Skip to main content
Erschienen in: Inflammation 3/2017

23.03.2017 | ORIGINAL ARTICLE

Evodiamine Inhibits Zymosan-Induced Inflammation In Vitro and In Vivo: Inactivation of NF-κB by Inhibiting IκBα Phosphorylation

verfasst von: Xia Fan, Jun-Yu Zhu, Yu Sun, Li Luo, Jun Yan, Xue Yang, Jing Yu, Wan-Qi Tang, Wei Ma, Hua-Ping Liang

Erschienen in: Inflammation | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Evodiamine (EVO), an important alkaloidal component extracted from the fruit of Evodiae fructus, has been known to possess anti-tumor, anti-inflammatory, anti-oxidative, and other therapeutic capabilities. In the present study, the effects of EVO on zymosan-induced inflammation and its underlying mechanism were investigated both in vitro and in vivo. Our results showed that EVO effectively suppressed both protein and mRNA expression of interleukin-1β, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in vitro. Zymosan-induced DNA-binding activity of nuclear factor-kappa B (NF-κB) was attenuated by EVO, which was achieved through inhibitory effects on the phosphorylation of inhibitory κB α and p65 nuclear translocation, but there was very little association with mitogen-activated protein kinase activation. In vivo, treatment with EVO markedly decreased TNF-α and IL-6 levels in plasma. EVO also repressed inflammatory cytokine expression and ameliorated the abnormal state in both lung and intestine tissues by inactivation of NF-κB. Furthermore, EVO significantly reduced the mortality caused by zymosan. In summary, these results suggested that EVO could effectively suppress inflammatory responses in vitro and in vivo, and may be a potential therapeutic agent against inflammatory disorders.
Literatur
1.
Zurück zum Zitat Seely, A.J., and N.V. Christou. 2000. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Critical Care Medicine 28 (7): 2193–2200.CrossRefPubMed Seely, A.J., and N.V. Christou. 2000. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Critical Care Medicine 28 (7): 2193–2200.CrossRefPubMed
3.
Zurück zum Zitat Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203): 428–435.CrossRefPubMed Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454 (7203): 428–435.CrossRefPubMed
5.
Zurück zum Zitat Serhan, C.N., and J. Savill. 2005. Resolution of inflammation: the beginning programs the end. Nature Immunology 6 (12): 1191–1197.CrossRefPubMed Serhan, C.N., and J. Savill. 2005. Resolution of inflammation: the beginning programs the end. Nature Immunology 6 (12): 1191–1197.CrossRefPubMed
6.
Zurück zum Zitat Fizpatrick, F.W., and F.J. DiCarlo. 1964. Zymosan. Annals of the New York Academy of Sciences 118 (4): 235–261.CrossRef Fizpatrick, F.W., and F.J. DiCarlo. 1964. Zymosan. Annals of the New York Academy of Sciences 118 (4): 235–261.CrossRef
7.
Zurück zum Zitat Volman, T.J., T. Hendriks, and R.J. Goris. 2005. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23 (4): 291–297.CrossRefPubMed Volman, T.J., T. Hendriks, and R.J. Goris. 2005. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock 23 (4): 291–297.CrossRefPubMed
8.
Zurück zum Zitat Takeuchi, O., and S. Akira. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1 (4): 625–635.CrossRefPubMed Takeuchi, O., and S. Akira. 2001. Toll-like receptors; their physiological role and signal transduction system. International Immunopharmacology 1 (4): 625–635.CrossRefPubMed
9.
Zurück zum Zitat Di, R., M.T. Huang, and C.T. Ho. 2011. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry 59 (13): 7474–7481.CrossRefPubMed Di, R., M.T. Huang, and C.T. Ho. 2011. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model. Journal of Agricultural and Food Chemistry 59 (13): 7474–7481.CrossRefPubMed
10.
Zurück zum Zitat Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee, and K.K. Park. 2007. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28 (6): 1224–1231.CrossRefPubMed Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee, and K.K. Park. 2007. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kB. Carcinogenesis 28 (6): 1224–1231.CrossRefPubMed
11.
Zurück zum Zitat Ho, Y.S., C.S. Lai, H.I. Liu, S.Y. Ho, C. Tai, M.H. Pan, and Y.J. Wang. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochemical Pharmacology 73 (11): 1786–1795.CrossRefPubMed Ho, Y.S., C.S. Lai, H.I. Liu, S.Y. Ho, C. Tai, M.H. Pan, and Y.J. Wang. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochemical Pharmacology 73 (11): 1786–1795.CrossRefPubMed
12.
Zurück zum Zitat Folmer, F., M. Jaspars, M. Dicato, and M. Diederich. 2008. Marine natural products as targeted modulators of the transcription factor NF-kB. Biochemical Pharmacology 75 (3): 603–617.CrossRefPubMed Folmer, F., M. Jaspars, M. Dicato, and M. Diederich. 2008. Marine natural products as targeted modulators of the transcription factor NF-kB. Biochemical Pharmacology 75 (3): 603–617.CrossRefPubMed
13.
Zurück zum Zitat Kasinski, A.L., Y. Du, S.L. Thomas, J. Zhao, S.Y. Sun, F.R. Khuri, C.Y. Wang, et al. 2008. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Molecular Pharmacology 74 (3): 654–661.CrossRefPubMedPubMedCentral Kasinski, A.L., Y. Du, S.L. Thomas, J. Zhao, S.Y. Sun, F.R. Khuri, C.Y. Wang, et al. 2008. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Molecular Pharmacology 74 (3): 654–661.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Hayden, M.S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes & Development 18 (18): 2195–2224.CrossRef Hayden, M.S., and S. Ghosh. 2004. Signaling to NF-kappaB. Genes & Development 18 (18): 2195–2224.CrossRef
15.
Zurück zum Zitat Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A.M. Manning, J.S. Andersen, M. Mann, F. Mercurio, and Y. Ben-Neriah. 1998. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396 (6711): 590–594.CrossRefPubMed Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A.M. Manning, J.S. Andersen, M. Mann, F. Mercurio, and Y. Ben-Neriah. 1998. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396 (6711): 590–594.CrossRefPubMed
16.
Zurück zum Zitat Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8 (11): 837–848.CrossRefPubMed Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8 (11): 837–848.CrossRefPubMed
17.
Zurück zum Zitat Banerjee, S., J.W. Zmijewski, E. Lorne, G. Liu, Y. Sha, and E. Abraham. 2010. Modulation of SCF beta-TrCP-dependent I kappaB alpha ubiquitination by hydrogen peroxide. Journal of Biological Chemistry 285 (4): 2665–2675.CrossRefPubMed Banerjee, S., J.W. Zmijewski, E. Lorne, G. Liu, Y. Sha, and E. Abraham. 2010. Modulation of SCF beta-TrCP-dependent I kappaB alpha ubiquitination by hydrogen peroxide. Journal of Biological Chemistry 285 (4): 2665–2675.CrossRefPubMed
18.
Zurück zum Zitat Gao, X., X. Yang, and P.J. Marriott. 2012. Simultaneous analysis of seven alkaloids in Coptis–Evodia herb couple and Zuojin pill by UPLC with accelerated solvent extraction. Journal of Separation Science 33 (17, 18): 2714–2722. Gao, X., X. Yang, and P.J. Marriott. 2012. Simultaneous analysis of seven alkaloids in Coptis–Evodia herb couple and Zuojin pill by UPLC with accelerated solvent extraction. Journal of Separation Science 33 (17, 18): 2714–2722.
19.
Zurück zum Zitat Ogasawara, M., T. Matsunaga, S. Takahashi, I. Saiki, and H. Suzuki. 2002. Anti-invasive and metastatic activities of evodiamine. Biological and Pharmaceutical Bulletin 25 (11): 1491–1493.CrossRefPubMed Ogasawara, M., T. Matsunaga, S. Takahashi, I. Saiki, and H. Suzuki. 2002. Anti-invasive and metastatic activities of evodiamine. Biological and Pharmaceutical Bulletin 25 (11): 1491–1493.CrossRefPubMed
20.
Zurück zum Zitat Liu, Y.N., S.L. Pan, C.H. Liao, D.Y. Huang, J.H. Guh, C.Y. Peng, Y.L. Chang, and C.M. Teng. 2009. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1 [alpha] accumulation in RAW264.7. Shock 32 (3): 263–269.CrossRefPubMed Liu, Y.N., S.L. Pan, C.H. Liao, D.Y. Huang, J.H. Guh, C.Y. Peng, Y.L. Chang, and C.M. Teng. 2009. Evodiamine represses hypoxia-induced inflammatory proteins expression and hypoxia-inducible factor 1 [alpha] accumulation in RAW264.7. Shock 32 (3): 263–269.CrossRefPubMed
21.
Zurück zum Zitat Ko, H.C., Y.H. Wang, K.T. Liou, C.M. Chen, C.H. Chen, W.Y. Wang, S. Chang, Y.C. Hou, K.T. Chen, and C.F. Chen. 2007. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. European Journal of Pharmacology 555 (2): 211–217.CrossRefPubMed Ko, H.C., Y.H. Wang, K.T. Liou, C.M. Chen, C.H. Chen, W.Y. Wang, S. Chang, Y.C. Hou, K.T. Chen, and C.F. Chen. 2007. Anti-inflammatory effects and mechanisms of the ethanol extract of Evodia rutaecarpa and its bioactive components on neutrophils and microglial cells. European Journal of Pharmacology 555 (2): 211–217.CrossRefPubMed
22.
Zurück zum Zitat Choi, Y.H., E.M. Shin, Y.S. Kim, X.F. Cai, J.J. Lee, and H.P. Kim. 2006. Anti-inflammatory principles from the fruits ofEvodia rutaecarpa and their cellular action mechanisms. Archives of Pharmacal Research 29 (4): 293–297.CrossRefPubMed Choi, Y.H., E.M. Shin, Y.S. Kim, X.F. Cai, J.J. Lee, and H.P. Kim. 2006. Anti-inflammatory principles from the fruits ofEvodia rutaecarpa and their cellular action mechanisms. Archives of Pharmacal Research 29 (4): 293–297.CrossRefPubMed
23.
Zurück zum Zitat Li, D.Q., N. Zhou, L. Zhang, P. Ma, and S.C. Pflugfelder. 2010. Suppressive effects of azithromycin on zymosan-induced production of proinflammatory mediators by human corneal epithelial cells. Investigative Ophthalmology and Visual Science 51 (11): 5623–5629.CrossRefPubMedPubMedCentral Li, D.Q., N. Zhou, L. Zhang, P. Ma, and S.C. Pflugfelder. 2010. Suppressive effects of azithromycin on zymosan-induced production of proinflammatory mediators by human corneal epithelial cells. Investigative Ophthalmology and Visual Science 51 (11): 5623–5629.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Chiou, W.F., Y.J. Sung, J.F. Liao, A.Y. Shum, and C.F. Chen. 1997. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. Journal of Natural Products 60 (7): 708–711.CrossRefPubMed Chiou, W.F., Y.J. Sung, J.F. Liao, A.Y. Shum, and C.F. Chen. 1997. Inhibitory effect of dehydroevodiamine and evodiamine on nitric oxide production in cultured murine macrophages. Journal of Natural Products 60 (7): 708–711.CrossRefPubMed
25.
Zurück zum Zitat Liu, Q.P., K. Fruit, J. Ward, and P.H. Correll. 1999. Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosine kinase. Journal of Immunology 163 (12): 6606–6613. Liu, Q.P., K. Fruit, J. Ward, and P.H. Correll. 1999. Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosine kinase. Journal of Immunology 163 (12): 6606–6613.
26.
Zurück zum Zitat Ikeda, Y., Y. Adachi, K. Ishibashi, N. Miura, and N. Ohno. 2005. Activation of toll-like receptor-mediated NF-kappa beta by zymosan-derived water-soluble fraction: possible contribution of endotoxin-like substances. Immunopharmacology and Immunotoxicology 27 (2): 285–298.CrossRefPubMed Ikeda, Y., Y. Adachi, K. Ishibashi, N. Miura, and N. Ohno. 2005. Activation of toll-like receptor-mediated NF-kappa beta by zymosan-derived water-soluble fraction: possible contribution of endotoxin-like substances. Immunopharmacology and Immunotoxicology 27 (2): 285–298.CrossRefPubMed
27.
Zurück zum Zitat Gupta, S.C., C. Sundaram, S. Reuter, and B.B. Aggarwal. 2010. Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta 1799 (10–12): 775–787.CrossRefPubMedPubMedCentral Gupta, S.C., C. Sundaram, S. Reuter, and B.B. Aggarwal. 2010. Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochimica et Biophysica Acta 1799 (10–12): 775–787.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Jung, W.K., D.Y. Lee, C. Park, Y.H. Choi, I. Choi, S.G. Park, S.K. Seo, et al. 2010. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. British Journal of Pharmacology 159 (6): 1274–1285.CrossRefPubMedPubMedCentral Jung, W.K., D.Y. Lee, C. Park, Y.H. Choi, I. Choi, S.G. Park, S.K. Seo, et al. 2010. Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. British Journal of Pharmacology 159 (6): 1274–1285.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Takada, Y., Y. Kobayashi, and B.B. Aggarwal. 2005. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. Journal of Biological Chemistry 280 (17): 17203–17212.CrossRefPubMed Takada, Y., Y. Kobayashi, and B.B. Aggarwal. 2005. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. Journal of Biological Chemistry 280 (17): 17203–17212.CrossRefPubMed
30.
Zurück zum Zitat Nomi, N., K. Kimura, and T. Nishida. 2010. Release of interleukins 6 and 8 induced by zymosan and mediated by MAP kinase and NF-kappaB signaling pathways in human corneal fibroblasts. Investigative Ophthalmology and Visual Science 51 (6): 2955–2959.CrossRefPubMed Nomi, N., K. Kimura, and T. Nishida. 2010. Release of interleukins 6 and 8 induced by zymosan and mediated by MAP kinase and NF-kappaB signaling pathways in human corneal fibroblasts. Investigative Ophthalmology and Visual Science 51 (6): 2955–2959.CrossRefPubMed
31.
Zurück zum Zitat Friedland, J.S., D. Constantin, T.C. Shaw, and E. Stylianou. 2001. Regulation of interleukin-8 gene expression after phagocytosis of zymosan by human monocytic cells. Journal of Leukocyte Biology 70 (3): 447–454.PubMed Friedland, J.S., D. Constantin, T.C. Shaw, and E. Stylianou. 2001. Regulation of interleukin-8 gene expression after phagocytosis of zymosan by human monocytic cells. Journal of Leukocyte Biology 70 (3): 447–454.PubMed
32.
Zurück zum Zitat Carter, A.B., and G.W. Hunninghake. 2000. A constitute active MEK->ERK pathway negatively regulates NF-kappa B dependent gene expression by modulating TATA-binding protein phosphorylation. The Journal of Biological Chemistry 275 (36): 27858–27864.PubMed Carter, A.B., and G.W. Hunninghake. 2000. A constitute active MEK->ERK pathway negatively regulates NF-kappa B dependent gene expression by modulating TATA-binding protein phosphorylation. The Journal of Biological Chemistry 275 (36): 27858–27864.PubMed
33.
Zurück zum Zitat Watzlawick, R., E.E. Kenngott, F.D. Liu, J.M. Schwab, and A. Hamann. 2015. Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PloS One 10 (9): 347–350.CrossRef Watzlawick, R., E.E. Kenngott, F.D. Liu, J.M. Schwab, and A. Hamann. 2015. Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PloS One 10 (9): 347–350.CrossRef
34.
Zurück zum Zitat Hernandez-Palazon, J., D. Fuentes-Garcia, S. Burguillos-Lopez, P. Domenech-Asensi, T.V. Sansano-Sanchez, and F. Acosta-Villegas. 2013. Analysis of organ failure and mortality in sepsis due to secondary peritonitis. Medicina Intensiva 37 (7): 461–467.CrossRefPubMed Hernandez-Palazon, J., D. Fuentes-Garcia, S. Burguillos-Lopez, P. Domenech-Asensi, T.V. Sansano-Sanchez, and F. Acosta-Villegas. 2013. Analysis of organ failure and mortality in sepsis due to secondary peritonitis. Medicina Intensiva 37 (7): 461–467.CrossRefPubMed
35.
Zurück zum Zitat Hanisch, E., R. Brause, J. Paetz, and B. Arlt. 2011. Review of a large clinical series: predicting death for patients with abdominal septic shock. Journal of Intensive Care Medicine 26 (1): 27–33.CrossRefPubMed Hanisch, E., R. Brause, J. Paetz, and B. Arlt. 2011. Review of a large clinical series: predicting death for patients with abdominal septic shock. Journal of Intensive Care Medicine 26 (1): 27–33.CrossRefPubMed
36.
Zurück zum Zitat Davies, M.G., and P.O. Hagen. 1997. Systemic inflammatory response syndrome. British Journal of Surgery 84 (7): 920–935.CrossRefPubMed Davies, M.G., and P.O. Hagen. 1997. Systemic inflammatory response syndrome. British Journal of Surgery 84 (7): 920–935.CrossRefPubMed
37.
Zurück zum Zitat Schulte, W., J. Bernhagen, and R. Bucala. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic target—an update view. Mediators of Inflammation 2013 (7): 165974.PubMedPubMedCentral Schulte, W., J. Bernhagen, and R. Bucala. 2013. Cytokines in sepsis: potent immunoregulators and potential therapeutic target—an update view. Mediators of Inflammation 2013 (7): 165974.PubMedPubMedCentral
38.
Zurück zum Zitat Sharma, S., and A. Kumar. 2003. Septic shock, multiple organ failure, and acute respiratory distress syndrome. Current Opinion in Pulmonary Medicine 9 (3): 199–209.CrossRefPubMed Sharma, S., and A. Kumar. 2003. Septic shock, multiple organ failure, and acute respiratory distress syndrome. Current Opinion in Pulmonary Medicine 9 (3): 199–209.CrossRefPubMed
39.
Zurück zum Zitat Patel, B.V., M.R. Wilson, K.P. O'Dea, and M. Takata. 2013. TNF-induced death signaling triggers alveolar epithelial dysfunction in acute lung injury. Journal of Immunology 190 (8): 4274–4282.CrossRef Patel, B.V., M.R. Wilson, K.P. O'Dea, and M. Takata. 2013. TNF-induced death signaling triggers alveolar epithelial dysfunction in acute lung injury. Journal of Immunology 190 (8): 4274–4282.CrossRef
40.
Zurück zum Zitat Volman, T.J., T. Hendriks, A.A. Verhofstad, B.J. Kullberg, and R.J. Goris. 2002. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17 (6): 468–472.CrossRefPubMed Volman, T.J., T. Hendriks, A.A. Verhofstad, B.J. Kullberg, and R.J. Goris. 2002. Improved survival of TNF-deficient mice during the zymosan-induced multiple organ dysfunction syndrome. Shock 17 (6): 468–472.CrossRefPubMed
41.
Zurück zum Zitat Burdon, D., T. Tiedje, K. Pfeffer, E. Vollmer, and P. Zabel. 2000. The role of tumor necrosis factor in the development of multiple organ failure in a murine model. Critical Care Medicine 28 (6): 1962–1967.CrossRefPubMed Burdon, D., T. Tiedje, K. Pfeffer, E. Vollmer, and P. Zabel. 2000. The role of tumor necrosis factor in the development of multiple organ failure in a murine model. Critical Care Medicine 28 (6): 1962–1967.CrossRefPubMed
42.
Zurück zum Zitat Jansen, M.J., T. Hendriks, R. Hermsen, J.W.M.V.D. Meer, and R.J.A. Goris. 1998. A monoclonal antibody against tumour necrosis factor-a improves survival in experimental multiple organ dysfunction syndrome. Cytokine 10 (11): 904–910.CrossRefPubMed Jansen, M.J., T. Hendriks, R. Hermsen, J.W.M.V.D. Meer, and R.J.A. Goris. 1998. A monoclonal antibody against tumour necrosis factor-a improves survival in experimental multiple organ dysfunction syndrome. Cytokine 10 (11): 904–910.CrossRefPubMed
43.
Zurück zum Zitat Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 73 (5): 2751–2757.CrossRefPubMedPubMedCentral Remick, D.G., G. Bolgos, S. Copeland, and J. Siddiqui. 2005. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infection and Immunity 73 (5): 2751–2757.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Riedemann, N.C., T.A. Neff, R.F. Guo, K.D. Bernacki, I.J. Laudes, J.V. Sarma, J.D. Lambris, and P.A. Ward. 2003. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. The Journal of Immunology 170 (1): 503–507.CrossRefPubMed Riedemann, N.C., T.A. Neff, R.F. Guo, K.D. Bernacki, I.J. Laudes, J.V. Sarma, J.D. Lambris, and P.A. Ward. 2003. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. The Journal of Immunology 170 (1): 503–507.CrossRefPubMed
45.
Zurück zum Zitat Ohmoto, K., and S. Yamamoto. 2005. Serum interleukin-6 and interleukin-10 in patients with acute pancreatitis: clinical implications. Hepato-Gastroenterology 52 (64): 990–994.PubMed Ohmoto, K., and S. Yamamoto. 2005. Serum interleukin-6 and interleukin-10 in patients with acute pancreatitis: clinical implications. Hepato-Gastroenterology 52 (64): 990–994.PubMed
46.
Zurück zum Zitat Pooran, N., A. Indaram, P. Singh, and S. Bank. 2003. Cytokines (IL-6, IL-8, TNF): early and reliable predictors of severe acute pancreatitis. Journal of Clinical Gastroenterology 37 (3): 263–266.CrossRefPubMed Pooran, N., A. Indaram, P. Singh, and S. Bank. 2003. Cytokines (IL-6, IL-8, TNF): early and reliable predictors of severe acute pancreatitis. Journal of Clinical Gastroenterology 37 (3): 263–266.CrossRefPubMed
47.
48.
Zurück zum Zitat Tsai, E.Y., J. Yie, D. Thanos, and A.E. Goldfeld. 1996. Cell-type-specific regulation of the human tumor necrosis factor alpha gene in B cells and T cells by NFATp and ATF-2/JUN. Molecular & Cellular Biology 16 (10): 5232–5244.CrossRef Tsai, E.Y., J. Yie, D. Thanos, and A.E. Goldfeld. 1996. Cell-type-specific regulation of the human tumor necrosis factor alpha gene in B cells and T cells by NFATp and ATF-2/JUN. Molecular & Cellular Biology 16 (10): 5232–5244.CrossRef
Metadaten
Titel
Evodiamine Inhibits Zymosan-Induced Inflammation In Vitro and In Vivo: Inactivation of NF-κB by Inhibiting IκBα Phosphorylation
verfasst von
Xia Fan
Jun-Yu Zhu
Yu Sun
Li Luo
Jun Yan
Xue Yang
Jing Yu
Wan-Qi Tang
Wei Ma
Hua-Ping Liang
Publikationsdatum
23.03.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0546-0

Weitere Artikel der Ausgabe 3/2017

Inflammation 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.