Skip to main content
Erschienen in: Endocrine 2/2017

09.11.2016 | Original Article

Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a

verfasst von: Xinger Wu, Weiwei Liang, Hongyu Guan, Juan Liu, Liehua Liu, Hai Li, Xiaoying He, Jing Zheng, Jie Chen, Xiaopei Cao, Yanbing Li

Erschienen in: Endocrine | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Exendin-4, a glucagon-like peptide-1 receptor agonist, is currently regarded as an effective therapeutic strategy for type-2 diabetes. Previous studies indicated that exendin-4 promoted β cell proliferation. However, the underlying mechanisms remain largely unknown. Recently it was reported that exendin-4 promoted pancreatic β cell proliferation by regulating the expression level of Wnt4. The present study was designed to investigate whether other Wnt isoforms take part in accommodation of β-cell proliferation. We found that exendin-4 promotes the proliferation and suppresses the expression of Wnt5a in INS-1 cell line and C57Bl/6 mouse pancreatic β-cells. Further mechanistic study demonstrated that exendin-4 promoted INS-1 cell proliferation partly through down-regulating the expression of Wnt5a. Furthermore, Wnt5a could induce the activation of calmodulin-dependent protein kinase II in INS-1 cells, thereby decreasing the cellular stable β-catenin and its nuclear translocation, and finally reduce the expression of cyclin D1. In addition, we also found that both of the receptors (Frz-2 and Ror-2) mediated the effect of Wnt5a on β cell line INS-1 proliferation. Taken together, this study suggests that Wnt5a plays a critical role in exendin-4-induced β-cell proliferation, indicating that Wnt5a might be a novel regulator in counterbalance of β cell mass.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M. Cnop, N. Welsh, J.C. Jonas, A. Jorns, S. Lenzen, D.L. Eizirik, Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2), S97–S107 (2005)CrossRefPubMed M. Cnop, N. Welsh, J.C. Jonas, A. Jorns, S. Lenzen, D.L. Eizirik, Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2), S97–S107 (2005)CrossRefPubMed
2.
Zurück zum Zitat A. Vetere, A. Choudhary, S.M. Burns, B.K. Wagner, Targeting the pancreatic beta-cell to treat diabetes. Nat. Rev. Drug. Discov. 13, 278–289 (2014)CrossRefPubMed A. Vetere, A. Choudhary, S.M. Burns, B.K. Wagner, Targeting the pancreatic beta-cell to treat diabetes. Nat. Rev. Drug. Discov. 13, 278–289 (2014)CrossRefPubMed
3.
Zurück zum Zitat D. Mathis, L. Vence, C. Benoist, Beta-Cell death during progression to diabetes. Nature 414, 792–798 (2001)CrossRefPubMed D. Mathis, L. Vence, C. Benoist, Beta-Cell death during progression to diabetes. Nature 414, 792–798 (2001)CrossRefPubMed
4.
Zurück zum Zitat D.J. Drucker, J.B. Buse, K. Taylor, D.M. Kendall, M. Trautmann, D. Zhuang, L. Porter; Group D-S, Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008)CrossRefPubMed D.J. Drucker, J.B. Buse, K. Taylor, D.M. Kendall, M. Trautmann, D. Zhuang, L. Porter; Group D-S, Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372, 1240–1250 (2008)CrossRefPubMed
6.
Zurück zum Zitat M.D. Gordon, R. Nusse, Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006)CrossRefPubMed M.D. Gordon, R. Nusse, Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006)CrossRefPubMed
7.
Zurück zum Zitat O.R. Bandapalli, S. Dihlmann, R. Helwa, S. Macher-Goeppinger, J. Weitz, P. Schirmacher, K. Brand, Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J. Pathol. 218, 370–379 (2009)CrossRefPubMed O.R. Bandapalli, S. Dihlmann, R. Helwa, S. Macher-Goeppinger, J. Weitz, P. Schirmacher, K. Brand, Transcriptional activation of the beta-catenin gene at the invasion front of colorectal liver metastases. J. Pathol. 218, 370–379 (2009)CrossRefPubMed
8.
Zurück zum Zitat K. Wunnenberg-Stapleton, I.L. Blitz, C. Hashimoto, K.W. Cho, Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 126, 5339–5351 (1999)PubMed K. Wunnenberg-Stapleton, I.L. Blitz, C. Hashimoto, K.W. Cho, Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 126, 5339–5351 (1999)PubMed
9.
Zurück zum Zitat M. Kuhl, L.C. Sheldahl, C.C. Malbon, R.T. Moon, Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000)CrossRefPubMed M. Kuhl, L.C. Sheldahl, C.C. Malbon, R.T. Moon, Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000)CrossRefPubMed
10.
Zurück zum Zitat I.C. Rulifson, S.K. Karnik, P.W. Heiser, D. ten Berge, H. Chen, X. Gu, M.M. Taketo, R. Nusse, M. Hebrok, S.K. Kim, Wnt signaling regulates pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. U S A 104, 6247–6252 (2007)CrossRefPubMedPubMedCentral I.C. Rulifson, S.K. Karnik, P.W. Heiser, D. ten Berge, H. Chen, X. Gu, M.M. Taketo, R. Nusse, M. Hebrok, S.K. Kim, Wnt signaling regulates pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. U S A 104, 6247–6252 (2007)CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat T. Fujino, H. Asaba, M.J. Kang, Y. Ikeda, H. Sone, S. Takada, D.H. Kim, R.X. Ioka, M. Ono, H. Tomoyori, M. Okubo, T. Murase, A. Kamataki, J. Yamamoto, K. Magoori, S. Takahashi et al., Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. U S A 100, 229–234 (2003)CrossRefPubMed T. Fujino, H. Asaba, M.J. Kang, Y. Ikeda, H. Sone, S. Takada, D.H. Kim, R.X. Ioka, M. Ono, H. Tomoyori, M. Okubo, T. Murase, A. Kamataki, J. Yamamoto, K. Magoori, S. Takahashi et al., Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. U S A 100, 229–234 (2003)CrossRefPubMed
12.
Zurück zum Zitat S. Schinner, F. Ulgen, C. Papewalis, M. Schott, A. Woelk, A. Vidal-Puig, W.A. Scherbaum, Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51, 147–154 (2008)CrossRefPubMed S. Schinner, F. Ulgen, C. Papewalis, M. Schott, A. Woelk, A. Vidal-Puig, W.A. Scherbaum, Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 51, 147–154 (2008)CrossRefPubMed
13.
Zurück zum Zitat C. Wilson, Diabetes: human beta-cell proliferation by promoting Wnt signalling. Nat Rev Endocrinol 9, 502 (2013)CrossRefPubMed C. Wilson, Diabetes: human beta-cell proliferation by promoting Wnt signalling. Nat Rev Endocrinol 9, 502 (2013)CrossRefPubMed
15.
Zurück zum Zitat C. Heller, M.C. Kuhn, B. Mulders-Opgenoorth, M. Schott, H.S. Willenberg, W.A. Scherbaum, S. Schinner, Exendin-4 upregulates the expression of Wnt-4, a novel regulator of pancreatic beta-cell proliferation. Am. J. Physiol. Endocrinol. Metab. 301, E864–E872 (2011)CrossRefPubMed C. Heller, M.C. Kuhn, B. Mulders-Opgenoorth, M. Schott, H.S. Willenberg, W.A. Scherbaum, S. Schinner, Exendin-4 upregulates the expression of Wnt-4, a novel regulator of pancreatic beta-cell proliferation. Am. J. Physiol. Endocrinol. Metab. 301, E864–E872 (2011)CrossRefPubMed
16.
Zurück zum Zitat T.A. Matsuoka, L. Zhao, I. Artner, H.W. Jarrett, D. Friedman, A. Means, R. Stein, Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol. 23, 6049–6062 (2003)CrossRefPubMedPubMedCentral T.A. Matsuoka, L. Zhao, I. Artner, H.W. Jarrett, D. Friedman, A. Means, R. Stein, Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol. 23, 6049–6062 (2003)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat D.A. Stoffers, T.J. Kieffer, M.A. Hussain, D.J. Drucker, S. Bonner-Weir, J.F. Habener, J.M. Egan, Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748 (2000)CrossRefPubMed D.A. Stoffers, T.J. Kieffer, M.A. Hussain, D.J. Drucker, S. Bonner-Weir, J.F. Habener, J.M. Egan, Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49, 741–748 (2000)CrossRefPubMed
18.
Zurück zum Zitat R.S. Heller, T. Klein, Z. Ling, H. Heimberg, M. Katoh, O.D. Madsen, P. Serup, Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr. 11, 141–147 (2003)CrossRefPubMed R.S. Heller, T. Klein, Z. Ling, H. Heimberg, M. Katoh, O.D. Madsen, P. Serup, Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr. 11, 141–147 (2003)CrossRefPubMed
19.
Zurück zum Zitat Z. Liu, J.F. Habener, Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723–8735 (2008)CrossRefPubMedPubMedCentral Z. Liu, J.F. Habener, Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723–8735 (2008)CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat W.J. Song, W.E. Schreiber, E. Zhong, F.F. Liu, B.D. Kornfeld, F.E. Wondisford, M.A. Hussain, Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes 57, 2371–2381 (2008)CrossRefPubMedPubMedCentral W.J. Song, W.E. Schreiber, E. Zhong, F.F. Liu, B.D. Kornfeld, F.E. Wondisford, M.A. Hussain, Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes 57, 2371–2381 (2008)CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat L. Tian, J. Gao, G. Weng, H. Yi, B. Tian, T.D. O’Brien, Z. Guo, Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts. Transpl. Int. 24, 856–864 (2011)CrossRefPubMed L. Tian, J. Gao, G. Weng, H. Yi, B. Tian, T.D. O’Brien, Z. Guo, Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts. Transpl. Int. 24, 856–864 (2011)CrossRefPubMed
22.
Zurück zum Zitat M. Arakawa, C. Ebato, T. Mita, T. Hirose, R. Kawamori, Y. Fujitani, H. Watada, Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem. Biophys. Res. Commun. 390, 809–814 (2009)CrossRefPubMed M. Arakawa, C. Ebato, T. Mita, T. Hirose, R. Kawamori, Y. Fujitani, H. Watada, Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem. Biophys. Res. Commun. 390, 809–814 (2009)CrossRefPubMed
23.
Zurück zum Zitat J. Xie, N.M. El Sayed, C. Qi, X. Zhao, C.E. Moore, T.P. Herbert, Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1. J. Mol. Endocrinol. 53, 105–115 (2014)CrossRefPubMed J. Xie, N.M. El Sayed, C. Qi, X. Zhao, C.E. Moore, T.P. Herbert, Exendin-4 stimulates islet cell replication via the IGF1 receptor activation of mTORC1/S6K1. J. Mol. Endocrinol. 53, 105–115 (2014)CrossRefPubMed
24.
Zurück zum Zitat K. Kumawat, M.H. Menzen, R.M. Slegtenhorst, A.J. Halayko, M. Schmidt, R. Gosens, TGF-beta-activated kinase 1 (TAK1) signaling regulates TGF-beta-induced WNT-5A expression in airway smooth muscle cells via Sp1 and beta-catenin. PLoS ONE 9, e94801 (2014)CrossRefPubMedPubMedCentral K. Kumawat, M.H. Menzen, R.M. Slegtenhorst, A.J. Halayko, M. Schmidt, R. Gosens, TGF-beta-activated kinase 1 (TAK1) signaling regulates TGF-beta-induced WNT-5A expression in airway smooth muscle cells via Sp1 and beta-catenin. PLoS ONE 9, e94801 (2014)CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat P. Michl, A.R. Ramjaun, O.E. Pardo, P.H. Warne, M. Wagner, R. Poulsom, C. D’Arrigo, K. Ryder, A. Menke, T. Gress, J. Downward, CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell 7, 521–532 (2005)CrossRefPubMed P. Michl, A.R. Ramjaun, O.E. Pardo, P.H. Warne, M. Wagner, R. Poulsom, C. D’Arrigo, K. Ryder, A. Menke, T. Gress, J. Downward, CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell 7, 521–532 (2005)CrossRefPubMed
26.
Zurück zum Zitat S. Ripka, A. Konig, M. Buchholz, M. Wagner, B. Sipos, G. Kloppel, J. Downward, T. Gress, P. Michl, WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178–1187 (2007)CrossRefPubMed S. Ripka, A. Konig, M. Buchholz, M. Wagner, B. Sipos, G. Kloppel, J. Downward, T. Gress, P. Michl, WNT5A--target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 28, 1178–1187 (2007)CrossRefPubMed
27.
Zurück zum Zitat C.W. Park, H.W. Kim, S.H. Ko, J.H. Lim, G.R. Ryu, H.W. Chung, S.W. Han, S.J. Shin, B.K. Bang, M.D. Breyer, Y.S. Chang, Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007)CrossRefPubMed C.W. Park, H.W. Kim, S.H. Ko, J.H. Lim, G.R. Ryu, H.W. Chung, S.W. Han, S.J. Shin, B.K. Bang, M.D. Breyer, Y.S. Chang, Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J. Am. Soc. Nephrol. 18, 1227–1238 (2007)CrossRefPubMed
28.
Zurück zum Zitat W. Li, M. Cui, Y. Wei, X. Kong, L. Tang, D. Xu, Inhibition of the expression of TGF-beta1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell. Physiol. Biochem. 30, 749–757 (2012)CrossRefPubMed W. Li, M. Cui, Y. Wei, X. Kong, L. Tang, D. Xu, Inhibition of the expression of TGF-beta1 and CTGF in human mesangial cells by exendin-4, a glucagon-like peptide-1 receptor agonist. Cell. Physiol. Biochem. 30, 749–757 (2012)CrossRefPubMed
29.
Zurück zum Zitat A. Shrivastava, C. Radziejewski, E. Campbell, L. Kovac, M. McGlynn, T.E. Ryan, S. Davis, M.P. Goldfarb, D.J. Glass, G. Lemke, G.D. Yancopoulos, An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34 (1997)CrossRefPubMed A. Shrivastava, C. Radziejewski, E. Campbell, L. Kovac, M. McGlynn, T.E. Ryan, S. Davis, M.P. Goldfarb, D.J. Glass, G. Lemke, G.D. Yancopoulos, An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25–34 (1997)CrossRefPubMed
30.
Zurück zum Zitat R.J. Colbran, A.M. Brown, Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14, 318–327 (2004)CrossRefPubMed R.J. Colbran, A.M. Brown, Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14, 318–327 (2004)CrossRefPubMed
31.
Zurück zum Zitat J.E. Lisman, A.M. Zhabotinsky, A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001)CrossRefPubMed J.E. Lisman, A.M. Zhabotinsky, A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001)CrossRefPubMed
32.
Zurück zum Zitat K.U. Bayer, H. Schulman, Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem. Biophys. Res. Commun. 289, 917–923 (2001)CrossRefPubMed K.U. Bayer, H. Schulman, Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem. Biophys. Res. Commun. 289, 917–923 (2001)CrossRefPubMed
33.
Zurück zum Zitat J. Lisman, H. Schulman, H. Cline, The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002)CrossRefPubMed J. Lisman, H. Schulman, H. Cline, The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002)CrossRefPubMed
34.
Zurück zum Zitat C.C. Fink, T. Meyer, Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr. Opin. Neurobiol. 12, 293–299 (2002)CrossRefPubMed C.C. Fink, T. Meyer, Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr. Opin. Neurobiol. 12, 293–299 (2002)CrossRefPubMed
36.
Zurück zum Zitat M.A. Torres, J.A. Yang-Snyder, S.M. Purcell, A.A. DeMarais, L.L. McGrew, R.T. Moon, Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell. Biol. 133, 1123–1137 (1996)CrossRefPubMed M.A. Torres, J.A. Yang-Snyder, S.M. Purcell, A.A. DeMarais, L.L. McGrew, R.T. Moon, Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell. Biol. 133, 1123–1137 (1996)CrossRefPubMed
37.
Zurück zum Zitat A. Koehler, J. Schlupf, M. Schneider, B. Kraft, C. Winter, J. Kashef, Loss of Xenopus cadherin-11 leads to increased Wnt/beta-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Dev. Biol. 383, 132–145 (2013)CrossRefPubMed A. Koehler, J. Schlupf, M. Schneider, B. Kraft, C. Winter, J. Kashef, Loss of Xenopus cadherin-11 leads to increased Wnt/beta-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Dev. Biol. 383, 132–145 (2013)CrossRefPubMed
38.
Zurück zum Zitat T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M. Waterman, H. Shibuya, R.T. Moon, J. Ninomiya-Tsuji, K. Matsumoto, The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003)CrossRefPubMedPubMedCentral T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M. Waterman, H. Shibuya, R.T. Moon, J. Ninomiya-Tsuji, K. Matsumoto, The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003)CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat T.W. Austin, G.P. Solar, F.C. Ziegler, L. Liem, W. Matthews, A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997)PubMed T.W. Austin, G.P. Solar, F.C. Ziegler, L. Liem, W. Matthews, A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997)PubMed
40.
Zurück zum Zitat R.V. Iozzo, I. Eichstetter, K.G. Danielson, Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer. Res. 55, 3495–3499 (1995)PubMed R.V. Iozzo, I. Eichstetter, K.G. Danielson, Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer. Res. 55, 3495–3499 (1995)PubMed
41.
Zurück zum Zitat S. Lejeune, E.L. Huguet, A. Hamby, R. Poulsom, A.L. Harris, Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer. Res. 1, 215–222 (1995)PubMed S. Lejeune, E.L. Huguet, A. Hamby, R. Poulsom, A.L. Harris, Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin. Cancer. Res. 1, 215–222 (1995)PubMed
42.
Zurück zum Zitat T. Saitoh, M. Katoh, Molecular cloning and characterization of human WNT5B on chromosome 12p13.3 region. Int. J. Oncol. 19, 347–351 (2001)PubMed T. Saitoh, M. Katoh, Molecular cloning and characterization of human WNT5B on chromosome 12p13.3 region. Int. J. Oncol. 19, 347–351 (2001)PubMed
43.
Zurück zum Zitat D.J. Van Den Berg, A.K. Sharma, E. Bruno, R. Hoffman, Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998) D.J. Van Den Berg, A.K. Sharma, E. Bruno, R. Hoffman, Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998)
44.
Zurück zum Zitat D.C. Slusarski, J. Yang-Snyder, W.B. Busa, R.T. Moon, Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120 (1997)CrossRefPubMed D.C. Slusarski, J. Yang-Snyder, W.B. Busa, R.T. Moon, Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120 (1997)CrossRefPubMed
45.
Zurück zum Zitat A. Schambony, D. Wedlich, Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792 (2007)CrossRefPubMed A. Schambony, D. Wedlich, Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 12, 779–792 (2007)CrossRefPubMed
46.
Zurück zum Zitat T. Ishitani, J. Ninomiya-Tsuji, K. Matsumoto, Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol. Cell Biol. 23, 1379–1389 (2003)CrossRefPubMedPubMedCentral T. Ishitani, J. Ninomiya-Tsuji, K. Matsumoto, Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol. Cell Biol. 23, 1379–1389 (2003)CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat A.J. Mikels, R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4, e115 (2006)CrossRefPubMedPubMedCentral A.J. Mikels, R. Nusse, Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4, e115 (2006)CrossRefPubMedPubMedCentral
Metadaten
Titel
Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a
verfasst von
Xinger Wu
Weiwei Liang
Hongyu Guan
Juan Liu
Liehua Liu
Hai Li
Xiaoying He
Jing Zheng
Jie Chen
Xiaopei Cao
Yanbing Li
Publikationsdatum
09.11.2016
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 2/2017
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-016-1160-x

Weitere Artikel der Ausgabe 2/2017

Endocrine 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.