Skip to main content
Erschienen in: Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 1/2013

01.01.2013 | Leitthema

Evolution und Infektionsbiologie der mit dem hämolytisch-urämischen Syndrom (HUS) assoziierten E.  coli (HUSEC)

verfasst von: Prof. Dr. Dr. h.c. H. Karch, J. Müthing, U. Dobrindt, A. Mellmann

Erschienen in: Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Zusammenfassung

Shigatoxin-produzierende Escherichia coli (STEC), die das hämolytisch-urämische Syndrom (HUS) hervorrufen, werden als HUSEC bezeichnet. Ihre außerordentliche Genomvariabilität, die treibende Kraft evolutionärer Veränderungen, ermöglicht ihnen eine schnelle Anpassung an sich ändernde Umweltbedingungen. Die am Institut für Hygiene in Münster etablierte HUSEC-Kollektion (http://www.ehec.org) umfasst 42 EHEC-Referenztypstämme (HUSEC001–HUSEC042). Die HUSEC-Kollektion stellt eine einzigartige Sammlung von Krankheitserregern dar und ist äußerst hilfreich für die Analyse evolutiver Diversifizierungen und konservierter Eigenschaften von STEC, die schwerste Wirtsschädigungen verursachen. Derartige genomische Eigenschaften schließen sich langsam entwickelnde Genloci und mobile Genelemente ein, die häufig für Virulenzfaktoren kodieren und durch horizontalen Gentransfer („Evolutionsbeschleuniger“) entstanden sind. Aktuelle Evolutionsmodelle weisen darauf hin, dass sich zahlreiche Ausbruchsstämme erst kürzlich entwickelt haben und dass hochpathogene HUSEC von weniger virulenten Vorläufern abstammen. Weitere Daten legen nahe, dass HUSEC kleine, effektive Populationsgrößen ausmachen. Die HUSEC-Kollektion ist darüber hinaus eine wertvolle Ressource, um Nicht-Shigatoxin-Virulenzfaktoren zu untersuchen.
Literatur
1.
Zurück zum Zitat Friedrich AW, Bielaszewska M, Zhang WL et al (2002) Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185:74–84PubMedCrossRef Friedrich AW, Bielaszewska M, Zhang WL et al (2002) Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185:74–84PubMedCrossRef
2.
Zurück zum Zitat Bielaszewska M, Friedrich AW, Aldick T et al (2006) Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. Clin Infect Dis 43:1160–1167PubMedCrossRef Bielaszewska M, Friedrich AW, Aldick T et al (2006) Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. Clin Infect Dis 43:1160–1167PubMedCrossRef
3.
Zurück zum Zitat Mellmann A, Bielaszewska M, Köck R et al (2008) Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 14:1287–1290PubMedCrossRef Mellmann A, Bielaszewska M, Köck R et al (2008) Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerg Infect Dis 14:1287–1290PubMedCrossRef
4.
Zurück zum Zitat Ammon A, Petersen LR, Karch H (1999) A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Escherichia coli O157:H. J Infect Dis 179:1274–1277PubMedCrossRef Ammon A, Petersen LR, Karch H (1999) A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Escherichia coli O157:H. J Infect Dis 179:1274–1277PubMedCrossRef
5.
Zurück zum Zitat Bielaszewska M, Mellmann A, Zhang W et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676PubMed Bielaszewska M, Mellmann A, Zhang W et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676PubMed
6.
Zurück zum Zitat Wirth T, Falush D, Lan R et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151PubMedCrossRef Wirth T, Falush D, Lan R et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151PubMedCrossRef
7.
Zurück zum Zitat Brunder W, Karch H (2000) Genome plasticity in Enterobacteriaceae. Int J Med Microbiol 290:153–165PubMedCrossRef Brunder W, Karch H (2000) Genome plasticity in Enterobacteriaceae. Int J Med Microbiol 290:153–165PubMedCrossRef
8.
9.
Zurück zum Zitat Dobrindt U, Agerer F, Michaelis K et al (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185:1831–1840PubMedCrossRef Dobrindt U, Agerer F, Michaelis K et al (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185:1831–1840PubMedCrossRef
10.
Zurück zum Zitat Mellmann A, Bielaszewska M, Karch H (2008) Intrahost genome alterations in enterohemorrhagic Escherichia coli. Gastroenterology 136:1925–1938CrossRef Mellmann A, Bielaszewska M, Karch H (2008) Intrahost genome alterations in enterohemorrhagic Escherichia coli. Gastroenterology 136:1925–1938CrossRef
11.
Zurück zum Zitat Ahmed N, Dobrindt U, Hacker J, Hasnain SE (2008) Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6:387–394PubMedCrossRef Ahmed N, Dobrindt U, Hacker J, Hasnain SE (2008) Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6:387–394PubMedCrossRef
12.
Zurück zum Zitat Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424PubMedCrossRef Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424PubMedCrossRef
13.
Zurück zum Zitat Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793PubMedCrossRef Hacker J, Hentschel U, Dobrindt U (2003) Prokaryotic chromosomes and disease. Science 301:790–793PubMedCrossRef
14.
Zurück zum Zitat Mellmann A, Lu S, Karch H et al (2008) Recycling of Shiga toxin 2 genes in sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl Environ Microbiol 74:67–72PubMedCrossRef Mellmann A, Lu S, Karch H et al (2008) Recycling of Shiga toxin 2 genes in sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl Environ Microbiol 74:67–72PubMedCrossRef
15.
Zurück zum Zitat Bielaszewska M, Middendorf B, Tarr PI et al (2011) Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype. Mol Microbiol 79:1024–1044PubMedCrossRef Bielaszewska M, Middendorf B, Tarr PI et al (2011) Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype. Mol Microbiol 79:1024–1044PubMedCrossRef
16.
Zurück zum Zitat Janka A, Becker G, Sonntag AK et al (2005) Presence and characterization of a mosaic genomic island which distinguishes sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− from E. coli O157:H7. Appl Environ Microbiol 71:4875–4878PubMedCrossRef Janka A, Becker G, Sonntag AK et al (2005) Presence and characterization of a mosaic genomic island which distinguishes sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H from E. coli O157:H7. Appl Environ Microbiol 71:4875–4878PubMedCrossRef
17.
Zurück zum Zitat Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751PubMedCrossRef Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751PubMedCrossRef
18.
Zurück zum Zitat Reid SD, Herbelin CJ, Bumbaugh AC et al (2000) Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64–67PubMedCrossRef Reid SD, Herbelin CJ, Bumbaugh AC et al (2000) Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:64–67PubMedCrossRef
19.
Zurück zum Zitat Schubert S, Darlu P, Clermont O et al (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5:e1000257PubMedCrossRef Schubert S, Darlu P, Clermont O et al (2009) Role of intraspecies recombination in the spread of pathogenicity islands within the Escherichia coli species. PLoS Pathog 5:e1000257PubMedCrossRef
20.
Zurück zum Zitat Mira A, Pushker R, Rodriguez-Valera F (2006) The neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206PubMedCrossRef Mira A, Pushker R, Rodriguez-Valera F (2006) The neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206PubMedCrossRef
21.
Zurück zum Zitat Brunder W, Schmidt H, Frosch M, Karch H (1999) The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. Microbiology 145:1005–1014PubMedCrossRef Brunder W, Schmidt H, Frosch M, Karch H (1999) The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. Microbiology 145:1005–1014PubMedCrossRef
22.
Zurück zum Zitat Brunder W, Khan AS, Hacker J, Karch H (2001) Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H–. Infect Immun 69:4447–4457PubMedCrossRef Brunder W, Khan AS, Hacker J, Karch H (2001) Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H. Infect Immun 69:4447–4457PubMedCrossRef
23.
Zurück zum Zitat Brunder W, Schmidt H, Karch H (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24:767–778PubMedCrossRef Brunder W, Schmidt H, Karch H (1997) EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24:767–778PubMedCrossRef
24.
Zurück zum Zitat Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63:1055–1061PubMed Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63:1055–1061PubMed
25.
Zurück zum Zitat Karch H, Schmidt H, Janetzki-Mittmann C et al (1999) Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol Gen Genet 262:600–607PubMedCrossRef Karch H, Schmidt H, Janetzki-Mittmann C et al (1999) Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol Gen Genet 262:600–607PubMedCrossRef
26.
Zurück zum Zitat Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56PubMedCrossRef Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56PubMedCrossRef
27.
Zurück zum Zitat Brzuszkiewicz E, Gottschalk G, Ron E et al (2009) Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Genome Dyn 6:110–125PubMedCrossRef Brzuszkiewicz E, Gottschalk G, Ron E et al (2009) Adaptation of pathogenic E. coli to various niches: genome flexibility is the key. Genome Dyn 6:110–125PubMedCrossRef
28.
Zurück zum Zitat Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794PubMedCrossRef Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794PubMedCrossRef
29.
Zurück zum Zitat Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217PubMedCrossRef Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217PubMedCrossRef
30.
Zurück zum Zitat Karch H, Böhm H, Schmidt H et al (1993) Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H−. J Clin Microbiol 31:1200–1205PubMed Karch H, Böhm H, Schmidt H et al (1993) Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H. J Clin Microbiol 31:1200–1205PubMed
31.
Zurück zum Zitat Schmidt H, Geitz C, Tarr PI et al (1999) Non-O157:H7 pathogenic Shiga toxin-producing Escherichia coli: phenotypic and genetic profiling of virulence traits and evidence for clonality. J Infect Dis 179:115–123PubMedCrossRef Schmidt H, Geitz C, Tarr PI et al (1999) Non-O157:H7 pathogenic Shiga toxin-producing Escherichia coli: phenotypic and genetic profiling of virulence traits and evidence for clonality. J Infect Dis 179:115–123PubMedCrossRef
32.
Zurück zum Zitat Zhang WL, Bielaszewska M, Bockemühl J et al (2000) Molecular analysis of H antigens reveals that human diarrheagenic Escherichia coli O26 strains that carry the eae gene belong to the H11 clonal complex. J Clin Microbiol 38:2989–2993PubMed Zhang WL, Bielaszewska M, Bockemühl J et al (2000) Molecular analysis of H antigens reveals that human diarrheagenic Escherichia coli O26 strains that carry the eae gene belong to the H11 clonal complex. J Clin Microbiol 38:2989–2993PubMed
33.
Zurück zum Zitat Jenke C, Harmsen D, Weniger T et al (2010) Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg Infect Dis 16:610–616PubMedCrossRef Jenke C, Harmsen D, Weniger T et al (2010) Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg Infect Dis 16:610–616PubMedCrossRef
34.
Zurück zum Zitat Jenke C, Leopold SR, Weniger T et al (2012) Identification of intermediate in evolutionary model of enterohemorrhagic Escherichia coli O157. Emerg Infect Dis 18:582–588PubMedCrossRef Jenke C, Leopold SR, Weniger T et al (2012) Identification of intermediate in evolutionary model of enterohemorrhagic Escherichia coli O157. Emerg Infect Dis 18:582–588PubMedCrossRef
35.
Zurück zum Zitat Leopold SR, Magrini V, Holt NJ et al (2009) A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A 106:8713–8718PubMedCrossRef Leopold SR, Magrini V, Holt NJ et al (2009) A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A 106:8713–8718PubMedCrossRef
36.
Zurück zum Zitat Bielaszewska M, Sinha B, Kuczius T, Karch H (2005) Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect Immun 73:552–562PubMedCrossRef Bielaszewska M, Sinha B, Kuczius T, Karch H (2005) Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect Immun 73:552–562PubMedCrossRef
37.
Zurück zum Zitat Janka A, Bielaszewska M, Dobrindt U et al (2003) Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H− and O157:H7: characterization and evolutionary considerations. Infect Immun 71:3634–3638PubMedCrossRef Janka A, Bielaszewska M, Dobrindt U et al (2003) Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H and O157:H7: characterization and evolutionary considerations. Infect Immun 71:3634–3638PubMedCrossRef
38.
Zurück zum Zitat Paton AW, Beddoe T, Thorpe CM et al (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443:548–552PubMedCrossRef Paton AW, Beddoe T, Thorpe CM et al (2006) AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443:548–552PubMedCrossRef
39.
Zurück zum Zitat Merkel V, Ohder B, Bielaszewska M et al (2010) Distribution and phylogeny of immunoglobulin-binding protein G in Shiga toxin-producing Escherichia coli and its association with adherence phenotypes. Infect Immun 78:3625–3636PubMedCrossRef Merkel V, Ohder B, Bielaszewska M et al (2010) Distribution and phylogeny of immunoglobulin-binding protein G in Shiga toxin-producing Escherichia coli and its association with adherence phenotypes. Infect Immun 78:3625–3636PubMedCrossRef
40.
Zurück zum Zitat Brockmeyer J, Aldick T, Soltwisch J et al (2011) Enterohaemorrhagic Escherichia coli haemolysin is cleaved and inactivated by serine protease Espα. Environ Microbiol 13:1327–1341PubMedCrossRef Brockmeyer J, Aldick T, Soltwisch J et al (2011) Enterohaemorrhagic Escherichia coli haemolysin is cleaved and inactivated by serine protease Espα. Environ Microbiol 13:1327–1341PubMedCrossRef
41.
Zurück zum Zitat Ruiz-Perez F, Wahid R, Faherty CS et al (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci U S A 108:12881–12886PubMedCrossRef Ruiz-Perez F, Wahid R, Faherty CS et al (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci U S A 108:12881–12886PubMedCrossRef
42.
Zurück zum Zitat Bauwens A, Betz J, Meisen I et al (2012) Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci, doi:10.1007/s00018-012-1060-z Bauwens A, Betz J, Meisen I et al (2012) Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci, doi:10.1007/s00018-012-1060-z
43.
Zurück zum Zitat Müthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264PubMed Müthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264PubMed
44.
Zurück zum Zitat Müthing J, Meisen I, Zhang W et al (2012) Promiscuous Shiga toxin 2e and its intimate relationship to Forssman. Glycobiology 22:849–862PubMedCrossRef Müthing J, Meisen I, Zhang W et al (2012) Promiscuous Shiga toxin 2e and its intimate relationship to Forssman. Glycobiology 22:849–862PubMedCrossRef
45.
Zurück zum Zitat Lopez EL, Contrini MM, Glatstein E et al (2012) An epidemiologic surveillance of Shiga-like toxin-producing Escherichia coli infection in Argentinean children: risk factors and serum Shiga-like toxin 2 values. Pediatr Infect Dis J 31:20–24PubMedCrossRef Lopez EL, Contrini MM, Glatstein E et al (2012) An epidemiologic surveillance of Shiga-like toxin-producing Escherichia coli infection in Argentinean children: risk factors and serum Shiga-like toxin 2 values. Pediatr Infect Dis J 31:20–24PubMedCrossRef
46.
Zurück zum Zitat Brigotti M, Carnicelli D, Ravanelli E et al (2008) Interactions between Shiga toxins and human polymorphonuclear leukocytes. J Leukoc Biol 84:1019–1027PubMedCrossRef Brigotti M, Carnicelli D, Ravanelli E et al (2008) Interactions between Shiga toxins and human polymorphonuclear leukocytes. J Leukoc Biol 84:1019–1027PubMedCrossRef
47.
Zurück zum Zitat Schweppe CH, Hoffmann P, Nofer JR et al (2010) Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res 51:2282–2294PubMedCrossRef Schweppe CH, Hoffmann P, Nofer JR et al (2010) Neutral glycosphingolipids in human blood: a precise mass spectrometry analysis with special reference to lipoprotein-associated Shiga toxin receptors. J Lipid Res 51:2282–2294PubMedCrossRef
48.
Zurück zum Zitat Bauwens A, Bielaszewska M, Kemper B et al (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105:515–528PubMedCrossRef Bauwens A, Bielaszewska M, Kemper B et al (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105:515–528PubMedCrossRef
49.
Zurück zum Zitat Betz J, Bauwens A, Kunsmann L et al (2012) Uncommon membrane distribution of Shiga toxin glycosphingolipid receptors in toxin-sensitive human glomerular microvascular endothelial cells. Biol Chem 393:133–147PubMedCrossRef Betz J, Bauwens A, Kunsmann L et al (2012) Uncommon membrane distribution of Shiga toxin glycosphingolipid receptors in toxin-sensitive human glomerular microvascular endothelial cells. Biol Chem 393:133–147PubMedCrossRef
50.
Zurück zum Zitat Betz J, Bielaszewska M, Thies A et al (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 52:618–634PubMedCrossRef Betz J, Bielaszewska M, Thies A et al (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 52:618–634PubMedCrossRef
Metadaten
Titel
Evolution und Infektionsbiologie der mit dem hämolytisch-urämischen Syndrom (HUS) assoziierten E.  coli (HUSEC)
verfasst von
Prof. Dr. Dr. h.c. H. Karch
J. Müthing
U. Dobrindt
A. Mellmann
Publikationsdatum
01.01.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz / Ausgabe 1/2013
Print ISSN: 1436-9990
Elektronische ISSN: 1437-1588
DOI
https://doi.org/10.1007/s00103-012-1586-0

Weitere Artikel der Ausgabe 1/2013

Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 1/2013 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.