Skip to main content
Erschienen in: European Radiology 4/2012

01.04.2012 | Physics

Excess radiation and organ dose in chest and abdominal CT due to CT acquisition beyond expected anatomical boundaries

verfasst von: Federica Zanca, Martine Demeter, Raymond Oyen, Hilde Bosmans

Erschienen in: European Radiology | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To assess the extent of extra imaging beyond the prescribed anatomical margins for chest and abdominal CT and to determine associated extra patient and organ dose estimates.

Methods

For 167 consecutive patients undergoing routine chest and/or abdominal examination with 128-slice CT, extra imaging length was evaluated on coronal images. Effective and organ doses (thyroid, liver, breasts, testes) were calculated. Paired t-test was applied to evaluate statistically significant differences between prescribed and actual imaging length, and associated doses.

Results

133 (80%) examinations had extra coverage (mean 4.6 cm, range 1–19.5 cm). Significantly higher (P < 0.05) effective doses for chest CT (mean 4.8 mSv vs 4.2 mSv for actual vs prescribed volume of interest), abdominal CT (8.4 mSv vs 7.9 mSv) or thorax–abdominal CT (12.8 mSv vs 11.9 mSv) were found. A significantly higher (P < 0.001) organ dose was estimated for thyroid (extra dose 99% corresponding to 5.1 mSv), liver (56%, 2.2 mSv), testes (115%, 7.6 mSv), and breasts (163%, 1.5 mSv).

Conclusions

Imaging beyond anatomical limits during routine chest and abdominal CT results in higher organ and effective doses. Continuous training of the technologists remains important. Physicians and technologists must be kept aware of the additional dose associated with extra imaging.

Key Points

Imaging beyond anatomical boundaries often occurs during chest and abdominal CT
Such imaging beyond anatomical boundaries leads to higher organ and effective doses
Physicians and technologists should be made more aware of this additional dose
Literatur
1.
Zurück zum Zitat Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRef
2.
Zurück zum Zitat Brenner DJ (2010) Should we be concerned about the rapid increase in CT usage? Rev Environ Health 25:63–68PubMedCrossRef Brenner DJ (2010) Should we be concerned about the rapid increase in CT usage? Rev Environ Health 25:63–68PubMedCrossRef
3.
Zurück zum Zitat Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815PubMedCrossRef Brenner DJ (2010) Slowing the increase in the population dose resulting from CT scans. Radiat Res 174:809–815PubMedCrossRef
4.
Zurück zum Zitat Brenner DJ, Hricak H (2010) Radiation exposure from medical imaging: time to regulate? JAMA 304:208–209PubMedCrossRef Brenner DJ, Hricak H (2010) Radiation exposure from medical imaging: time to regulate? JAMA 304:208–209PubMedCrossRef
5.
Zurück zum Zitat Avila RS, Zulueta JJ, Shara NM et al (2010) A quantitative method for estimating individual lung cancer risk. Acad Radiol 17:830–840PubMedCrossRef Avila RS, Zulueta JJ, Shara NM et al (2010) A quantitative method for estimating individual lung cancer risk. Acad Radiol 17:830–840PubMedCrossRef
6.
Zurück zum Zitat Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I development and validation of a Monte Carlo program. Med Phys 38:397–407PubMedCrossRef Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I development and validation of a Monte Carlo program. Med Phys 38:397–407PubMedCrossRef
7.
Zurück zum Zitat Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II Application to patients. Med Phys 38:408–420PubMedCrossRef Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part II Application to patients. Med Phys 38:408–420PubMedCrossRef
8.
Zurück zum Zitat Kim S, Yoshizumi TT, Frush DP et al (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. AJR Am J Roentgenol 194:186–190PubMedCrossRef Kim S, Yoshizumi TT, Frush DP et al (2010) Radiation dose from cone beam CT in a pediatric phantom: risk estimation of cancer incidence. AJR Am J Roentgenol 194:186–190PubMedCrossRef
9.
Zurück zum Zitat Rehani MM, Berry M (2000) Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ 320:593–594PubMedCrossRef Rehani MM, Berry M (2000) Radiation doses in computed tomography. The increasing doses of radiation need to be controlled. BMJ 320:593–594PubMedCrossRef
10.
Zurück zum Zitat McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512PubMedCrossRef
11.
Zurück zum Zitat McCollough CH, Primak AN, Braun N et al (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 47:27–40PubMedCrossRef McCollough CH, Primak AN, Braun N et al (2009) Strategies for reducing radiation dose in CT. Radiol Clin North Am 47:27–40PubMedCrossRef
12.
Zurück zum Zitat McHugh K (2005) CT dose reduction in pediatric patients. AJR Am J Roentgenol 184:1706–1707PubMed McHugh K (2005) CT dose reduction in pediatric patients. AJR Am J Roentgenol 184:1706–1707PubMed
13.
Zurück zum Zitat Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199PubMedCrossRef Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199PubMedCrossRef
15.
Zurück zum Zitat Lee CH, Goo JM, Ye HJ et al (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459PubMedCrossRef Lee CH, Goo JM, Ye HJ et al (2008) Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 28:1451–1459PubMedCrossRef
16.
Zurück zum Zitat Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243PubMedCrossRef Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243PubMedCrossRef
17.
Zurück zum Zitat Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRef Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147PubMedCrossRef
18.
Zurück zum Zitat Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol 195:655–660PubMedCrossRef Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol 195:655–660PubMedCrossRef
19.
Zurück zum Zitat Leipsic J, Nguyen G, Brown J et al (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099PubMedCrossRef Leipsic J, Nguyen G, Brown J et al (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099PubMedCrossRef
20.
21.
Zurück zum Zitat Liao EA, Quint LE, Goodsitt MM et al (2011) Extra Z-axis coverage at CT imaging resulting in excess radiation dose: frequency, degree, and contributory factors. J Comput Assist Tomogr 35:50–56PubMedCrossRef Liao EA, Quint LE, Goodsitt MM et al (2011) Extra Z-axis coverage at CT imaging resulting in excess radiation dose: frequency, degree, and contributory factors. J Comput Assist Tomogr 35:50–56PubMedCrossRef
22.
Zurück zum Zitat Kalra MK, Maher MM, Toth TL et al (2004) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414PubMedCrossRef Kalra MK, Maher MM, Toth TL et al (2004) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414PubMedCrossRef
23.
Zurück zum Zitat Campbell J, Kalra MK, Rizzo S et al (2005) Scanning beyond anatomic limits of the thorax in chest CT: findings, radiation dose, and automatic tube current modulation. AJR Am J Roentgenol 185:1525–1530PubMedCrossRef Campbell J, Kalra MK, Rizzo S et al (2005) Scanning beyond anatomic limits of the thorax in chest CT: findings, radiation dose, and automatic tube current modulation. AJR Am J Roentgenol 185:1525–1530PubMedCrossRef
24.
Zurück zum Zitat McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRef McNitt-Gray MF (2002) AAPM/RSNA physics tutorial for residents: topics in CT radiation dose in CT. Radiographics 22:1541–1553PubMedCrossRef
25.
Zurück zum Zitat International Commission on Radiological Protection (2007) The 2007 Reccomendations of the International Commission on Radiological Protection ICRP publication 103. Ann ICRP 37:1–332 International Commission on Radiological Protection (2007) The 2007 Reccomendations of the International Commission on Radiological Protection ICRP publication 103. Ann ICRP 37:1–332
26.
Zurück zum Zitat International Commission on Radiological Protection (1990) The 1990 Reccomendations of the International Commission on Radiological Protection ICRP publication 60. Ann ICRP 21:1–201 International Commission on Radiological Protection (1990) The 1990 Reccomendations of the International Commission on Radiological Protection ICRP publication 60. Ann ICRP 21:1–201
28.
Zurück zum Zitat Stamm G, Nagel HD (2002) CT-expo—a novel program for dose evaluation in CT. Rofo 174:1570–1576PubMedCrossRef Stamm G, Nagel HD (2002) CT-expo—a novel program for dose evaluation in CT. Rofo 174:1570–1576PubMedCrossRef
29.
Zurück zum Zitat Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003PubMedCrossRef Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003PubMedCrossRef
31.
Zurück zum Zitat Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194:881–889PubMedCrossRef Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194:881–889PubMedCrossRef
32.
Zurück zum Zitat McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896PubMedCrossRef McCollough CH, Christner JA, Kofler JM (2010) How effective is effective dose as a predictor of radiation risk? AJR Am J Roentgenol 194:890–896PubMedCrossRef
33.
Zurück zum Zitat Jacobs J, Zanca F, Bosmans H (2011) A novel platform to simplify human observer performance experiments in clinical reading environments. Medical Imaging 2011: Physics of Medical Imaging Proc of SPIE Vol 7966: 79660B-1–79660B-9 Jacobs J, Zanca F, Bosmans H (2011) A novel platform to simplify human observer performance experiments in clinical reading environments. Medical Imaging 2011: Physics of Medical Imaging Proc of SPIE Vol 7966: 79660B-1–79660B-9
34.
Zurück zum Zitat Committee to Assess Health Risks From Exposure to Low Levels of Ionizing Radiation, Board on Radiation Effects Research, Division of Earth and Life Studies, National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press, Washington Committee to Assess Health Risks From Exposure to Low Levels of Ionizing Radiation, Board on Radiation Effects Research, Division of Earth and Life Studies, National Research Council of the National Academies (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press, Washington
35.
Zurück zum Zitat United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionising radiation Report to the General Assembly With Scientific Annexes. United Nations, New York United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionising radiation Report to the General Assembly With Scientific Annexes. United Nations, New York
36.
Zurück zum Zitat Brenner DJ, Elliston CD (2004) Estimated radiation risks potentially associated with full-body CT screening. Radiology 232:735–738PubMedCrossRef Brenner DJ, Elliston CD (2004) Estimated radiation risks potentially associated with full-body CT screening. Radiology 232:735–738PubMedCrossRef
37.
Zurück zum Zitat Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647PubMedCrossRef Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647PubMedCrossRef
38.
Zurück zum Zitat Hricak H, Brenner DJ, Adelstein SJ et al (2011) Managing radiation use in medical imaging: a multifaceted challenge. Radiology 258:889–905PubMedCrossRef Hricak H, Brenner DJ, Adelstein SJ et al (2011) Managing radiation use in medical imaging: a multifaceted challenge. Radiology 258:889–905PubMedCrossRef
39.
Zurück zum Zitat von Boetticher H, Lüllau T, Lammers M et al (2011) Exposition of the organ liver in computed tomography of the thorax: a new approach to individual dosimetry with methods of radiotherapy tratment planning. Health Phys 101:79–83CrossRef von Boetticher H, Lüllau T, Lammers M et al (2011) Exposition of the organ liver in computed tomography of the thorax: a new approach to individual dosimetry with methods of radiotherapy tratment planning. Health Phys 101:79–83CrossRef
40.
Zurück zum Zitat Zanca F, Michielson K, Depuydt M et al (2011) Longitudinal tube modulation for chest and abdominal CT examinations: impact on effective patient doses calculations. Medical Imaging 2011: Physics of Medical Imaging Proc of SPIE Vol 7961:79613E-1–79613E-11 Zanca F, Michielson K, Depuydt M et al (2011) Longitudinal tube modulation for chest and abdominal CT examinations: impact on effective patient doses calculations. Medical Imaging 2011: Physics of Medical Imaging Proc of SPIE Vol 7961:79613E-1–79613E-11
Metadaten
Titel
Excess radiation and organ dose in chest and abdominal CT due to CT acquisition beyond expected anatomical boundaries
verfasst von
Federica Zanca
Martine Demeter
Raymond Oyen
Hilde Bosmans
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 4/2012
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-011-2332-y

Weitere Artikel der Ausgabe 4/2012

European Radiology 4/2012 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.