Skip to main content
Erschienen in:

27.10.2024 | Original Article

Evaluation of root canal filling length on periapical radiograph using artificial intelligence

verfasst von: Berrin Çelik, Mehmet Zahid Genç, Mahmut Emin Çelik

Erschienen in: Oral Radiology | Ausgabe 1/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

This work proposes a novel method to evaluate root canal filling (RCF) success using artificial intelligence (AI) and image analysis techniques.

Methods

1121 teeth with root canal treatment in 597 periapical radiographs (PARs) were anonymized and manually labeled. First, RCFs were segmented using 5 different state-of-the-art deep learning models based on convolutional neural networks. Their performances were compared based on the intersection over union (IoU), dice score and accuracy. Additionally, fivefold cross validation was applied for the best-performing model and their outputs were later used for further analysis. Secondly, images were processed via a graphical user interface (GUI) that allows dental clinicians to mark the apex of the tooth, which was used to find the distance between the apex of the tooth and the nearest RCF prediction of the deep learning model towards it. The distance can show whether the RCF is normal, short or long.

Results

Model performances were evaluated by well-known evaluation metrics for segmentation such as IoU, Dice score and accuracy. CNN-based models can achieve an accuracy of 88%, an IoU of 79% and Dice score of 88% in segmenting root canal fillings.

Conclusions

Our study demonstrates that AI-based solutions present accurate and reliable performance for root canal filling evaluation.
Literatur
1.
Zurück zum Zitat Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011;44(7):583–609.CrossRefPubMed Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011;44(7):583–609.CrossRefPubMed
2.
Zurück zum Zitat Ng YL, Mann V, Gulabivala K. Outcome of secondary root canal treatment: a systematic review of the literature. Int Endod J. 2008;41(12):1026–46.CrossRefPubMed Ng YL, Mann V, Gulabivala K. Outcome of secondary root canal treatment: a systematic review of the literature. Int Endod J. 2008;41(12):1026–46.CrossRefPubMed
3.
Zurück zum Zitat Lost C. Quality guidelines for endodontic treatment: consensus report of the European society of endodontology. Int Endod J. 2006;39(12):921–30.CrossRef Lost C. Quality guidelines for endodontic treatment: consensus report of the European society of endodontology. Int Endod J. 2006;39(12):921–30.CrossRef
4.
Zurück zum Zitat Ng YL, et al. Outcome of primary root canal treatment: systematic review of the literature-part 2. Influence of clinical factors. Int Endod J. 2008;41(1):6–31.CrossRefPubMed Ng YL, et al. Outcome of primary root canal treatment: systematic review of the literature-part 2. Influence of clinical factors. Int Endod J. 2008;41(1):6–31.CrossRefPubMed
5.
Zurück zum Zitat Cantu AG, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.CrossRefPubMed Cantu AG, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.CrossRefPubMed
9.
Zurück zum Zitat Çelik B, Savaştaer EF, Kaya HI, Çelik ME. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofacial Radiol. 2023;52(8):20230118.CrossRef Çelik B, Savaştaer EF, Kaya HI, Çelik ME. The role of deep learning for periapical lesion detection on panoramic radiographs. Dentomaxillofacial Radiol. 2023;52(8):20230118.CrossRef
10.
Zurück zum Zitat Kwon O, et al. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiol. 2020;49(8):20200185.CrossRef Kwon O, et al. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiol. 2020;49(8):20200185.CrossRef
12.
Zurück zum Zitat Çelik B, Çelik ME. Root dilaceration using deep learning: a diagnostic approach. Appl Sci. 2023;13(14):8260.CrossRef Çelik B, Çelik ME. Root dilaceration using deep learning: a diagnostic approach. Appl Sci. 2023;13(14):8260.CrossRef
14.
Zurück zum Zitat Zhao HS, et al. Pyramid scene parsing network. 30th Ieee conference on computer vision and pattern recognition (Cvpr 2017). 2017; pp. 6230–6239 Zhao HS, et al. Pyramid scene parsing network. 30th Ieee conference on computer vision and pattern recognition (Cvpr 2017). 2017; pp. 6230–6239
15.
Zurück zum Zitat Wang XL, et al. Non-local neural networks. 2018 Ieee/Cvf conference on computer vision and pattern recognition (Cvpr). 2018; pp. 7794-7803 Wang XL, et al. Non-local neural networks. 2018 Ieee/Cvf conference on computer vision and pattern recognition (Cvpr). 2018; pp. 7794-7803
16.
Zurück zum Zitat Li X, et al. Expectation-maximization attention networks for semantic segmentation. 2019 Ieee/Cvf international conference on computer vision (Iccv 2019). 2019; pp. 9166–9175 Li X, et al. Expectation-maximization attention networks for semantic segmentation. 2019 Ieee/Cvf international conference on computer vision (Iccv 2019). 2019; pp. 9166–9175
17.
Zurück zum Zitat He JJ, Deng ZY, Qiao Y. Dynamic multi-scale filters for semantic segmentation. 2019 Ieee/Cvf international conference on computer vision (Iccv 2019). 2019; pp. 3561–3571 He JJ, Deng ZY, Qiao Y. Dynamic multi-scale filters for semantic segmentation. 2019 Ieee/Cvf international conference on computer vision (Iccv 2019). 2019; pp. 3561–3571
18.
Zurück zum Zitat Ye M, et al. Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell. 2022;44(6):2872–93.CrossRefPubMed Ye M, et al. Deep learning for person re-identification: a survey and outlook. IEEE Trans Pattern Anal Mach Intell. 2022;44(6):2872–93.CrossRefPubMed
19.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A. Deep learning. In: Adaptive Computation and Machine Learning Series, vol. xxii. Cambridge: MIT Press; 2016. p. 775. Goodfellow I, Bengio Y, Courville A. Deep learning. In: Adaptive Computation and Machine Learning Series, vol. xxii. Cambridge: MIT Press; 2016. p. 775.
20.
Zurück zum Zitat Buckley M, Spangberg LSW. The prevalence and technical quality of endodontic treatment in an American subpopulation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(1):92–100.CrossRefPubMed Buckley M, Spangberg LSW. The prevalence and technical quality of endodontic treatment in an American subpopulation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(1):92–100.CrossRefPubMed
21.
Zurück zum Zitat Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46(2):112–21.CrossRef Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46(2):112–21.CrossRef
23.
Zurück zum Zitat Choi HR, et al. Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks. Forensic Sci Res. 2022;7(3):456–66.CrossRefPubMedPubMedCentral Choi HR, et al. Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks. Forensic Sci Res. 2022;7(3):456–66.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Sherwood AA, et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone-beam computed tomography. J Endod. 2021;47(12):1907–16.CrossRefPubMed Sherwood AA, et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone-beam computed tomography. J Endod. 2021;47(12):1907–16.CrossRefPubMed
26.
Zurück zum Zitat Jeon SJ, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofacial Radiol. 2021;50(5):20200513.CrossRef Jeon SJ, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofacial Radiol. 2021;50(5):20200513.CrossRef
28.
Zurück zum Zitat Wang YW, et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning. Med Image Anal. 2023;85:102750.CrossRefPubMed Wang YW, et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning. Med Image Anal. 2023;85:102750.CrossRefPubMed
29.
Zurück zum Zitat Duan W, et al. Refined tooth and pulp segmentation using U-Net in CBCT image. Dentomaxillofacial Radiol. 2021;50(6):20200251.CrossRef Duan W, et al. Refined tooth and pulp segmentation using U-Net in CBCT image. Dentomaxillofacial Radiol. 2021;50(6):20200251.CrossRef
Metadaten
Titel
Evaluation of root canal filling length on periapical radiograph using artificial intelligence
verfasst von
Berrin Çelik
Mehmet Zahid Genç
Mahmut Emin Çelik
Publikationsdatum
27.10.2024
Verlag
Springer Nature Singapore
Erschienen in
Oral Radiology / Ausgabe 1/2025
Print ISSN: 0911-6028
Elektronische ISSN: 1613-9674
DOI
https://doi.org/10.1007/s11282-024-00781-3

Neu im Fachgebiet Zahnmedizin

Das alles ändert sich für Arztpraxen in 2025

  • 31.12.2024
  • EBM
  • Nachrichten

Ab Januar greifen jede Menge Neuerungen – ob im EBM, Arbeits- und Steuerrecht oder bei der digitalen Vernetzung. Darunter einige Verbesserungen, aber teils auch Mehraufwand. „Same procedure as every year?“ – Ein Überblick.

Wenn Praxen Termine absagen müssen: So geht’s ohne Ärger und Stress

Bundesweit sind viele Praxen von Krankheitsfällen in den eigenen Reihen betroffen. Die Praxis-EDV und strukturierte Abläufe können notwendige Terminabsagen erleichtern.

Wie gefährlich sind suspekte Veränderungen in der Mundhöhle?

Wie hoch ist das Risiko, dass sich aus einer bereits verdächtigen Veränderung der Mundschleimhaut ein Karzinom entwickelt? Ein US-Team hat dazu das Patientenregister der Universität San Francisco ausgewertet.

Das deutsche Gesundheitssystem kränkelt und hat Fieber

OECD und Europäische Kommission haben zusammen einen Bericht zum Zustand der europäischen Gesundheitssysteme herausgegeben. Diagnose für Deutschland: Wäre das Land ein menschliches Wesen, würde man es wohl krankschreiben.

Update Zahnmedizin

Bestellen Sie unseren kostenlosen Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.