Skip to main content
Erschienen in: Inflammation 3/2020

01.06.2020 | Original Article

Evidence on n-3 Fatty Acids and Oleic Acid Role in Retinal Inflammation and Microvascular Integrity: Insight from a Hyperlipidemic Rat Model

verfasst von: Sadashivaiah Bettadahalli, Pooja Acharya, Ramaprasad Talahalli

Erschienen in: Inflammation | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Loss of retinal function due to manifestation of chronic inflammation and oxidative stress in hyperglycemia is well addressed. However, the effect of hyperlipidemia on retinal inflammation and microvascular integrity, and the modulatory effects of oxidation-stable oleic acid and long-chain n-3 fatty acids have never been addressed. The objective of this investigation was to assess the retinoprotective effect of oxidation stable oleic acid and oxidation-susceptible EPA + DHA on retinal inflammation and microvascular integrity, under hyperlipidemic conditions. Male Wistar rats were fed with control (7.0% lard), high-fat (35.0% lard), high-fat with fish oil (17.5% fish oil + 17.5% lard), high-fat with olive oil (17.5% olive oil + 17.5% lard), and high-fat with fish oil and olive oil (11.66% fish oil + 11.66% of olive oil + 11.66% of lard) diet for 90 days. Systemic and retinal inflammation, as measured by eicosanoids and cytokines, retinal expression of NF-kB, capillary degeneration, and pericyte loss, were assessed. Hyperlipidemia significantly (p < 0.05) increased the markers of inflammation (PGE2, LTB4, LTC4, IL-1β, MCP-1, and TNF-α) in serum and retina. Besides, the retinal NF-kB-p65 expression, capillary degeneration, and pericyte loss were significantly (p < 0.05) increased under hyperlipidemic conditions. Dietary incorporation of oleic acid and EPA + DHA significantly (p < 0.05) suppressed hyperlipidemia-induced effects in the retina. In conclusion, hyperlipidemia causes retinal aberrations by compromising the balance in the inflammatory response and microvascular integrity. Dietary incorporation of oleic acid and long-chain n-3 fatty acids prevents hyperlipidemia-induced aberrations in the retina.
Literatur
1.
Zurück zum Zitat Stem, M.S., and T.W. Gardner. 2013. Neurodegeneration in the pathogenesis of diabetic retinopathy: Molecular mechanisms and therapeutic implications. Current Medicinal Chemistry 20: 3241–3250.CrossRef Stem, M.S., and T.W. Gardner. 2013. Neurodegeneration in the pathogenesis of diabetic retinopathy: Molecular mechanisms and therapeutic implications. Current Medicinal Chemistry 20: 3241–3250.CrossRef
2.
Zurück zum Zitat Hardy, P., M. Beauchamp, F. Sennlaub, F. Gobeil Jr., L. Tremblay, B. Mwaikambo, P. Lachapelle, and S. Chemtob. 2005. New insights into the retinal circulation: Inflammatory lipid mediators in ischemic retinopathy. Prostaglandins, Leukotrienes and Essential Fatty Acids 72: 301–325.CrossRef Hardy, P., M. Beauchamp, F. Sennlaub, F. Gobeil Jr., L. Tremblay, B. Mwaikambo, P. Lachapelle, and S. Chemtob. 2005. New insights into the retinal circulation: Inflammatory lipid mediators in ischemic retinopathy. Prostaglandins, Leukotrienes and Essential Fatty Acids 72: 301–325.CrossRef
3.
Zurück zum Zitat Gubitosi-Klug, R.A., R. Talahalli, Y. Du, J.L. Nadler, and T.S. Kern. 2008. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 57: 1387–1393.CrossRef Gubitosi-Klug, R.A., R. Talahalli, Y. Du, J.L. Nadler, and T.S. Kern. 2008. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 57: 1387–1393.CrossRef
4.
Zurück zum Zitat Talahalli, R.R., S. Zarini, J. Tang, G. Li, R. Murphy, T.S. Kern, and R.A. Gubitosi-Klug. 2013. Leukocytes regulate retinal capillary degeneration in the diabetic mouse via generation of leukotrienes. Journal of Leukocyte Biology 93: 135–143.CrossRef Talahalli, R.R., S. Zarini, J. Tang, G. Li, R. Murphy, T.S. Kern, and R.A. Gubitosi-Klug. 2013. Leukocytes regulate retinal capillary degeneration in the diabetic mouse via generation of leukotrienes. Journal of Leukocyte Biology 93: 135–143.CrossRef
5.
Zurück zum Zitat Rader, D.J. 2007. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. The American Journal of Medicine 120: S12–S18.CrossRef Rader, D.J. 2007. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. The American Journal of Medicine 120: S12–S18.CrossRef
6.
Zurück zum Zitat Ramaiyan, B., S. Bettadahalli, and R.R. Talahalli. 2016. Dietary omega-3 but not omega-6 fatty acids down-regulate maternal dyslipidemia induced oxidative stress: A three generation study in rats. Biochemical and Biophysical Research Communications 477: 887–894.CrossRef Ramaiyan, B., S. Bettadahalli, and R.R. Talahalli. 2016. Dietary omega-3 but not omega-6 fatty acids down-regulate maternal dyslipidemia induced oxidative stress: A three generation study in rats. Biochemical and Biophysical Research Communications 477: 887–894.CrossRef
7.
Zurück zum Zitat Ramaiyan, B., and R.R. Talahalli. 2018. Dietary n-3 but not n-6 fatty acids down-regulate maternal dyslipidemia induced inflammation: A three-generation study in rats. Prostaglandins, Leukotrienes and Essential Fatty Acids 135: 83–91.CrossRef Ramaiyan, B., and R.R. Talahalli. 2018. Dietary n-3 but not n-6 fatty acids down-regulate maternal dyslipidemia induced inflammation: A three-generation study in rats. Prostaglandins, Leukotrienes and Essential Fatty Acids 135: 83–91.CrossRef
8.
Zurück zum Zitat Acharya, P., and R.R. Talahalli. 2019. Aging and hyperglycemia intensify dyslipidemia-induced oxidative stress and inflammation in rats: Assessment of restorative potentials of ALA and EPA+ DHA. Inflammation 42: 946–952.CrossRef Acharya, P., and R.R. Talahalli. 2019. Aging and hyperglycemia intensify dyslipidemia-induced oxidative stress and inflammation in rats: Assessment of restorative potentials of ALA and EPA+ DHA. Inflammation 42: 946–952.CrossRef
9.
Zurück zum Zitat Davey, R.A., N.C. Tebbutt, J.N. Favaloro, D.N. O'neal, D. Rae, J.D. Zajac, and J.D. Best. 2006. Severe combined hyperlipidaemia and retinal lipid infiltration in a patient with type 2 diabetes mellitus. Lipids in Health and Disease 5: 29.CrossRef Davey, R.A., N.C. Tebbutt, J.N. Favaloro, D.N. O'neal, D. Rae, J.D. Zajac, and J.D. Best. 2006. Severe combined hyperlipidaemia and retinal lipid infiltration in a patient with type 2 diabetes mellitus. Lipids in Health and Disease 5: 29.CrossRef
10.
Zurück zum Zitat Calder, P.C. 2017. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions 45: 1105–1115.CrossRef Calder, P.C. 2017. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions 45: 1105–1115.CrossRef
11.
Zurück zum Zitat Widmer, R.J., A.J. Flammer, L.O. Lerman, A. Lerman, and A. 2015. The Mediterranean diet, its components, and cardiovascular disease. The American Journal of Medicine 128: 229–238.CrossRef Widmer, R.J., A.J. Flammer, L.O. Lerman, A. Lerman, and A. 2015. The Mediterranean diet, its components, and cardiovascular disease. The American Journal of Medicine 128: 229–238.CrossRef
12.
Zurück zum Zitat Komprda, T. 2012. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. Journal of Functional Foods 4: 25–38.CrossRef Komprda, T. 2012. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. Journal of Functional Foods 4: 25–38.CrossRef
13.
Zurück zum Zitat Calder, P.C. 2013. n-3 fatty acids, inflammation and immunity: New mechanisms to explain old actions. Proceedings of the Nutrition Society 72: 326–336.CrossRef Calder, P.C. 2013. n-3 fatty acids, inflammation and immunity: New mechanisms to explain old actions. Proceedings of the Nutrition Society 72: 326–336.CrossRef
14.
Zurück zum Zitat Anonymous. 1977. Report of the American Institute of Nutrition ad hoc Committee on Standards for Nutritional Studies. Journal of Nutrition 107: 1340–1348.CrossRef Anonymous. 1977. Report of the American Institute of Nutrition ad hoc Committee on Standards for Nutritional Studies. Journal of Nutrition 107: 1340–1348.CrossRef
15.
Zurück zum Zitat Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMed Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.PubMed
16.
Zurück zum Zitat Tang, J., and T.S. Kern. 2011. Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research 30: 343–358.CrossRef Tang, J., and T.S. Kern. 2011. Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research 30: 343–358.CrossRef
17.
Zurück zum Zitat Zhang, W., H. Liu, M. Al-Shabrawey, R.W. Caldwell, and R.B. Caldwell. 2011. Inflammation and diabetic retinal microvascular complications. Journal of Cardiovascular Disease Research 2: 96–103.CrossRef Zhang, W., H. Liu, M. Al-Shabrawey, R.W. Caldwell, and R.B. Caldwell. 2011. Inflammation and diabetic retinal microvascular complications. Journal of Cardiovascular Disease Research 2: 96–103.CrossRef
18.
Zurück zum Zitat Gustavsson, C., C.D. Agardh, A.V. Zetterqvist, J. Nilsson, E. Agardh, and M.F. Gomez. 2010. Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One 5: 12699.CrossRef Gustavsson, C., C.D. Agardh, A.V. Zetterqvist, J. Nilsson, E. Agardh, and M.F. Gomez. 2010. Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One 5: 12699.CrossRef
19.
Zurück zum Zitat Arjamaa, O., V. Aaltonen, N. Piippo, T. Csont, G. Petrovski, K. Kaarniranta, and A. Kauppinen. 2017. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefe’s Archive for Clinical and Experimental Ophthalmology 255: 1757–1762.CrossRef Arjamaa, O., V. Aaltonen, N. Piippo, T. Csont, G. Petrovski, K. Kaarniranta, and A. Kauppinen. 2017. Hypoxia and inflammation in the release of VEGF and interleukins from human retinal pigment epithelial cells. Graefe’s Archive for Clinical and Experimental Ophthalmology 255: 1757–1762.CrossRef
20.
Zurück zum Zitat Bazinet, R.P., and S. Layé. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience 15: 771.CrossRef Bazinet, R.P., and S. Layé. 2014. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience 15: 771.CrossRef
21.
Zurück zum Zitat Das, U.N. 2013. Lipoxins, resolvins, and protectins in the prevention and treatment of diabetic macular edema and retinopathy. Nutrition 29: 1–7.CrossRef Das, U.N. 2013. Lipoxins, resolvins, and protectins in the prevention and treatment of diabetic macular edema and retinopathy. Nutrition 29: 1–7.CrossRef
22.
Zurück zum Zitat Calder, P.C. 2012. Mechanisms of action of (n-3) fatty acids. The Journal of Nutrition 142: 592S–599S.CrossRef Calder, P.C. 2012. Mechanisms of action of (n-3) fatty acids. The Journal of Nutrition 142: 592S–599S.CrossRef
23.
Zurück zum Zitat Lugrin, J., N. Rosenblatt-Velin, R. Parapanov, and L. Liaudet. 2014. The role of oxidative stress during inflammatory processes. Biological Chemistry 395: 203–230.CrossRef Lugrin, J., N. Rosenblatt-Velin, R. Parapanov, and L. Liaudet. 2014. The role of oxidative stress during inflammatory processes. Biological Chemistry 395: 203–230.CrossRef
24.
Zurück zum Zitat Li, Y., D. Chen, L. Sun, Y. Wu, Y. Zou, C. Liang, Y. Bao, J. Yi, Y. Zhang, J. Hou, and Z. Li. 2019. Induced expression of VEGFC, ANGPT, and EFNB2 and their receptors characterizes neovascularization in proliferative diabetic retinopathy. Investigative Ophthalmology & Visual Science 60: 4084–4096.CrossRef Li, Y., D. Chen, L. Sun, Y. Wu, Y. Zou, C. Liang, Y. Bao, J. Yi, Y. Zhang, J. Hou, and Z. Li. 2019. Induced expression of VEGFC, ANGPT, and EFNB2 and their receptors characterizes neovascularization in proliferative diabetic retinopathy. Investigative Ophthalmology & Visual Science 60: 4084–4096.CrossRef
25.
Zurück zum Zitat Kowluru, R.A., M. Mishra, A. Kowluru, and B. Kumar. 2016. Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism 65: 1570–1581.CrossRef Kowluru, R.A., M. Mishra, A. Kowluru, and B. Kumar. 2016. Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Metabolism 65: 1570–1581.CrossRef
26.
Zurück zum Zitat Connor, K.M., J.P. SanGiovanni, C. Lofqvist, C.M. Aderman, J. Chen, A. Higuchi, S. Hong, E.A. Pravda, S. Majchrzak, D. Carper, and A. Hellstrom. 2007. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine 13: 868.CrossRef Connor, K.M., J.P. SanGiovanni, C. Lofqvist, C.M. Aderman, J. Chen, A. Higuchi, S. Hong, E.A. Pravda, S. Majchrzak, D. Carper, and A. Hellstrom. 2007. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine 13: 868.CrossRef
27.
Zurück zum Zitat Lamers, D., R. Schlich, S. Greulich, A. Sasson, H. Sell, and J. Eckel. 2011. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signalling in human vascular smooth muscle cells. Journal of Cellular and Molecular Medicine. 15: 1177–1188.CrossRef Lamers, D., R. Schlich, S. Greulich, A. Sasson, H. Sell, and J. Eckel. 2011. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signalling in human vascular smooth muscle cells. Journal of Cellular and Molecular Medicine. 15: 1177–1188.CrossRef
28.
Zurück zum Zitat Tu, W., H. Wang, S. Li, Q. Liu, and H. Sha. 2019. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging and Disease 10: 637.CrossRef Tu, W., H. Wang, S. Li, Q. Liu, and H. Sha. 2019. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging and Disease 10: 637.CrossRef
29.
Zurück zum Zitat Liu, T., L. Zhang, D. Joo, and S.C. Sun. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2: 17023.CrossRef Liu, T., L. Zhang, D. Joo, and S.C. Sun. 2017. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2: 17023.CrossRef
Metadaten
Titel
Evidence on n-3 Fatty Acids and Oleic Acid Role in Retinal Inflammation and Microvascular Integrity: Insight from a Hyperlipidemic Rat Model
verfasst von
Sadashivaiah Bettadahalli
Pooja Acharya
Ramaprasad Talahalli
Publikationsdatum
01.06.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01172-1

Weitere Artikel der Ausgabe 3/2020

Inflammation 3/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.