Skip to main content

01.12.2018 | Original research | Ausgabe 1/2018 Open Access

EJNMMI Research 1/2018

Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods

EJNMMI Research > Ausgabe 1/2018
Craig Parkinson, Kieran Foley, Philip Whybra, Robert Hills, Ashley Roberts, Chris Marshall, John Staffurth, Emiliano Spezi
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s13550-018-0379-3) contains supplementary material, which is available to authorized users.



Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%. Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial interest in prognostic research but requires the accurate definition of the metabolic tumour volume. This study compares prognostic models developed in the same patient cohort using individual PET segmentation algorithms and assesses the impact on patient risk stratification.
Consecutive patients (n = 427) with biopsy-proven OC were included in final analysis. All patients were staged with PET/CT between September 2010 and July 2016. Nine automatic PET segmentation methods were studied. All tumour contours were subjectively analysed for accuracy, and segmentation methods with < 90% accuracy were excluded. Standardised image features were calculated, and a series of prognostic models were developed using identical clinical data. The proportion of patients changing risk classification group were calculated.


Out of nine PET segmentation methods studied, clustering means (KM2), general clustering means (GCM3), adaptive thresholding (AT) and watershed thresholding (WT) methods were included for analysis. Known clinical prognostic factors (age, treatment and staging) were significant in all of the developed prognostic models. AT and KM2 segmentation methods developed identical prognostic models. Patient risk stratification was dependent on the segmentation method used to develop the prognostic model with up to 73 patients (17.1%) changing risk stratification group.


Prognostic models incorporating quantitative image features are dependent on the method used to delineate the primary tumour. This has a subsequent effect on risk stratification, with patients changing groups depending on the image segmentation method used.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

EJNMMI Research 1/2018 Zur Ausgabe