May 2009, 105 patients with unilateral ACL injury were recruited for this study. Inclusion criteria were males aged between 20 and 40 years, with a documented and symptomatic ACL injury associated or not to a meniscal tear sustained within the previous three months. Patients were excluded if they presented any concomitant musculoskeletal condition or previous intervention in the lower extremities that could alter the mechanics of the limb (Table 1). All patients were physically active and were able to perform regular daily activities. Before undergoing ACLR, all patients performed a 6-week progressive exercise training program, emphasizing aggressive quadriceps strengthening to restore muscle strength, range of motion and appropriate neuromuscular responses [16].
Table 1
Patient demographics
Initial study sample
105 patients
 Cartilage lesions
23 patients
 Posterior cruciate ligament injury
1 patients
 Meniscal tears
5 patients
 Medial collateral ligament/lateral collateral ligament injury
2 patients
Final study sample
74 patients
 Lost to follow-up
3 patients
Age (years)
34.0 (SD = 9)
Mean weight (Newton)
843.0 (SD = 20.32)
Right knees
46 (62%)
Left knees
28 (38%)
Mean follow-up
12 months
After concluding this rehabilitation program, all patients completed a standard kinetic protocol which was performed the day before the operation. All patients underwent primary unilateral ACLR using a semitendinosus gracilis tendon autograft obtained from the ipsilateral leg. After surgery, all participants followed the same rehabilitation guidelines [16], and they repeated the same kinetic protocol at 3, 6 and 12 months after the operation. Following surgery, all subjects exhibited full range of motion of the knee, none to minimal joint effusion, and none to minimal pain during ambulation. None of the patients reported episodes of the knee ‘giving way’.
The kinetic protocol included gait analysis, sprint and hop tests (single-leg hop test, drop vertical jump and vertical hop test) (Figs. 1, 2, 3, 4) [17]. All measurements were performed with the use of two Kistler force plates (Kistler®; Winterthur, Switzerland) measuring 60 × 90 cm, fixed onto the floor in front of each other. Parameters obtained during gait for the control foot (CF) and injured knee-foot (IKF) included (Fig. 1a) step percentage (SP), double-limb step percentage (DSP), anterior-posterior shifting point (APSP) contact time (CT), heel maximum vertical force (MVF), single-limb (SL) MVF, impulse MVF, maximum anterior force (MAF) and maximum posterior force (MPF). Sprint test parameters included (Fig. 1b) MVF and CT. Parameters obtained from the single-leg hop test included (Fig. 2a) hop time, MVF and CT. Drop vertical jump parameters included (Fig. 2b) fallen MVF, CT and impulse MVF. Vertical hop test parameters included (Fig. 2c) impulse MVF, hop time and fallen MVF. All parameters were normalized by body weight. The lower limb symmetry index (LSI) was calculated to determine whether a side-to-side leg difference was classified as normal (>90%) or abnormal (<90%) [18]. The LSI was defined as the ratio of the involved limb score and the uninvolved limb score expressed in percentage (involved/uninvolved × 100 = LSI). Although LSI scores were the outcome measures of most interest, absolute scores on each lower extremity were also presented for a better understanding of the calculated index score (Tables 2, 3, 4, 5, 6). Patients were carefully instructed on how to conduct each trial before the definitive test was performed (Figs. 1, 2). Data were reviewed for completeness after each trial, and data collection continued until a minimum of three trials were recorded for both limbs. The hop tests were considered valid if the landing was stable. The timing of the kinetic profiles was normalized as a percentage of a single complete cycle.
Table 2
Gait kinetics
 
Preoperative
3 months
6 months
12 months
X
SD
X
SD
X
SD
X
SD
MVF heel
 IKF
95.51
1.01
93.39
2.70
92.27
2.58
92.88
2.71
 CF
99.81
1.58
98.93
2.19
94.88
3.15
95.46
2.25
 p
0.001
0.061
0.512
0.312
 LSI
95.6%
94.4%
97.2%
97.2%
Single–leg MVF
 IKF
82.17
1.3
78.94
2.86
76.47
2.75
79.92
1.5
 CF
80.15
1.28
77.23
2.81
75.88
1.68
78.99
2.34
 p
0.001
0.050
0.0561
0.061
 LSI
102%
102%
100%
101%
IVF (%)
 IKF
96.93
1.57
95.49
3.18
93.34
2.31
94.69
2.66
 CF
100.39
1.58
95.81
2.76
90.13
4.97
93.69
3.37
 p
0.001
0.222
0.061
0.712
 LSI
96%
99.6%
103%
101%
Anterior force
 IKF
12.39
4.25
11.58
5.31
12.34
5.7
10.54
4.57
 CF
14.36
1.58
14.42
3.61
12.78
4.43
10.80
4.10
 p
0.001
0.069
0.332
0.077
 LSI
86.2%
80.3%
96.5%
97.5%
Posterior force
 IKF
16.95
0.63
17.06
1.30
17.51
0.84
16.05
0.6
 CF
17.71
0.52
17.75
0.95
17.15
0.97
16.29
1.21
 p
0.01
0.073
0.0912
0.057
 LSI
95.7%
96.1%
102%
98.5%
Contact time (%)
 IKF
55.72
0.45
54.29
0.69
56.74
1.66
56.24
0.96
 CF
55.85
0.39
57.50
0.88
56.14
1.05
55.30
0.53
 p
0.069
0.0012
0.067
0.078
 LSI
99.7%
94.4%
101%
101%
MVF maximum vertical force, IVF impulse vertical force, AP anterior-posterior, IKF injured-knee foot, CF control foot, SD standard deviation
Table 3
Sprint kinetics
 
Preoperative
3 months
6 months
12 months
X
SD
X
SD
X
SD
X
SD
MVF
 IKF
180.5
38.4
157.4
37.5
168.6
41.4
180.6
31.4
 CF
190.2
32.7
193.8
27.5
183.9
24.0
184.1
29.9
 p
0.052
0.521
0.067
0.078
 LSI
94.9%
81.2%
91.6%
98%
Contact time
 IKF
0.24
0.13
0.28
0.19
0.22
0.08
0.18
0.06
 CF
0.24
0.13
0.25
0.20
0.21
0.09
0.25
0.20
 p
0.067
0.172
0.050
0.101
 LSI
100%
112%
104%
72%
MVF maximum vertical force, IKF injured-knee foot, CF control foot, SD standard deviation
Table 4
Single-leg hop test kinetics
 
Preoperative
3 months
6 months
12 months
X
SD
X
SD
X
SD
X
SD
MVF
 IKF
228.4
66.9
238.8
42.7
230.6
42.4
233.6
26.85
 CF
245.7
45.1
260.6
46.6
229.6
42.8
237.8
58.56
 p
0.035
0.001
0.001
0.015
 LSI
92.9%
91.6%
100%
98.2%
Hop time
 IKF
0.18
0.11
0.17
0.04
0.14
0.09
0.22
0.21
 CF
0.18
0.09
0.17
0.07
0.11
0.06
0.23
0.24
 p
0.324
0.823
0.051
0.823
 LSI
100%
100%
127%
95%
CT
 IKF
0.44
0.19
0.38
0.1
0.38
0.1
0.37
0.11
 CF
0.38
0.14
0.39
0.14
0.37
0.13
0.38
0.09
 p
0.005
0.081
0.143
0.071
 
 LSI
115%
97.4%
102.7%
97.3%
CT/hop time
 IKF
0.56
0.9
0.5
0.3
0.42
0.4
0.61
0.5
 CF
0.54
0.4
0.45
0.2
0.33
0.18
0.63
0.4
 p
0.044
0.051
0.026
0.007
 LSI
103%
111%
127%
96.8%
MVF maximum vertical force, IKF injured-knee foot, CF control foot, CT contact time, SD standard deviation
Table 5
Drop vertical jump kinetics
 
Preoperative
3 months
6 months
12 months
X
SD
X
SD
X
SD
X
SD
FVF
 IKF
160.1
6.31
144.6
15.7
143.1
7.96
157.5
8.27
 CF
184.66
6.5
191.5
14.2
176.9
10.1
193.5
13.2
 p
0.003
0.001
0.054
0.002
 LSI
86.6%
75%
80%
81.3%
IVF
 IKF
121.4
5.36
106.5
14.2
111.9
6.82
117.4
6.25
 CF
146.6
5.14
133.6
12.3
134.9
7.96
135.4
10.4
 p
0.001
0.043
0.027
0.007
 LSI
82.8%
79.7%
82.9%
86.7%
CT
 IKF
0.63
0.06
0.46
0.05
0.53
0.05
0.64
0.14
 CF
0.62
0.05
0.5
0.05
0.52
0.05
0.65
0.13
 p
0.567
0.154
0.061
0.077
 LSI
101%
92%
101%
98.4%
FVF fallen vertical force, IVF impulse vertical force, IKF injured-knee foot, CF control foot, SD standard deviation, CT contact time
Table 6
Vertical hop test kinetics
 
Preoperative
3 months
6 months
12 months
X
SD
X
SD
X
SD
X
SD
IVF
 IKF
113.4
25.8
102.5
23.6
107.0
38.2
100.2
12.56
 CF
136.6
36.3
127.7
30.2
134.8
32.5
120.5
15.89
 p
0.035
0.001
0.001
0.015
 LSI
83%
80%
79.3%
83.1%
FVF
 IKF
233.5
88.9
185.2
71.8
210.1
60.7
250.3
64.08
 CF
234.0
67.6
239.5
63.3
236.2
50.7
243.6
31.13
 p
0.035
0.080
0.200
0.063
 LSI
99.7%
77.3%
88.9%
102%
IVF/FVF
 IKF
59.93
48.3
60.16
18.9
55.29
27.1
42.43
12.02
 CF
64.09
30.6
55.39
13.9
59.94
24.9
50.04
7.83
 p
0.035
0.432
0.587
0.156
 LSI
93.5%
108.6%
92.2%
84.5%
Hop time
 IKF
0.42
0.11
0.46
0.11
0.48
0.07
0.47
0.04
 CF
0.41
0.11
0.53
0.22
0.47
0.07
0.39
0.14
 p
0.057
0.762
0.052
0.062
 LSI
102%
86.7%
102%
120%
IVF impulse vertical force, FVF fallen vertical force, MVF maximum vertical force, IKF injured-knee foot, CF control foot, SD standard deviation
Descriptive statistics, including mean and standard deviation, were used to describe patient demographics. Mean kinetic values at baseline and at 3, 6, and 12 months postoperatively were compared using repeated-measures analyses of variance (ANOVA). For each ANOVA in a significant F ratio, post hoc analysis was performed using t test with Bonferroni correction for multiple comparisons; this was performed in order to look at the individual effect rather than the effect of all variables together. All statistical analyses were performed using SPSS v.17.0 for Windows (Chicago, IL, USA). Statistical significance was set as p < 0.05.

Results

Results of gait kinetics are shown in Table 2 (Figs. 1, 2). Although the LSI improved 12 months after surgery for most of the measurements performed, these differences were not statistically significant. The only significant difference was the preoperative and 12-month anterior force; however, this difference was not statistically significant (p 0.077). Contact times showed no differences pre- and postoperatively. The sprint kinetics results (Table 3) presented a similar pattern; however, a slight improvement in LSI was observed 12 months after ACLR (p 0.078). Single-leg hop test kinetics (Table 4; Fig. 4b) presented a significant improvement in LSI 6 months (100%) after ACLR, which persisted up to 12 months postoperatively (98.2%) (p 0.001–0.015). However, drop vertical jump results (Table 5, Fig. 4c) presented a different pattern with a lower LSI 12 months after surgery (p 0.002) (<90% at all times). Vertical hop test kinetics showed no differences between preoperative and postoperative LSI values (<90% at all times) (Table 6). Contact/hop times showed no differences preoperatively or postoperatively in all test performed.

Discussion

The most significant finding of this study is that limb to limb kinetic asymmetries presented a tendency to decrease with time after ACLR in the gait, sprint and single-leg hop tests, with the LSI >90% before and after ACLR. The drop vertical jump and vertical hop tests, however, did not present such behavior with the LSI <90% before and after ACLR.
Our results seem to be consistent with those reported by other authors [14, 15], showing symmetry restoration and functional recovery before and after ACLR in gait, sprint and single-leg hop tests. However, we were not able to observe this phenomenon in all tests performed, since both the drop vertical jump and the vertical hop test did not improve their LSI after ACLR. Logerstedt et al. [15] evaluated functional recovery (quadriceps strength testing, hop testing, and self-reported questionnaires for knee function) in eighty-three athletes after an ACL injury, and at different times after ACLR. They concluded that limb to limb asymmetries are reduced, and normal limb symmetry is returned to a similar level 6 months after ACLR. More recently, Rohman et al. [14] also evaluated changes in the involved and uninvolved limb function after ACLR in 122 patients, with twelve individual tests. From the twelve functional tests in the study, the single-leg squat, retro step-up, single-leg hop, crossover triple hop, and timed hop were suggested to be highly useful tests, since all showed an initial LSI <90%, with significant improvement after rehabilitation. To our knowledge, our study is the first to evaluate LSI functional kinetics in patients before and after ACLR. We included gait, sprint and different hop tests in order to find out if more demanding tests would show any differences. However, we observed that those tests in which the involved and uninvolved leg were tested individually (gait, spring and single-leg hop test) presented a high LSI (>90%) before ACLR, with a tendency to increase at latest follow-up (close to 100%). Nevertheless, those tests in which both legs were tested at the same time (drop vertical jump and vertical hop test) presented a low LSI preoperatively and at all times postoperatively.
Patient management after ACL injury in active individuals may be improved by evaluating function as a consequence of dynamic knee stability using simple hop tests and validated knee outcome surveys, rather than the magnitude of knee laxity and preinjury activity level [19, 20]. Clinicians have traditionally used single-leg hop tests to assess both the patient’s lower extremity muscular strength and the ability to perform tasks that challenge the stability of the knee [21, 22]. For that reason, single-leg hop tests are now commonly used in knee rehabilitation programs. Noyes et al. [23] were one of the first authors to describe a combination of hop tests that mimic the demands of dynamic knee stability during highly demanding activities, and are intended to prepare the patient for a return to such activities [24]. Posteriorly, Gustavsson et al. [25] reported high test–retest reliability, sensitivity, and accuracy after combining three hop tests, that included vertical jump, hop test for distance and hop test performance while developing fatigue (the side hop). More recently, single-leg hop tests have been used to detect persistent limb asymmetries in performance during high-demanding activities, using the lower symmetry index to evaluate the performance between the involved and uninvolved limb [14, 15]. This is preferable to the use of single-limb performance variables because both patients differ in ability, and because (in biomechanical testing) limb symmetry is associated with better rates of return to sports and lower rates of reinjury [24, 26]. Moreover, the current bibliography supports the use of LSI thresholds ranging from 80−90% before recommending return to sports [24, 27, 28]. Nevertheless, the effects of postoperative rehabilitation on the uninvolved limb are not well understood in regard to functional testing. It has been suggested that differences in postural stability after ACLR may be explained by the specific nature of the exercise, and by a possible compensation of the uninvolved lower extremity [21, 29, 30]. Therefore, while unilateral deficits are present in patients after ACLR, these may not be evident during activities involving both lower extremities. For this reason, it has been suggested that the isolation of the involved limb with unilateral hop tests should be performed to detect discrepancies in function [13]. This phenomenon which is not yet well understood, and presents inconclusive data in the literature, may explain the fact that in our study the LSI never improved in tests in which both the involved and uninvolved limb were tested at the same time.
This study presents some limitations. The results can only be generalized to subjects who present with isolated ACL injury, and should not be generalized to individuals with complex concomitant injuries. In addition, as the aim of the study was to evaluate kinetics symmetry (involved and uninvolved limb) restoration before and after ACLR, a comparison group (control group) was not included. Lastly, we did not include any self-reported questionnaires or scores for knee function, which would have added valuable information to the study.
The findings of this study showed a tendency to increase symmetry restoration in the kinetics of the involved and uninvolved limb up to twelve months after ACLR, especially in those tests in which both limbs were tested individually (gait analysis, sprint and single-leg hop tests) as opposed to those tests in which both limbs were tested simultaneously (drop vertical jump and vertical hop test). Therefore, the isolation of the involved and involved limb seems to be a critical component in the functional rehabilitation and evaluation before and after ACLR, as the uninjured contralateral extremity may tend to compensate in activities where both limbs are under stress at the same time, thus diminishing symmetry restoration.

Authors' contribution

All authors were fully involved in the study and preparation of the manuscript and the material within has not been and will not be submitted for publication elsewhere.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.
All patients gave informed consent prior to being included in the study.

Ethical approval

All procedures involving human participants were in accordance with the 1964 Helsinki Declaration and its later amendments. The study was approved by the Research Ethics Committee (or Institutional Review Board).

Funding

There was no funding obtained for this study.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries. Part I Am J Sports Med 33:1579–1602CrossRefPubMed Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries. Part I Am J Sports Med 33:1579–1602CrossRefPubMed
2.
Zurück zum Zitat Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37:955–961CrossRefPubMed Granan LP, Bahr R, Lie SA, Engebretsen L (2009) Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med 37:955–961CrossRefPubMed
3.
Zurück zum Zitat Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA (2010) A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther 40:705–721CrossRefPubMedPubMedCentral Eitzen I, Moksnes H, Snyder-Mackler L, Risberg MA (2010) A progressive 5-week exercise therapy program leads to significant improvement in knee function early after anterior cruciate ligament injury. J Orthop Sports Phys Ther 40:705–721CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Risberg MA, Holm I, Tjomsland O, Ljunggren E, Ekeland A (1999) Prospective study of changes in impairments and disabilities after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 29:400–412CrossRefPubMed Risberg MA, Holm I, Tjomsland O, Ljunggren E, Ekeland A (1999) Prospective study of changes in impairments and disabilities after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 29:400–412CrossRefPubMed
5.
Zurück zum Zitat Fitzgerald GK, Lephart SM, Hwang JH, Wainner RS (2001) Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther 31:588–597CrossRefPubMed Fitzgerald GK, Lephart SM, Hwang JH, Wainner RS (2001) Hop tests as predictors of dynamic knee stability. J Orthop Sports Phys Ther 31:588–597CrossRefPubMed
6.
Zurück zum Zitat Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability and functional outcomes after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31:210–215CrossRefPubMed Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability and functional outcomes after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31:210–215CrossRefPubMed
7.
Zurück zum Zitat Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc 8:262–269CrossRefPubMed Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc 8:262–269CrossRefPubMed
8.
Zurück zum Zitat Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9:62–71CrossRefPubMed Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9:62–71CrossRefPubMed
9.
Zurück zum Zitat Borsa PA, Lephart SM, Irrgang JJ (1998) Comparison of performance-based and patient reported measures of function in anterior cruciate ligament-deficient individuals. J Orthop Sports Phys Ther 28:392–399CrossRefPubMed Borsa PA, Lephart SM, Irrgang JJ (1998) Comparison of performance-based and patient reported measures of function in anterior cruciate ligament-deficient individuals. J Orthop Sports Phys Ther 28:392–399CrossRefPubMed
10.
Zurück zum Zitat Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–417CrossRefPubMed Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–417CrossRefPubMed
11.
Zurück zum Zitat DeCarlo MS, Sell KE (1997) The effects of the number and frequency of physical therapy treatments on selected outcomes of treatment in patients with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 26:332–339CrossRef DeCarlo MS, Sell KE (1997) The effects of the number and frequency of physical therapy treatments on selected outcomes of treatment in patients with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 26:332–339CrossRef
12.
Zurück zum Zitat Petschnig R, Baron R, Albrecht M (1998) The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 28:23–31CrossRefPubMed Petschnig R, Baron R, Albrecht M (1998) The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 28:23–31CrossRefPubMed
13.
Zurück zum Zitat Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346CrossRefPubMed Fithian DC, Paxton EW, Stone ML, Luetzow WF, Csintalan RP et al (2005) Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am J Sports Med 33:335–346CrossRefPubMed
14.
Zurück zum Zitat Myer GD, Schmitt LC, Brent JL, Ford KR, Foss KDB, Scherer BJ, Heidt RS, Divine JG, Hewett TE (2011) Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther 41(6):377–387CrossRefPubMedPubMedCentral Myer GD, Schmitt LC, Brent JL, Ford KR, Foss KDB, Scherer BJ, Heidt RS, Divine JG, Hewett TE (2011) Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther 41(6):377–387CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rohman R, Steubs JT, Tompkins M (2015) Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: implications for Limb Symmetry Index measures. Am Journal Sports Med 43(6):1391–1398CrossRef Rohman R, Steubs JT, Tompkins M (2015) Changes in involved and uninvolved limb function during rehabilitation after anterior cruciate ligament reconstruction: implications for Limb Symmetry Index measures. Am Journal Sports Med 43(6):1391–1398CrossRef
16.
Zurück zum Zitat Logerstedt D, Lynch A, Axe M, Snyder-Mackler L (2013) Symmetry restoration and functional recovery before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:859–868CrossRefPubMed Logerstedt D, Lynch A, Axe M, Snyder-Mackler L (2013) Symmetry restoration and functional recovery before and after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:859–868CrossRefPubMed
17.
Zurück zum Zitat Manal T, Snyder-Mackler L (1996) Practice guidelines for anterior cruciate ligament rehabilitation: a criterion-based rehabilitation progression. Oper Tech Orthop 6(3):190–196CrossRef Manal T, Snyder-Mackler L (1996) Practice guidelines for anterior cruciate ligament rehabilitation: a criterion-based rehabilitation progression. Oper Tech Orthop 6(3):190–196CrossRef
18.
Zurück zum Zitat Grindem H, Logerstedt D, Eitzen I, Moksnes H, Axe MJ, Snyder-Mackler L et al (2011) Single-legged hop tests as predictors of self-reported knee function in nonoperatively treated individuals with anterior cruciate ligament injury. Am J Sports Med 39:2347–2354CrossRefPubMedPubMedCentral Grindem H, Logerstedt D, Eitzen I, Moksnes H, Axe MJ, Snyder-Mackler L et al (2011) Single-legged hop tests as predictors of self-reported knee function in nonoperatively treated individuals with anterior cruciate ligament injury. Am J Sports Med 39:2347–2354CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am 65(2):154–162CrossRefPubMed Noyes FR, Mooar PA, Matthews DS, Butler DL (1983) The symptomatic anterior cruciate-deficient knee. Part I: the long-term functional disability in athletically active individuals. J Bone Joint Surg Am 65(2):154–162CrossRefPubMed
20.
Zurück zum Zitat Lephart SM, Perrin DH, Fu FH (1992) Relationship between selected physical characteristics and functional capacity in the anterior cruciate ligament-insufficient athlete. J Orthop Sports Phys Ther 16:174–181CrossRefPubMed Lephart SM, Perrin DH, Fu FH (1992) Relationship between selected physical characteristics and functional capacity in the anterior cruciate ligament-insufficient athlete. J Orthop Sports Phys Ther 16:174–181CrossRefPubMed
21.
Zurück zum Zitat Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36:48–56CrossRefPubMed Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36:48–56CrossRefPubMed
22.
Zurück zum Zitat Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87:337–349CrossRefPubMed Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87:337–349CrossRefPubMed
23.
Zurück zum Zitat Zouita Ben Moussa A, Zouita S, Dziri C, Ben Salah BZ (2009) Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehab Med 52:475–484CrossRef Zouita Ben Moussa A, Zouita S, Dziri C, Ben Salah BZ (2009) Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehab Med 52:475–484CrossRef
24.
Zurück zum Zitat Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19:513–518CrossRefPubMed Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19:513–518CrossRefPubMed
25.
Zurück zum Zitat Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280CrossRefPubMed Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280CrossRefPubMed
26.
Zurück zum Zitat Gustavsson A, Neeter C, Thomeé P, Silbernagel KG, Augustsson J, Thomeé R et al (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788CrossRefPubMed Gustavsson A, Neeter C, Thomeé P, Silbernagel KG, Augustsson J, Thomeé R et al (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788CrossRefPubMed
27.
Zurück zum Zitat Paterno MV, Schmidt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978CrossRefPubMedPubMedCentral Paterno MV, Schmidt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39(3):538–543CrossRefPubMed Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39(3):538–543CrossRefPubMed
29.
Zurück zum Zitat Adams D, Logerstedt DS, Hunter-Giordiano A et al (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42(7):601–614CrossRefPubMedPubMedCentral Adams D, Logerstedt DS, Hunter-Giordiano A et al (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42(7):601–614CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Kramer JF, Nusca D, Fowler P, Webster-Bogaert S (1992) Test-retest reliability of the one-leg hop test following ACL reconstruction. Clin J Sport Med 2(4):240–243CrossRef Kramer JF, Nusca D, Fowler P, Webster-Bogaert S (1992) Test-retest reliability of the one-leg hop test following ACL reconstruction. Clin J Sport Med 2(4):240–243CrossRef
Metadaten
Titel
Evaluation of lower limb kinetics during gait, sprint and hop tests before and after anterior cruciate ligament reconstruction
verfasst von
Joaquín Moya-Angeler
Javier Vaquero
Francisco Forriol
Publikationsdatum
30.03.2017
Verlag
Springer International Publishing
Erschienen in
Journal of Orthopaedics and Traumatology / Ausgabe 2/2017
Print ISSN: 1590-9921
Elektronische ISSN: 1590-9999
DOI
https://doi.org/10.1007/s10195-017-0456-9

Weitere Artikel der Ausgabe 2/2017

Journal of Orthopaedics and Traumatology 2/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.