Skip to main content
Erschienen in: Brain Structure and Function 2/2017

03.06.2016 | Original Article

Evaluation of WGA–Cre-dependent topological transgene expression in the rodent brain

verfasst von: Sarah Libbrecht, Chris Van den Haute, Lina Malinouskaya, Rik Gijsbers, Veerle Baekelandt

Erschienen in: Brain Structure and Function | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Novel neuromodulation techniques in the field of brain research, such as optogenetics, prompt to target specific cell populations. However, not every subpopulation can be distinguished based on brain area or activity of specific promoters, but rather on topology and connectivity. A fascinating tool to detect neuronal circuitry is based on the transsynaptic tracer, wheat germ agglutinin (WGA). When expressed in neurons, it is transported throughout the neuron, secreted, and taken up by synaptically connected neurons. Expression of a WGA and Cre recombinase fusion protein using a viral vector technology in Cre-dependent transgenic animals allows to trace neuronal network connections and to induce topological transgene expression. In this study, we applied and evaluated this technology in specific areas throughout the whole rodent brain, including the hippocampus, striatum, substantia nigra, and the motor cortex. Adeno-associated viral vectors (rAAV) encoding the WGA–Cre fusion protein under control of a CMV promoter were stereotactically injected in Rosa26-STOP-EYFP transgenic mice. After 6 weeks, both the number of transneuronally labeled YFP+/mCherry cells and the transduced YFP+/mCherry+ cells were quantified in the connected regions. We were able to trace several connections using WGA–Cre transneuronal labeling; however, the labeling efficacy was region-dependent. The observed transneuronal labeling mostly occurred in the anterograde direction without the occurrence of multi-synaptic labeling. Furthermore, we were able to visualize a specific subset of newborn neurons derived from the subventricular zone based on their connectivity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aggleton JP, Vann SD, Saunders RC (2005) Projections from the Hippocampal Region to the mammillary bodies in macaque monkeys. Eur J Neurosci 22:2519–2530CrossRefPubMed Aggleton JP, Vann SD, Saunders RC (2005) Projections from the Hippocampal Region to the mammillary bodies in macaque monkeys. Eur J Neurosci 22:2519–2530CrossRefPubMed
Zurück zum Zitat Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University Press, Oxford Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book. Oxford University Press, Oxford
Zurück zum Zitat Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):1–16CrossRef Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):1–16CrossRef
Zurück zum Zitat Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103(1):51–61CrossRefPubMed Aston-Jones G, Card JP (2000) Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations. J Neurosci Methods 103(1):51–61CrossRefPubMed
Zurück zum Zitat Boldogköi Z, Sík A, Dénes Á, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms—genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed Boldogköi Z, Sík A, Dénes Á, Reichart A, Toldi J, Gerendai I, Kovács KJ, Palkovits M (2004) Novel tracing paradigms—genetically engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog Neurobiol 72(6):417–445CrossRefPubMed
Zurück zum Zitat Borges LF, Sidman RL (1982) Axonal transport of lectins in the peripheral nervous system. J Neurosci 2(5):647–653PubMed Borges LF, Sidman RL (1982) Axonal transport of lectins in the peripheral nervous system. J Neurosci 2(5):647–653PubMed
Zurück zum Zitat Braz JM, Rico B, Basbaum AI (2002) Transneuronal tracing of diverse CNS circuits by cre-mediated induction of wheat germ agglutinin in transgenic mice. Proc Natl Acad Sci USA 99(23):15148–15153CrossRefPubMedPubMedCentral Braz JM, Rico B, Basbaum AI (2002) Transneuronal tracing of diverse CNS circuits by cre-mediated induction of wheat germ agglutinin in transgenic mice. Proc Natl Acad Sci USA 99(23):15148–15153CrossRefPubMedPubMedCentral
Zurück zum Zitat Callaway Edward M (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617–623CrossRefPubMed Callaway Edward M (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617–623CrossRefPubMed
Zurück zum Zitat Carretta D, Sbriccoli A, Santarelli M, Pinto F, Granato A, Minciacchi D (1996) Crossed thalamo-cortical and cortico-thalamic projections in adult mice. Neurosci Lett 204(1–2):69–72CrossRefPubMed Carretta D, Sbriccoli A, Santarelli M, Pinto F, Granato A, Minciacchi D (1996) Crossed thalamo-cortical and cortico-thalamic projections in adult mice. Neurosci Lett 204(1–2):69–72CrossRefPubMed
Zurück zum Zitat Castle MJ, Gershenson ZT, Giles AR, Holzbaur ELF, Wolfe JH (2014) Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25(8):705–720CrossRefPubMedPubMedCentral Castle MJ, Gershenson ZT, Giles AR, Holzbaur ELF, Wolfe JH (2014) Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum Gene Ther 25(8):705–720CrossRefPubMedPubMedCentral
Zurück zum Zitat Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13(3):528–537CrossRefPubMed Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13(3):528–537CrossRefPubMed
Zurück zum Zitat Deniau JM (1994) Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61(3):533–545CrossRefPubMed Deniau JM (1994) Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61(3):533–545CrossRefPubMed
Zurück zum Zitat Deshpande A, Bergami M, Ghanem A, Conzelmann K, Lepier A, Götz M, Berninger B (2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci USA 110(12):1152–1161CrossRef Deshpande A, Bergami M, Ghanem A, Conzelmann K, Lepier A, Götz M, Berninger B (2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci USA 110(12):1152–1161CrossRef
Zurück zum Zitat Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70(5):3227–3234PubMedPubMedCentral Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70(5):3227–3234PubMedPubMedCentral
Zurück zum Zitat Gaykema RPA, Van Der Kuil J, Hersh LB, Luiten PGM (1991) Patterns of direct projections from the hippocampus to the medial septum-diagonal band complex: anterograde tracing with phaseolus vulgaris leucoagglutinin combined with immunohistochemistry of choline acetyltransferase. Neuroscience 43(2/3):349–360CrossRefPubMed Gaykema RPA, Van Der Kuil J, Hersh LB, Luiten PGM (1991) Patterns of direct projections from the hippocampus to the medial septum-diagonal band complex: anterograde tracing with phaseolus vulgaris leucoagglutinin combined with immunohistochemistry of choline acetyltransferase. Neuroscience 43(2/3):349–360CrossRefPubMed
Zurück zum Zitat Gerfen CR (2004) Basal Ganglia. In: Paxinos G (ed) The rat nervous system. Elsevier academic press, Amsterdam, p 455–508 Gerfen CR (2004) Basal Ganglia. In: Paxinos G (ed) The rat nervous system. Elsevier academic press, Amsterdam, p 455–508
Zurück zum Zitat Ginger M, Haberl M, Conzelmann K, Schwarz MK, Frick A (2013) Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 7(January):2PubMedPubMedCentral Ginger M, Haberl M, Conzelmann K, Schwarz MK, Frick A (2013) Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 7(January):2PubMedPubMedCentral
Zurück zum Zitat Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165CrossRefPubMedPubMedCentral Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1):154–165CrossRefPubMedPubMedCentral
Zurück zum Zitat Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. The Neuroscientist 7(4):315–324CrossRefPubMed Haber S, McFarland NR (2001) The place of the thalamus in frontal cortical-basal ganglia circuits. The Neuroscientist 7(4):315–324CrossRefPubMed
Zurück zum Zitat Joel D, Weiner I (2000) Commentary. the connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474CrossRefPubMed Joel D, Weiner I (2000) Commentary. the connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474CrossRefPubMed
Zurück zum Zitat Junyent Felix, Kremer Eric J (2015) CAV-2-why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93CrossRefPubMed Junyent Felix, Kremer Eric J (2015) CAV-2-why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93CrossRefPubMed
Zurück zum Zitat Kelly RM, Strick PL (2003) Rabies as a transneuronal tarcer of circuits in the central nervous system. J Neurosci Meths 103:63–71CrossRef Kelly RM, Strick PL (2003) Rabies as a transneuronal tarcer of circuits in the central nervous system. J Neurosci Meths 103:63–71CrossRef
Zurück zum Zitat Kelsch W, Lin C, Mosley CP, Lois C (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29(38):11852–11858CrossRefPubMedPubMedCentral Kelsch W, Lin C, Mosley CP, Lois C (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29(38):11852–11858CrossRefPubMedPubMedCentral
Zurück zum Zitat Kinoshita N, Mizuno T, Yoshihara Y (2002) Adenovirus-mediated WGA gene delivery for transsynaptic labeling of mouse olfactory pathways. Chem Senses 27(3):215–223CrossRefPubMed Kinoshita N, Mizuno T, Yoshihara Y (2002) Adenovirus-mediated WGA gene delivery for transsynaptic labeling of mouse olfactory pathways. Chem Senses 27(3):215–223CrossRefPubMed
Zurück zum Zitat Kiss J, Csaki H, Bokor H, Kocsis K, Kocsis B (2002) Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [3H] D-aspartate labelling and immunocytochemistry. Neuroscience 111(3):671–691CrossRefPubMed Kiss J, Csaki H, Bokor H, Kocsis K, Kocsis B (2002) Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [3H] D-aspartate labelling and immunocytochemistry. Neuroscience 111(3):671–691CrossRefPubMed
Zurück zum Zitat Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42(3):157–183CrossRefPubMed Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42(3):157–183CrossRefPubMed
Zurück zum Zitat Meibach CR, Siegel A (1977) Efferent connections of the septal area in the rat : an analysis utilizing retrograde and anterograde transport methods. Brain Res 119:1–20CrossRefPubMed Meibach CR, Siegel A (1977) Efferent connections of the septal area in the rat : an analysis utilizing retrograde and anterograde transport methods. Brain Res 119:1–20CrossRefPubMed
Zurück zum Zitat Nyakas C, Luiten PGM, Spencer DG, Traber J (1987) Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CA1 and dentate Gyrus. Brain Res Bull 18(4):533–545CrossRefPubMed Nyakas C, Luiten PGM, Spencer DG, Traber J (1987) Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CA1 and dentate Gyrus. Brain Res Bull 18(4):533–545CrossRefPubMed
Zurück zum Zitat Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates. Gulf Professional Publishing
Zurück zum Zitat Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741CrossRefPubMed Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741CrossRefPubMed
Zurück zum Zitat Ruda M, Coulter JD (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res 249:237–246CrossRefPubMed Ruda M, Coulter JD (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res 249:237–246CrossRefPubMed
Zurück zum Zitat Saunders RC, Aggleton JP (2007) Origin and topography of fibers contributing to the fornix in macaque monkeys. Hippocampus 17:396–411CrossRefPubMed Saunders RC, Aggleton JP (2007) Origin and topography of fibers contributing to the fornix in macaque monkeys. Hippocampus 17:396–411CrossRefPubMed
Zurück zum Zitat Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:378–384CrossRef Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:378–384CrossRef
Zurück zum Zitat Sherlock DA, Raisman G (1975) A comparison of anterograde and retrograde axonal transport of horseradish peroxidase in the connections of the mammillary nuclei in the rat. Brain Res 85:321–324CrossRefPubMed Sherlock DA, Raisman G (1975) A comparison of anterograde and retrograde axonal transport of horseradish peroxidase in the connections of the mammillary nuclei in the rat. Brain Res 85:321–324CrossRefPubMed
Zurück zum Zitat Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentral Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentral
Zurück zum Zitat Taymans J, Vandenberghe LH, Van Den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206CrossRefPubMed Taymans J, Vandenberghe LH, Van Den Haute C, Thiry I, Deroose CM, Mortelmans L, Wilson JM, Debyser Z, Baekelandt V (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206CrossRefPubMed
Zurück zum Zitat Van der Perren A, Toelen J, Carlon M, Van den Haute C, Coun F, Heeman B, Reumers V, Vandenberghe LH, Wilson JM, Debyser Z, Baekelandt V (2011) Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 18(5):517–527CrossRefPubMed Van der Perren A, Toelen J, Carlon M, Van den Haute C, Coun F, Heeman B, Reumers V, Vandenberghe LH, Wilson JM, Debyser Z, Baekelandt V (2011) Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 18(5):517–527CrossRefPubMed
Zurück zum Zitat Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nature reviews. Neuroscience 5:35–44 Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nature reviews. Neuroscience 5:35–44
Zurück zum Zitat Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796CrossRefPubMed Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796CrossRefPubMed
Zurück zum Zitat Viral (2012) Anterograde trans-synaptic, tracer for, mapping output, pathways of, and genetically marked neurons. NIH Public Access 72(6): 938–50 Viral (2012) Anterograde trans-synaptic, tracer for, mapping output, pathways of, and genetically marked neurons. NIH Public Access 72(6): 938–50
Zurück zum Zitat Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474CrossRefPubMed Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27(8):468–474CrossRefPubMed
Zurück zum Zitat Whitman MC, Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27(37):9951–9961CrossRefPubMed Whitman MC, Greer CA (2007) Synaptic integration of adult-generated olfactory bulb granule cells: basal axodendritic centrifugal input precedes apical dendrodendritic local circuits. J Neurosci 27(37):9951–9961CrossRefPubMed
Zurück zum Zitat Witter MP (2010) Connectivity of the Hippocampus (eds) Vassilis Cutsuridis, Bruce Graham, Stuart Cobb, and Imre Vida. Hippocampal Microcircuits: 5–26 Witter MP (2010) Connectivity of the Hippocampus (eds) Vassilis Cutsuridis, Bruce Graham, Stuart Cobb, and Imre Vida. Hippocampal Microcircuits: 5–26
Zurück zum Zitat Witter PM, Amaral GD (2004) Hippocampal formation. In: Paxinos George (ed) The Rat central nervous system. Elsevier Academic press, San Diego, pp 705–727 Witter PM, Amaral GD (2004) Hippocampal formation. In: Paxinos George (ed) The Rat central nervous system. Elsevier Academic press, San Diego, pp 705–727
Zurück zum Zitat Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferent to the hippocampal formation in the rat. Neuroscience 4:463–476CrossRefPubMed Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferent to the hippocampal formation in the rat. Neuroscience 4:463–476CrossRefPubMed
Zurück zum Zitat Yoshihara Y (2002) Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci Res 44(2):133–140CrossRefPubMed Yoshihara Y (2002) Visualizing selective neural pathways with WGA transgene: combination of neuroanatomy with gene technology. Neurosci Res 44(2):133–140CrossRefPubMed
Zurück zum Zitat Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22(1):33–41CrossRefPubMed Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22(1):33–41CrossRefPubMed
Zurück zum Zitat Zhao H, Otaki JM, Firestein S (1996) Adenovirus-mediated gene transfer in olfactory neurons in vivo. J Neurobiol 30(4):521–530CrossRefPubMed Zhao H, Otaki JM, Firestein S (1996) Adenovirus-mediated gene transfer in olfactory neurons in vivo. J Neurobiol 30(4):521–530CrossRefPubMed
Zurück zum Zitat Zhenzhong C, Gerfen CR, Young WS (2013) Hypothalamic and other connections with the dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521(8):1844–1866CrossRef Zhenzhong C, Gerfen CR, Young WS (2013) Hypothalamic and other connections with the dorsal CA2 area of the mouse hippocampus. J Comp Neurol 521(8):1844–1866CrossRef
Metadaten
Titel
Evaluation of WGA–Cre-dependent topological transgene expression in the rodent brain
verfasst von
Sarah Libbrecht
Chris Van den Haute
Lina Malinouskaya
Rik Gijsbers
Veerle Baekelandt
Publikationsdatum
03.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 2/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1241-x

Weitere Artikel der Ausgabe 2/2017

Brain Structure and Function 2/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.