Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2019

26.11.2019

Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression

verfasst von: Alakesh Das, Vishnu Mohan, Venkat Raghavan Krishnaswamy, Inna Solomonov, Irit Sagi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Rapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood. Recent studies have shown that apart from delivering its cargo to the cells, it can directly act on extracellular matrix (ECM) proteins and growth factors and can induce various remodeling events. More importantly, exosomes carry many surface-bound proteases, which can cleave different ECM proteins and carbohydrates and can shed cell surface receptors. These local extracellular events can modulate signaling cascades, which consequently influences the whole tissue and organ. This review aims to highlight the critical roles of exosomal proteases and their mechanistic insights within the cellular and extracellular environment.
Literatur
1.
Zurück zum Zitat Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: Composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579.PubMedCrossRef Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: Composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579.PubMedCrossRef
2.
Zurück zum Zitat Nawaz, M., et al. (2018). Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells, 7(10), 167.PubMedCentralCrossRef Nawaz, M., et al. (2018). Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells, 7(10), 167.PubMedCentralCrossRef
3.
Zurück zum Zitat Li, S. P., Lin, Z. X., Jiang, X. Y., & Yu, X. Y. (2018). Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacologica Sinica, 39(4), 542–551.PubMedPubMedCentralCrossRef Li, S. P., Lin, Z. X., Jiang, X. Y., & Yu, X. Y. (2018). Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacologica Sinica, 39(4), 542–551.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Elsherbini, A., & Bieberich, E. (2018). Ceramide and Exosomes: A Novel Target in Cancer Biology and Therapy (Vol. 140). Elsevier Ltd. Elsherbini, A., & Bieberich, E. (2018). Ceramide and Exosomes: A Novel Target in Cancer Biology and Therapy (Vol. 140). Elsevier Ltd.
5.
Zurück zum Zitat Williams, C., et al. (2018). Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Journal of Extracellular Vesicles, 7(1).PubMedPubMedCentralCrossRef Williams, C., et al. (2018). Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Journal of Extracellular Vesicles, 7(1).PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Williams, C., et al. (2019). Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Scientific Reports, 9(1), 11920.PubMedPubMedCentralCrossRef Williams, C., et al. (2019). Assessing the role of surface glycans of extracellular vesicles on cellular uptake. Scientific Reports, 9(1), 11920.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.PubMedCrossRef Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.PubMedCrossRef
8.
Zurück zum Zitat Q. Liu et al., “Donor dendritic cell–derived exosomes promote allograft-targeting immune response,” vol. 126, no. 8, pp. 2805–2820, 2016. Q. Liu et al., “Donor dendritic cell–derived exosomes promote allograft-targeting immune response,” vol. 126, no. 8, pp. 2805–2820, 2016.
9.
Zurück zum Zitat Fabbri, M., Paone, A., Calore, F., Galli, R., Croce, C. M., & Mediators, C. C. (2013). A new role for microRNAs, as ligands of Toll-like receptors Muller. RNA Biology, 10(2, no. February), 169–174.PubMedPubMedCentralCrossRef Fabbri, M., Paone, A., Calore, F., Galli, R., Croce, C. M., & Mediators, C. C. (2013). A new role for microRNAs, as ligands of Toll-like receptors Muller. RNA Biology, 10(2, no. February), 169–174.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Thakur, B. K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazier, H., Xiang, J., Williams, C., Rodriguez-Barrueco, R., Silva, J. M., Zhang, W., Hearn, S., Elemento, O., Paknejad, N., Manova-Todorova, K., Welte, K., Bromberg, J., Peinado, H., & Lyden, D. (2014). Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Research, 24(6), 766–769.PubMedPubMedCentralCrossRef Thakur, B. K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazier, H., Xiang, J., Williams, C., Rodriguez-Barrueco, R., Silva, J. M., Zhang, W., Hearn, S., Elemento, O., Paknejad, N., Manova-Todorova, K., Welte, K., Bromberg, J., Peinado, H., & Lyden, D. (2014). Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Research, 24(6), 766–769.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Kalluri, R., & Lebleu, V. S. (2016). Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harbor Symposia on Quantitative Biology, 81(1), 275–280.PubMedCrossRef Kalluri, R., & Lebleu, V. S. (2016). Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harbor Symposia on Quantitative Biology, 81(1), 275–280.PubMedCrossRef
12.
Zurück zum Zitat Dourado, M. R., et al. (2019). Extracellular vesicles derived from cancer-associated fibroblasts induce the migration and invasion of oral squamous cell carcinoma. Journal of Extracellular Vesicles, 8(1).PubMedPubMedCentralCrossRef Dourado, M. R., et al. (2019). Extracellular vesicles derived from cancer-associated fibroblasts induce the migration and invasion of oral squamous cell carcinoma. Journal of Extracellular Vesicles, 8(1).PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hamam, D., Abdouh, M., Gao, Z. H., Arena, V., Arena, M., & Arena, G. O. (2016). Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. Journal of Experimental & Clinical Cancer Research, 35(1), 1–12.CrossRef Hamam, D., Abdouh, M., Gao, Z. H., Arena, V., Arena, M., & Arena, G. O. (2016). Transfer of malignant trait to BRCA1 deficient human fibroblasts following exposure to serum of cancer patients. Journal of Experimental & Clinical Cancer Research, 35(1), 1–12.CrossRef
14.
Zurück zum Zitat Minciacchi, V. R., et al. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell & Developmental Biology, 40, 41–51.CrossRef Minciacchi, V. R., et al. Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell & Developmental Biology, 40, 41–51.CrossRef
15.
Zurück zum Zitat McKelvey, K. J., Powell, K. L., Ashton, A. W., Morris, J. M., & McCracken, S. A. (2015). Exosomes: Mechanisms of uptake. Journal of Circulating Biomarkers, 4, 1–9.CrossRef McKelvey, K. J., Powell, K. L., Ashton, A. W., Morris, J. M., & McCracken, S. A. (2015). Exosomes: Mechanisms of uptake. Journal of Circulating Biomarkers, 4, 1–9.CrossRef
16.
Zurück zum Zitat Gonda, A., Kabagwira, J., Senthil, G. N., & Wall, N. R. (2019). Internalization of exosomes through receptor-mediated endocytosis. Molecular Cancer Research, 17(2), 337–347.PubMedCrossRef Gonda, A., Kabagwira, J., Senthil, G. N., & Wall, N. R. (2019). Internalization of exosomes through receptor-mediated endocytosis. Molecular Cancer Research, 17(2), 337–347.PubMedCrossRef
17.
Zurück zum Zitat Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2017). Extracellular vesicles: Unique intercellular delivery vehicles. Trends in Cell Biology, 27(3), 172–188.PubMedCrossRef Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2017). Extracellular vesicles: Unique intercellular delivery vehicles. Trends in Cell Biology, 27(3), 172–188.PubMedCrossRef
18.
Zurück zum Zitat Duijvesz, D., et al. (2013). Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One, 8(12), 1–10.CrossRef Duijvesz, D., et al. (2013). Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLoS One, 8(12), 1–10.CrossRef
19.
Zurück zum Zitat Huang, T., & Deng, C. X. (2019). Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. International Journal of Biological Sciences, 15(1), 1–11.PubMedPubMedCentralCrossRef Huang, T., & Deng, C. X. (2019). Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. International Journal of Biological Sciences, 15(1), 1–11.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Shimoda, M., & Khokha, R. (2017). Metalloproteinases in extracellular vesicles. Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 1989–2000.PubMedCrossRef Shimoda, M., & Khokha, R. (2017). Metalloproteinases in extracellular vesicles. Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 1989–2000.PubMedCrossRef
21.
Zurück zum Zitat Shimoda, M., & Khokha, R. (2013). Proteolytic factors in exosomes. Proteomics, 13(10–11), 1624–1636.PubMedCrossRef Shimoda, M., & Khokha, R. (2013). Proteolytic factors in exosomes. Proteomics, 13(10–11), 1624–1636.PubMedCrossRef
22.
Zurück zum Zitat Das, A., Monteiro, M., Barai, A., Kumar, S., & Sen, S. (2017). MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Scientific Reports, 7(1), 1–13.CrossRef Das, A., Monteiro, M., Barai, A., Kumar, S., & Sen, S. (2017). MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Scientific Reports, 7(1), 1–13.CrossRef
23.
Zurück zum Zitat Das, S. S. A., Kapoor, A., Mehta, G. D., & Ghosh, S. K. (2013). Extracellular Matrix Density Regulates Extracellular Proteolysis via Modulation of Cellular Contractility. Journal of Carcinogenesis and Mutagenesis, S13. Das, S. S. A., Kapoor, A., Mehta, G. D., & Ghosh, S. K. (2013). Extracellular Matrix Density Regulates Extracellular Proteolysis via Modulation of Cellular Contractility. Journal of Carcinogenesis and Mutagenesis, S13.
24.
Zurück zum Zitat Kapoor, A., Barai, A., Thakur, B., Das, A., Patwardhan, S. R., Monteiro, M., Gaikwad, S., Bukhari, A. B., Mogha, P., Majumder, A., de, A., Ray, P., & Sen, S. (2018). Soft drug-resistant ovarian cancer cells migrate via two distinct mechanisms utilizing myosin II-based contractility. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(2), 392–405.PubMedCrossRef Kapoor, A., Barai, A., Thakur, B., Das, A., Patwardhan, S. R., Monteiro, M., Gaikwad, S., Bukhari, A. B., Mogha, P., Majumder, A., de, A., Ray, P., & Sen, S. (2018). Soft drug-resistant ovarian cancer cells migrate via two distinct mechanisms utilizing myosin II-based contractility. Biochimica et Biophysica Acta, Molecular Cell Research, 1865(2), 392–405.PubMedCrossRef
25.
Zurück zum Zitat A. Haage and I. C. Schneider, “Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells,” pp. 1–11, 2014. A. Haage and I. C. Schneider, “Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells,” pp. 1–11, 2014.
26.
Zurück zum Zitat Gong, Y., Chippada-Venkata, U. D., & Oh, W. K. (2014). Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel), 6(3), 1298–1327.CrossRef Gong, Y., Chippada-Venkata, U. D., & Oh, W. K. (2014). Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel), 6(3), 1298–1327.CrossRef
27.
Zurück zum Zitat Jiao, Y., et al. (2012). Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One, 7(7), e41591.PubMedPubMedCentralCrossRef Jiao, Y., et al. (2012). Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One, 7(7), e41591.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Ginestra, A., Monea, S., Seghezzi, G., Dolo, V., Nagase, H., Mignatti, P., & Vittorelli, M. L. (1997). Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. The Journal of Biological Chemistry, 272(27), 17216–17222.PubMedCrossRef Ginestra, A., Monea, S., Seghezzi, G., Dolo, V., Nagase, H., Mignatti, P., & Vittorelli, M. L. (1997). Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. The Journal of Biological Chemistry, 272(27), 17216–17222.PubMedCrossRef
29.
Zurück zum Zitat Sung, B. H., & Weaver, A. M. (2017). Exosome secretion promotes chemotaxis of cancer cells. Cell Adhesion & Migration, 11(2), 187–195.CrossRef Sung, B. H., & Weaver, A. M. (2017). Exosome secretion promotes chemotaxis of cancer cells. Cell Adhesion & Migration, 11(2), 187–195.CrossRef
30.
Zurück zum Zitat Dolo, V., et al. (1998). Selective localization of matrix metalloproteinase 9, β 1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Research, 58(19), 4468–4474.PubMed Dolo, V., et al. (1998). Selective localization of matrix metalloproteinase 9, β 1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701-BC breast carcinoma cells. Cancer Research, 58(19), 4468–4474.PubMed
31.
Zurück zum Zitat van der Vorst, E. P. C., de Jong, R. J., & Donners, M. M. P. C. (2018). Message in a Microbottle: Modulation of Vascular Inflammation and Atherosclerosis by Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 5(January), 1–8. van der Vorst, E. P. C., de Jong, R. J., & Donners, M. M. P. C. (2018). Message in a Microbottle: Modulation of Vascular Inflammation and Atherosclerosis by Extracellular Vesicles. Frontiers in Cardiovascular Medicine, 5(January), 1–8.
32.
Zurück zum Zitat Li, H., Qiu, Z., Li, F., & Wang, C. (2017). The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Letters, 14(5), 5865–5870.PubMedPubMedCentral Li, H., Qiu, Z., Li, F., & Wang, C. (2017). The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncology Letters, 14(5), 5865–5870.PubMedPubMedCentral
33.
Zurück zum Zitat Minciacchi, V. R., Freeman, M. R., & Di Vizio, D. (2015). Extracellular vesicles in Cancer: Exosomes, microvesicles and the emerging role of large Oncosomes. Seminars in Cell & Developmental Biology, 40, 41–51.CrossRef Minciacchi, V. R., Freeman, M. R., & Di Vizio, D. (2015). Extracellular vesicles in Cancer: Exosomes, microvesicles and the emerging role of large Oncosomes. Seminars in Cell & Developmental Biology, 40, 41–51.CrossRef
34.
Zurück zum Zitat Runz, S., Keller, S., Rupp, C., Stoeck, A., Issa, Y., Koensgen, D., Mustea, A., Sehouli, J., Kristiansen, G., & Altevogt, P. (2007). Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecologic Oncology, 107(3), 563–571.PubMedCrossRef Runz, S., Keller, S., Rupp, C., Stoeck, A., Issa, Y., Koensgen, D., Mustea, A., Sehouli, J., Kristiansen, G., & Altevogt, P. (2007). Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecologic Oncology, 107(3), 563–571.PubMedCrossRef
35.
Zurück zum Zitat Han, K. Y., Dugas-Ford, J., Seiki, M., Chang, J. H., & Azar, D. T. (2015). Evidence for the involvement of MMP14 in MMP2 processing and recruitment in exosomes of corneal fibroblasts. Investigative Ophthalmology and Visual Science, 56(9), 5323–5329.PubMedPubMedCentral Han, K. Y., Dugas-Ford, J., Seiki, M., Chang, J. H., & Azar, D. T. (2015). Evidence for the involvement of MMP14 in MMP2 processing and recruitment in exosomes of corneal fibroblasts. Investigative Ophthalmology and Visual Science, 56(9), 5323–5329.PubMedPubMedCentral
36.
Zurück zum Zitat Hakulinen, J., Sankkila, L., Sugiyama, N., Lehti, K., & Keski-Oja, J. (2008). Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. Journal of Cellular Biochemistry, 105(5), 1211–1218.PubMedCrossRef Hakulinen, J., Sankkila, L., Sugiyama, N., Lehti, K., & Keski-Oja, J. (2008). Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. Journal of Cellular Biochemistry, 105(5), 1211–1218.PubMedCrossRef
37.
Zurück zum Zitat Meng, W., Hao, Y., He, C., Li, L., & Zhu, G. (2019). Exosome-orchestrated hypoxic tumor microenvironment. Molecular Cancer, 18(1), 1–14.CrossRef Meng, W., Hao, Y., He, C., Li, L., & Zhu, G. (2019). Exosome-orchestrated hypoxic tumor microenvironment. Molecular Cancer, 18(1), 1–14.CrossRef
38.
Zurück zum Zitat Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6(May), 1–14. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6(May), 1–14.
39.
Zurück zum Zitat Shan, Y., et al. (2018). Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death & Disease, 9(3). Shan, Y., et al. (2018). Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death & Disease, 9(3).
40.
Zurück zum Zitat Groth, E., Pruessmeyer, J., Babendreyer, A., Schumacher, J., Pasqualon, T., Dreymueller, D., Higashiyama, S., Lorenzen, I., Grötzinger, J., Cataldo, D., & Ludwig, A. (2016). Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica et Biophysica Acta, Molecular Cell Research, 1863(11), 2795–2808.CrossRef Groth, E., Pruessmeyer, J., Babendreyer, A., Schumacher, J., Pasqualon, T., Dreymueller, D., Higashiyama, S., Lorenzen, I., Grötzinger, J., Cataldo, D., & Ludwig, A. (2016). Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochimica et Biophysica Acta, Molecular Cell Research, 1863(11), 2795–2808.CrossRef
41.
Zurück zum Zitat Stoeck, A., Keller, S., Riedle, S., Sanderson, M. P., Runz, S., le Naour, F., Gutwein, P., Ludwig, A., Rubinstein, E., & Altevogt, P. (2006). A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. The Biochemical Journal, 393(3), 609–618.PubMedPubMedCentralCrossRef Stoeck, A., Keller, S., Riedle, S., Sanderson, M. P., Runz, S., le Naour, F., Gutwein, P., Ludwig, A., Rubinstein, E., & Altevogt, P. (2006). A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. The Biochemical Journal, 393(3), 609–618.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wanger, T. M., Dewitt, S., Collins, A., Maitland, N. J., Poghosyan, Z., & Knäuper, V. (2015). Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17. Cellular Signalling, 27(7), 1325–1335.PubMedCrossRef Wanger, T. M., Dewitt, S., Collins, A., Maitland, N. J., Poghosyan, Z., & Knäuper, V. (2015). Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17. Cellular Signalling, 27(7), 1325–1335.PubMedCrossRef
43.
Zurück zum Zitat Zaman, S., Jadid, H., Denson, A. C., & Gray, J. E. (2019). Targeting trop-2 in solid tumors: Future prospects. OncoTargets and Therapy, 12, 1781–1790.PubMedPubMedCentralCrossRef Zaman, S., Jadid, H., Denson, A. C., & Gray, J. E. (2019). Targeting trop-2 in solid tumors: Future prospects. OncoTargets and Therapy, 12, 1781–1790.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Tugutova, E. A., Tamkovich, S. N., Patysheva, M. R., Afanas’ev, S. G., Tsydenova, A. A., Grigor’eva, A. E., Kolegova, E. S., Kondakova, I. V., & Yunusova, N. V. (2019). Relation between tetraspanin- associated and tetraspanin- non- associated exosomal proteases and metabolic syndrome in colorectal cancer patients. Asian Pacific Journal of Cancer Prevention, 20(3), 809–815.PubMedCrossRefPubMedCentral Tugutova, E. A., Tamkovich, S. N., Patysheva, M. R., Afanas’ev, S. G., Tsydenova, A. A., Grigor’eva, A. E., Kolegova, E. S., Kondakova, I. V., & Yunusova, N. V. (2019). Relation between tetraspanin- associated and tetraspanin- non- associated exosomal proteases and metabolic syndrome in colorectal cancer patients. Asian Pacific Journal of Cancer Prevention, 20(3), 809–815.PubMedCrossRefPubMedCentral
45.
Zurück zum Zitat Shimoda, M., Principe, S., Jackson, H. W., Luga, V., Fang, H., Molyneux, S. D., Shao, Y. W., Aiken, A., Waterhouse, P. D., Karamboulas, C., Hess, F. M., Ohtsuka, T., Okada, Y., Ailles, L., Ludwig, A., Wrana, J. L., Kislinger, T., & Khokha, R. (2014). Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell Biology, 16(9), 889–901.PubMedCrossRef Shimoda, M., Principe, S., Jackson, H. W., Luga, V., Fang, H., Molyneux, S. D., Shao, Y. W., Aiken, A., Waterhouse, P. D., Karamboulas, C., Hess, F. M., Ohtsuka, T., Okada, Y., Ailles, L., Ludwig, A., Wrana, J. L., Kislinger, T., & Khokha, R. (2014). Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell Biology, 16(9), 889–901.PubMedCrossRef
46.
Zurück zum Zitat Hansen, H. P., et al. (2016). CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, in vitro. Oncotarget, 7(21), 30523–30535.PubMedPubMedCentralCrossRef Hansen, H. P., et al. (2016). CD30 on extracellular vesicles from malignant Hodgkin cells supports damaging of CD30 ligand-expressing bystander cells with Brentuximab-Vedotin, in vitro. Oncotarget, 7(21), 30523–30535.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Tauro, B. J., Mathias, R. A., Greening, D. W., Gopal, S. K., Ji, H., Kapp, E. A., Coleman, B. M., Hill, A. F., Kusebauch, U., Hallows, J. L., Shteynberg, D., Moritz, R. L., Zhu, H. J., & Simpson, R. J. (2013). Oncogenic H-Ras reprograms madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics, 12(8), 2148–2159.CrossRef Tauro, B. J., Mathias, R. A., Greening, D. W., Gopal, S. K., Ji, H., Kapp, E. A., Coleman, B. M., Hill, A. F., Kusebauch, U., Hallows, J. L., Shteynberg, D., Moritz, R. L., Zhu, H. J., & Simpson, R. J. (2013). Oncogenic H-Ras reprograms madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Molecular & Cellular Proteomics, 12(8), 2148–2159.CrossRef
48.
Zurück zum Zitat Yoneyama, T., Gorry, M., Sobo-Vujanovic, A., Lin, Y., Vujanovic, L., Gaither-Davis, A., Moss, M. L., Miller, M. A., Griffith, L. G., Lauffenburger, D. A., Stabile, L. P., Herman, J., & Vujanovic, N. L. (2018). ADAM10 sheddase activity is a potential lung-cancer biomarker. Journal of Cancer, 9(14), 2559–2570.PubMedPubMedCentralCrossRef Yoneyama, T., Gorry, M., Sobo-Vujanovic, A., Lin, Y., Vujanovic, L., Gaither-Davis, A., Moss, M. L., Miller, M. A., Griffith, L. G., Lauffenburger, D. A., Stabile, L. P., Herman, J., & Vujanovic, N. L. (2018). ADAM10 sheddase activity is a potential lung-cancer biomarker. Journal of Cancer, 9(14), 2559–2570.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Yang, M., Li, Y., Chilukuri, K., Brady, O. A., Boulos, M. I., Kappes, J. C., & Galileo, D. S. (2011). L1 stimulation of human glioma cell motility correlates with FAK activation. Journal of Neuro-Oncology, 105(1), 27–44.PubMedPubMedCentralCrossRef Yang, M., Li, Y., Chilukuri, K., Brady, O. A., Boulos, M. I., Kappes, J. C., & Galileo, D. S. (2011). L1 stimulation of human glioma cell motility correlates with FAK activation. Journal of Neuro-Oncology, 105(1), 27–44.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Tamkovich, S. N., Yunusova, N. V., Tugutova, E., Somov, A. K., Proskura, K. V., Kolomiets, L. A., Stakheyeva, M. N., Grigor’eva, A. E., Laktionov, P. P., & Kondakova, I. V. (2019). Protease cargo in circulating exosomes of breast cancer and ovarian cancer patients. Asian Pacific Journal of Cancer Prevention, 20(1), 255–262.PubMedCrossRefPubMedCentral Tamkovich, S. N., Yunusova, N. V., Tugutova, E., Somov, A. K., Proskura, K. V., Kolomiets, L. A., Stakheyeva, M. N., Grigor’eva, A. E., Laktionov, P. P., & Kondakova, I. V. (2019). Protease cargo in circulating exosomes of breast cancer and ovarian cancer patients. Asian Pacific Journal of Cancer Prevention, 20(1), 255–262.PubMedCrossRefPubMedCentral
51.
Zurück zum Zitat Lee, H. D., Koo, B. H., Kim, Y. H., Jeon, O. H., & Kim, D. S. (2012). Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. The FASEB Journal, 26(7), 3084–3095.PubMedCrossRef Lee, H. D., Koo, B. H., Kim, Y. H., Jeon, O. H., & Kim, D. S. (2012). Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. The FASEB Journal, 26(7), 3084–3095.PubMedCrossRef
52.
Zurück zum Zitat Webber, J., Stone, T. C., Katilius, E., Smith, B. C., Gordon, B., Mason, M. D., Tabi, Z., Brewis, I. A., & Clayton, A. (2014). Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (somascantm) platform. Molecular & Cellular Proteomics, 13(4), 1050–1064.CrossRef Webber, J., Stone, T. C., Katilius, E., Smith, B. C., Gordon, B., Mason, M. D., Tabi, Z., Brewis, I. A., & Clayton, A. (2014). Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (somascantm) platform. Molecular & Cellular Proteomics, 13(4), 1050–1064.CrossRef
53.
Zurück zum Zitat Kato, T., et al. (2014). Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Research & Therapy, 16(4), 1–11.CrossRef Kato, T., et al. (2014). Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Research & Therapy, 16(4), 1–11.CrossRef
54.
Zurück zum Zitat Rana, S., Malinowska, K., & Zöller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia (United States), 15(3), 281–295.CrossRef Rana, S., Malinowska, K., & Zöller, M. (2013). Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia (United States), 15(3), 281–295.CrossRef
55.
Zurück zum Zitat McAtee, C. O., et al. (2019). Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biology, 78–79, 165–179.PubMedCrossRef McAtee, C. O., et al. (2019). Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biology, 78–79, 165–179.PubMedCrossRef
56.
Zurück zum Zitat Hong, Y., et al. (2018). Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Advanced Functional Materials, 28(5), 1–9.CrossRef Hong, Y., et al. (2018). Exosome as a vehicle for delivery of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Advanced Functional Materials, 28(5), 1–9.CrossRef
57.
Zurück zum Zitat Genschmer, K. R., et al. (2019). Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Cell, 176(1–2), 113–126.e15.PubMedCrossRefPubMedCentral Genschmer, K. R., et al. (2019). Activated PMN Exosomes: Pathogenic Entities Causing Matrix Destruction and Disease in the Lung. Cell, 176(1–2), 113–126.e15.PubMedCrossRefPubMedCentral
58.
Zurück zum Zitat Bulloj, A., Leal, M. C., Xu, H., Castaño, E. M., & Morelli, L. (2010). Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-β degrading protease. Journal of Alzheimer's Disease, 19(1), 79–95.PubMedCrossRef Bulloj, A., Leal, M. C., Xu, H., Castaño, E. M., & Morelli, L. (2010). Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-β degrading protease. Journal of Alzheimer's Disease, 19(1), 79–95.PubMedCrossRef
59.
Zurück zum Zitat Sanderson, R. D., Bandari, S. K., & Vlodavsky, I. (2019). Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology, 75–76, 160–169.PubMedCrossRef Sanderson, R. D., Bandari, S. K., & Vlodavsky, I. (2019). Proteases and glycosidases on the surface of exosomes: Newly discovered mechanisms for extracellular remodeling. Matrix Biology, 75–76, 160–169.PubMedCrossRef
60.
Zurück zum Zitat Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288(14), 10093–10099.PubMedPubMedCentralCrossRef Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288(14), 10093–10099.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Murayama, T., Kataoka, H., Koita, H., Nabeshima, K., & Koono, M. (1991). Glycocalyceal bodies in a human rectal carcinoma cell line and their interstitial collagenolytic activities. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 60(1), 263–270.PubMedCrossRef Murayama, T., Kataoka, H., Koita, H., Nabeshima, K., & Koono, M. (1991). Glycocalyceal bodies in a human rectal carcinoma cell line and their interstitial collagenolytic activities. Virchows Archiv. B, Cell Pathology Including Molecular Pathology, 60(1), 263–270.PubMedCrossRef
62.
Zurück zum Zitat Harris, D. A., Patel, S. H., Gucek, M., Hendrix, A., Westbroek, W., & Taraska, J. W. (2015). Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One, 10(3), 1–18. Harris, D. A., Patel, S. H., Gucek, M., Hendrix, A., Westbroek, W., & Taraska, J. W. (2015). Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One, 10(3), 1–18.
63.
Zurück zum Zitat Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: Artefacts no more. Trends in Cell Biology, 19(2), 43–51.PubMedCrossRef Cocucci, E., Racchetti, G., & Meldolesi, J. (2009). Shedding microvesicles: Artefacts no more. Trends in Cell Biology, 19(2), 43–51.PubMedCrossRef
64.
Zurück zum Zitat Whiteside, T. L. (2016). Tumor-Derived Exosomes and Their Role in Cancer Progression (Vol. 74, 1st ed.). Elsevier Inc.. Whiteside, T. L. (2016). Tumor-Derived Exosomes and Their Role in Cancer Progression (Vol. 74, 1st ed.). Elsevier Inc..
65.
Zurück zum Zitat Edwards, D. R., Handsley, M. M., & Pennington, C. J. (2009). The ADAM metalloproteinases. Molecular Aspects of Medicine, 29(5), 258–289.CrossRef Edwards, D. R., Handsley, M. M., & Pennington, C. J. (2009). The ADAM metalloproteinases. Molecular Aspects of Medicine, 29(5), 258–289.CrossRef
66.
Zurück zum Zitat Wetzel, S., Seipold, L., & Saftig, P. (2017). The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 2071–2081.PubMedCrossRef Wetzel, S., Seipold, L., & Saftig, P. (2017). The metalloproteinase ADAM10: A useful therapeutic target? Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 2071–2081.PubMedCrossRef
67.
Zurück zum Zitat Levin, M., Udi, Y., Solomonov, I., & Sagi, I. (2017). Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects. Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 1927–1939.PubMedCrossRef Levin, M., Udi, Y., Solomonov, I., & Sagi, I. (2017). Next generation matrix metalloproteinase inhibitors — Novel strategies bring new prospects. Biochimica et Biophysica Acta, Molecular Cell Research, 1864(11), 1927–1939.PubMedCrossRef
68.
Zurück zum Zitat Thathiah, A., Blobel, C. P., & Carson, D. D. (2003). Tumor necrosis factor-α converting enzyme/ADAM 17 mediates MUC1 shedding. The Journal of Biological Chemistry, 278(5), 3386–3394.PubMedCrossRef Thathiah, A., Blobel, C. P., & Carson, D. D. (2003). Tumor necrosis factor-α converting enzyme/ADAM 17 mediates MUC1 shedding. The Journal of Biological Chemistry, 278(5), 3386–3394.PubMedCrossRef
70.
Zurück zum Zitat Mishra, H. K., Ma, J., & Walcheck, B. (2017). Ectodomain shedding by ADAM17: Its ole in neutrophil recruitment and the Impairment of this process during sepsis. Frontiers in Cellular and Infection Microbiology, 7(APR), 1–10. Mishra, H. K., Ma, J., & Walcheck, B. (2017). Ectodomain shedding by ADAM17: Its ole in neutrophil recruitment and the Impairment of this process during sepsis. Frontiers in Cellular and Infection Microbiology, 7(APR), 1–10.
71.
Zurück zum Zitat Lambrecht, B. N., Vanderkerken, M., & Hammad, H. (2018). The emerging role of ADAM metalloproteinases in immunity. Nature Reviews. Immunology, 18(12), 745–758.PubMedCrossRef Lambrecht, B. N., Vanderkerken, M., & Hammad, H. (2018). The emerging role of ADAM metalloproteinases in immunity. Nature Reviews. Immunology, 18(12), 745–758.PubMedCrossRef
72.
Zurück zum Zitat Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J., Gavrilova, O., Schreiber, S., Jostock, T., Matthews, V., Häsler, R., Becker, C., Neurath, M. F., Reiß, K., Saftig, P., Scheller, J., & Rose-John, S. (2010). Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. The Journal of Experimental Medicine, 207(8), 1617–1624.PubMedPubMedCentralCrossRef Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J., Gavrilova, O., Schreiber, S., Jostock, T., Matthews, V., Häsler, R., Becker, C., Neurath, M. F., Reiß, K., Saftig, P., Scheller, J., & Rose-John, S. (2010). Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. The Journal of Experimental Medicine, 207(8), 1617–1624.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Hartmann, D. (2002). The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human Molecular Genetics, 11(21), 2615–2624.PubMedCrossRef Hartmann, D. (2002). The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human Molecular Genetics, 11(21), 2615–2624.PubMedCrossRef
74.
Zurück zum Zitat Purow, B. (2012). Notch signaling in embryology and Cancer. Advances in Experimental Medicine and Biology, 727, 174–315.CrossRef Purow, B. (2012). Notch signaling in embryology and Cancer. Advances in Experimental Medicine and Biology, 727, 174–315.CrossRef
75.
Zurück zum Zitat Mullooly, M., McGowan, P. M., Kennedy, S. A., Madden, S. F., Crown, J., O' Donovan, N., & Duffy, M. J. (2015). ADAM10: A new player in breast cancer progression? British Journal of Cancer, 113(6), 945–951.PubMedPubMedCentralCrossRef Mullooly, M., McGowan, P. M., Kennedy, S. A., Madden, S. F., Crown, J., O' Donovan, N., & Duffy, M. J. (2015). ADAM10: A new player in breast cancer progression? British Journal of Cancer, 113(6), 945–951.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Li, B. X., et al. (2011). Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. Journal of Experimental & Clinical Cancer Research, 30(1), 1–9.CrossRef Li, B. X., et al. (2011). Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. Journal of Experimental & Clinical Cancer Research, 30(1), 1–9.CrossRef
77.
Zurück zum Zitat Feldinger, K., Generali, D., Kramer-Marek, G., Gijsen, M., Ng, T. B., Wong, J. H., Strina, C., Cappelletti, M., Andreis, D., Li, J. L., Bridges, E., Turley, H., Leek, R., Roxanis, I., Capala, J., Murphy, G., Harris, A. L., & Kong, A. (2014). ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer. Oncotarget, 5(16), 6633–6646.PubMedPubMedCentralCrossRef Feldinger, K., Generali, D., Kramer-Marek, G., Gijsen, M., Ng, T. B., Wong, J. H., Strina, C., Cappelletti, M., Andreis, D., Li, J. L., Bridges, E., Turley, H., Leek, R., Roxanis, I., Capala, J., Murphy, G., Harris, A. L., & Kong, A. (2014). ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer. Oncotarget, 5(16), 6633–6646.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Duffy, M. J., et al. (2011). The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clinical Proteomics, 8(1), 1–13.CrossRef Duffy, M. J., et al. (2011). The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clinical Proteomics, 8(1), 1–13.CrossRef
80.
Zurück zum Zitat “The ADAMTS metalloproteinases,” Biochem. J., vol. 27, pp. 15–27, 2011. “The ADAMTS metalloproteinases,” Biochem. J., vol. 27, pp. 15–27, 2011.
81.
Zurück zum Zitat Cal, S., & López-Otín, C. (2015). ADAMTS proteases and cancer. Matrix Biology, 44–46, 77–85.PubMedCrossRef Cal, S., & López-Otín, C. (2015). ADAMTS proteases and cancer. Matrix Biology, 44–46, 77–85.PubMedCrossRef
82.
Zurück zum Zitat Kelwick, R., Desanlis, I., Wheeler, G. N., & Edwards, D. R. (2015). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biology, 16(1). Kelwick, R., Desanlis, I., Wheeler, G. N., & Edwards, D. R. (2015). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biology, 16(1).
83.
Zurück zum Zitat Mead, T. J., du, Y., Nelson, C. M., Gueye, N. A., Drazba, J., Dancevic, C. M., Vankemmelbeke, M., Buttle, D. J., & Apte, S. S. (2018). ADAMTS9-regulated Pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation. Cell Reports, 23(2), 485–498.PubMedCrossRef Mead, T. J., du, Y., Nelson, C. M., Gueye, N. A., Drazba, J., Dancevic, C. M., Vankemmelbeke, M., Buttle, D. J., & Apte, S. S. (2018). ADAMTS9-regulated Pericellular matrix dynamics governs focal adhesion-dependent smooth muscle differentiation. Cell Reports, 23(2), 485–498.PubMedCrossRef
84.
Zurück zum Zitat El-Safory, N. S., Fazary, A. E., & Lee, C. K. (2010). Hyaluronidases, a group of glycosidases: Current and future perspectives. Carbohydrate Polymers, 81(2), 165–181.CrossRef El-Safory, N. S., Fazary, A. E., & Lee, C. K. (2010). Hyaluronidases, a group of glycosidases: Current and future perspectives. Carbohydrate Polymers, 81(2), 165–181.CrossRef
85.
Zurück zum Zitat McAtee, C. O., Barycki, J. J., & Simpson, M. A. (2014). Emerging roles for hyaluronidase in cancer metastasis and therapy. Advances in Cancer Research, 123(402), 1–34.PubMedPubMedCentral McAtee, C. O., Barycki, J. J., & Simpson, M. A. (2014). Emerging roles for hyaluronidase in cancer metastasis and therapy. Advances in Cancer Research, 123(402), 1–34.PubMedPubMedCentral
86.
Zurück zum Zitat Josefsson, A., Adamo, H., Hammarsten, P., Granfors, T., Stattin, P., Egevad, L., Laurent, A. E., Wikström, P., & Bergh, A. (2011). Prostate cancer increases hyaluronan in surrounding nonmalignant stroma, and this response is associated with tumor growth and an unfavorable outcome. The American Journal of Pathology, 179(4), 1961–1968.PubMedPubMedCentralCrossRef Josefsson, A., Adamo, H., Hammarsten, P., Granfors, T., Stattin, P., Egevad, L., Laurent, A. E., Wikström, P., & Bergh, A. (2011). Prostate cancer increases hyaluronan in surrounding nonmalignant stroma, and this response is associated with tumor growth and an unfavorable outcome. The American Journal of Pathology, 179(4), 1961–1968.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Tan, J. X., et al. (2011). Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis. PLoS One, 6(7).PubMedPubMedCentralCrossRef Tan, J. X., et al. (2011). Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis. PLoS One, 6(7).PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Kikuchi, S., Yoshioka, Y., Prieto-Vila, M., & Ochiya, T. (2019). Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis. International Journal of Molecular Sciences, 20(10), 1–17.CrossRef Kikuchi, S., Yoshioka, Y., Prieto-Vila, M., & Ochiya, T. (2019). Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis. International Journal of Molecular Sciences, 20(10), 1–17.CrossRef
89.
Zurück zum Zitat Shao, C., et al. (2018). Role of hypoxia-induced exosomes in tumor biology. Molecular Cancer, 17(1), 1–8.CrossRef Shao, C., et al. (2018). Role of hypoxia-induced exosomes in tumor biology. Molecular Cancer, 17(1), 1–8.CrossRef
90.
Zurück zum Zitat Lee, J. K., et al. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One, (8, 12). Lee, J. K., et al. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One, (8, 12).
91.
Zurück zum Zitat Gopal, S. K., Greening, D. W., Hanssen, E. G., Zhu, H. J., Simpson, R. J., & Mathias, R. A. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget, 7(15), 19709–19722.PubMedPubMedCentralCrossRef Gopal, S. K., Greening, D. W., Hanssen, E. G., Zhu, H. J., Simpson, R. J., & Mathias, R. A. (2016). Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells. Oncotarget, 7(15), 19709–19722.PubMedPubMedCentralCrossRef
92.
93.
Zurück zum Zitat Zeng, Z., et al. (2018). Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 9(1). Zeng, Z., et al. (2018). Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 9(1).
94.
Zurück zum Zitat Tang, M. K. S., et al. (2018). Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nature Communications, 9(1), 1–15.CrossRef Tang, M. K. S., et al. (2018). Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nature Communications, 9(1), 1–15.CrossRef
95.
Zurück zum Zitat Mao, Y., Keller, E. T., Garfield, D. H., Shen, K., & Wang, J. (2013). Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Reviews, 32(1–2), 303–315.PubMedPubMedCentralCrossRef Mao, Y., Keller, E. T., Garfield, D. H., Shen, K., & Wang, J. (2013). Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Reviews, 32(1–2), 303–315.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Ludwig, N., & Whiteside, T. L. (2018). Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets, 22(5), 409–417.PubMedPubMedCentralCrossRef Ludwig, N., & Whiteside, T. L. (2018). Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets, 22(5), 409–417.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Paggetti, J., Haderk, F., Seiffert, M., Janji, B., Distler, U., Ammerlaan, W., Kim, Y. J., Adam, J., Lichter, P., Solary, E., Berchem, G., & Moussay, E. (2015). Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 126(9), 1106–1117.PubMedPubMedCentralCrossRef Paggetti, J., Haderk, F., Seiffert, M., Janji, B., Distler, U., Ammerlaan, W., Kim, Y. J., Adam, J., Lichter, P., Solary, E., Berchem, G., & Moussay, E. (2015). Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 126(9), 1106–1117.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Corrado, C., Saieva, L., Raimondo, S., Santoro, A., De Leo, G., & Alessandro, R. (2016). Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. Journal of Cellular and Molecular Medicine, 20(10), 1829–1839.PubMedPubMedCentralCrossRef Corrado, C., Saieva, L., Raimondo, S., Santoro, A., De Leo, G., & Alessandro, R. (2016). Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. Journal of Cellular and Molecular Medicine, 20(10), 1829–1839.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Javidi-Sharifi, N., et al. (2019). Fgf2-fgfr1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. Elife, 8, 1–23. Javidi-Sharifi, N., et al. (2019). Fgf2-fgfr1 signaling regulates release of leukemia-protective exosomes from bone marrow stromal cells. Elife, 8, 1–23.
100.
Zurück zum Zitat Purushothaman, A., Bandari, S. K., Liu, J., Mobley, J. A., Brown, E. A., & Sanderson, R. D. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry, 291(4), 1652–1663.PubMedCrossRef Purushothaman, A., Bandari, S. K., Liu, J., Mobley, J. A., Brown, E. A., & Sanderson, R. D. (2016). Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. The Journal of Biological Chemistry, 291(4), 1652–1663.PubMedCrossRef
101.
Zurück zum Zitat Yang, L., & Zhang, Y. (2017). Tumor-associated macrophages: from basic research to clinical application. Journal of Hematology & Oncology, 10(1), 58.CrossRef Yang, L., & Zhang, Y. (2017). Tumor-associated macrophages: from basic research to clinical application. Journal of Hematology & Oncology, 10(1), 58.CrossRef
102.
Zurück zum Zitat Zhang, W., Zhang, J., Cheng, L., Ni, H., You, B., Shan, Y., Bao, L., Wu, D., Zhang, T., Yue, H., & Chen, J. (2018). A disintegrin and metalloprotease 10-containing exosomes derived from nasal polyps promote angiogenesis and vascular permeability. Molecular Medicine Reports, 17(4), 5921–5927.PubMedPubMedCentral Zhang, W., Zhang, J., Cheng, L., Ni, H., You, B., Shan, Y., Bao, L., Wu, D., Zhang, T., Yue, H., & Chen, J. (2018). A disintegrin and metalloprotease 10-containing exosomes derived from nasal polyps promote angiogenesis and vascular permeability. Molecular Medicine Reports, 17(4), 5921–5927.PubMedPubMedCentral
103.
Zurück zum Zitat Chen, W., Xiao, M., Zhang, J., & Chen, W. (2018). M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 1–15.CrossRef Chen, W., Xiao, M., Zhang, J., & Chen, W. (2018). M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 37(1), 1–15.CrossRef
104.
Zurück zum Zitat Plebanek, M. P., et al. (2017). Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 8(1). Plebanek, M. P., et al. (2017). Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 8(1).
105.
Zurück zum Zitat Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef
106.
Zurück zum Zitat Lu, P., Weaver, V. M., & Werb, Z. (Feb. 2012). The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology, 196(4), 395–406.PubMedPubMedCentralCrossRef Lu, P., Weaver, V. M., & Werb, Z. (Feb. 2012). The extracellular matrix: A dynamic niche in cancer progression. The Journal of Cell Biology, 196(4), 395–406.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Kumar, S., Das, A., & Sen, S. (2018). Multicompartment cell-based modeling of confined migration: Regulation by cell intrinsic and extrinsic factors. Molecular Biology of the Cell, 29(13), 1599–1610.PubMedPubMedCentralCrossRef Kumar, S., Das, A., & Sen, S. (2018). Multicompartment cell-based modeling of confined migration: Regulation by cell intrinsic and extrinsic factors. Molecular Biology of the Cell, 29(13), 1599–1610.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Das, A., Barai, A., Monteiro, M., Kumar, S., & Sen, S. (2019). Nuclear softening is essential for protease-independent migration. Matrix Biology, 82, 4–19.PubMedCrossRef Das, A., Barai, A., Monteiro, M., Kumar, S., & Sen, S. (2019). Nuclear softening is essential for protease-independent migration. Matrix Biology, 82, 4–19.PubMedCrossRef
109.
Zurück zum Zitat Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., & Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis, 7(1). Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., & Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis, 7(1).
110.
Zurück zum Zitat de Jong, O. G., van Balkom, B. W. M., Gremmels, H., & Verhaar, M. C. (2016). Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. Journal of Cellular and Molecular Medicine, 20(2), 342–350.PubMedCrossRef de Jong, O. G., van Balkom, B. W. M., Gremmels, H., & Verhaar, M. C. (2016). Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. Journal of Cellular and Molecular Medicine, 20(2), 342–350.PubMedCrossRef
111.
Zurück zum Zitat Li, R., et al. (2019). Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Molecular Cancer, 18(1), 1–19.PubMedPubMedCentralCrossRef Li, R., et al. (2019). Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Molecular Cancer, 18(1), 1–19.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Hoshino, D., Kirkbride, K. C., Costello, K., Clark, E. S., Sinha, S., Grega-Larson, N., Tyska, M. J., & Weaver, A. M. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports, 5(5), 1159–1168.PubMedCrossRef Hoshino, D., Kirkbride, K. C., Costello, K., Clark, E. S., Sinha, S., Grega-Larson, N., Tyska, M. J., & Weaver, A. M. (2013). Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Reports, 5(5), 1159–1168.PubMedCrossRef
113.
Zurück zum Zitat Fu, M., Gu, J., Jiang, P., Qian, H., Xu, W., & Zhang, X. (2019). Exosomes in gastric cancer: Roles, mechanisms, and applications. Molecular Cancer, 18(1), 1–12.CrossRef Fu, M., Gu, J., Jiang, P., Qian, H., Xu, W., & Zhang, X. (2019). Exosomes in gastric cancer: Roles, mechanisms, and applications. Molecular Cancer, 18(1), 1–12.CrossRef
114.
Zurück zum Zitat Zhang, W., Gu, J., Chen, J., Zhang, P., Ji, R., Qian, H., Xu, W., & Zhang, X. (2017). Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncology Reports, 38(5), 2959–2966.PubMedCrossRef Zhang, W., Gu, J., Chen, J., Zhang, P., Ji, R., Qian, H., Xu, W., & Zhang, X. (2017). Interaction with neutrophils promotes gastric cancer cell migration and invasion by inducing epithelial-mesenchymal transition. Oncology Reports, 38(5), 2959–2966.PubMedCrossRef
115.
Zurück zum Zitat Chen, L., et al. (2018). Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 9(1). Chen, L., et al. (2018). Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 9(1).
116.
Zurück zum Zitat Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The alphavbeta6 integrin is transferred Intercellularly via exosomes. The Journal of Biological Chemistry, 290(8), 4545–4551.PubMedPubMedCentralCrossRef Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The alphavbeta6 integrin is transferred Intercellularly via exosomes. The Journal of Biological Chemistry, 290(8), 4545–4551.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V., & Wargo, J. A. (2019). The microbiome, cancer, and cancer therapy. Nature Medicine, 25(3), 377–388.PubMedCrossRef Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V., & Wargo, J. A. (2019). The microbiome, cancer, and cancer therapy. Nature Medicine, 25(3), 377–388.PubMedCrossRef
118.
Zurück zum Zitat Urbaniak, C., Gloor, G. B., Brackstone, M., Scott, L., Tangney, M., & Reida, G. (2016). The microbiota of breast tissue and its association with breast cancer. Applied and Environmental Microbiology, 82(16), 5039–5048.PubMedPubMedCentralCrossRef Urbaniak, C., Gloor, G. B., Brackstone, M., Scott, L., Tangney, M., & Reida, G. (2016). The microbiota of breast tissue and its association with breast cancer. Applied and Environmental Microbiology, 82(16), 5039–5048.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Wei, M. Y., et al. (2019). The microbiota and microbiome in pancreatic cancer: More influential than expected. Molecular Cancer, 18(1), 1–15.CrossRef Wei, M. Y., et al. (2019). The microbiota and microbiome in pancreatic cancer: More influential than expected. Molecular Cancer, 18(1), 1–15.CrossRef
120.
Zurück zum Zitat L. T. Geller et al., “Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine Leore T. Geller,1* Michal Barzily-Rokni,2* Tal Danino,3† Oliver H. Jonas,4,5 Noam Shental,6 Deborah Nejman,1 Nancy Gavert,1 Yaara Zwang,1 Zachary ,” vol. 1160, no. September, pp. 1156–1160, 2017. L. T. Geller et al., “Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine Leore T. Geller,1* Michal Barzily-Rokni,2* Tal Danino,3† Oliver H. Jonas,4,5 Noam Shental,6 Deborah Nejman,1 Nancy Gavert,1 Yaara Zwang,1 Zachary ,” vol. 1160, no. September, pp. 1156–1160, 2017.
121.
Zurück zum Zitat Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C. P., Kurz, E., Mishra, A., Mohan, N., Aykut, B., Usyk, M., Torres, L. E., Werba, G., Zhang, K., Guo, Y., Li, Q., Akkad, N., Lall, S., Wadowski, B., Gutierrez, J., Kochen Rossi, J. A., Herzog, J. W., Diskin, B., Torres-Hernandez, A., Leinwand, J., Wang, W., Taunk, P. S., Savadkar, S., Janal, M., Saxena, A., Li, X., Cohen, D., Sartor, R. B., Saxena, D., & Miller, G. (2018). The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discovery, 8(4), 403–416.PubMedPubMedCentralCrossRef Pushalkar, S., Hundeyin, M., Daley, D., Zambirinis, C. P., Kurz, E., Mishra, A., Mohan, N., Aykut, B., Usyk, M., Torres, L. E., Werba, G., Zhang, K., Guo, Y., Li, Q., Akkad, N., Lall, S., Wadowski, B., Gutierrez, J., Kochen Rossi, J. A., Herzog, J. W., Diskin, B., Torres-Hernandez, A., Leinwand, J., Wang, W., Taunk, P. S., Savadkar, S., Janal, M., Saxena, A., Li, X., Cohen, D., Sartor, R. B., Saxena, D., & Miller, G. (2018). The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discovery, 8(4), 403–416.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nature Reviews. Microbiology, 13(10), 605–619.PubMedPubMedCentralCrossRef Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nature Reviews. Microbiology, 13(10), 605–619.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Yu, Y. J., Wang, X. H., & Fan, G. C. (2018). Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacologica Sinica, 39(4), 514–533.PubMedCrossRef Yu, Y. J., Wang, X. H., & Fan, G. C. (2018). Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacologica Sinica, 39(4), 514–533.PubMedCrossRef
124.
Zurück zum Zitat Sieber, K. B., Bromley, R. E., & Dunning Hotopp, J. C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Experimental Cell Research, 358(2), 421–426.PubMedPubMedCentralCrossRef Sieber, K. B., Bromley, R. E., & Dunning Hotopp, J. C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Experimental Cell Research, 358(2), 421–426.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Robinson, K. M., Crabtree, J., Mattick, J. S. A., Anderson, K. E., & Hotopp, J. C. D. (2017). Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome, 5(1), 1–17.CrossRef Robinson, K. M., Crabtree, J., Mattick, J. S. A., Anderson, K. E., & Hotopp, J. C. D. (2017). Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. Microbiome, 5(1), 1–17.CrossRef
127.
Zurück zum Zitat Surve, M. V., et al. (2016). Membrane vesicles of group B Streptococcus disrupt Feto-maternal barrier leading to preterm birth. PLoS Pathogens, 12(9), 1–23.CrossRef Surve, M. V., et al. (2016). Membrane vesicles of group B Streptococcus disrupt Feto-maternal barrier leading to preterm birth. PLoS Pathogens, 12(9), 1–23.CrossRef
128.
Zurück zum Zitat Barteneva, N. S., Baiken, Y., Fasler-Kan, E., Alibek, K., Wang, S., Maltsev, N., Ponomarev, E. D., Sautbayeva, Z., Kauanova, S., Moore, A., Beglinger, C., & Vorobjev, I. A. (2017). Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of kingdoms. Biochimica et Biophysica Acta, Reviews on Cancer, 1868(2), 372–393.PubMedCrossRef Barteneva, N. S., Baiken, Y., Fasler-Kan, E., Alibek, K., Wang, S., Maltsev, N., Ponomarev, E. D., Sautbayeva, Z., Kauanova, S., Moore, A., Beglinger, C., & Vorobjev, I. A. (2017). Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of kingdoms. Biochimica et Biophysica Acta, Reviews on Cancer, 1868(2), 372–393.PubMedCrossRef
129.
Zurück zum Zitat Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6(3), 1769–1792.CrossRef Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6(3), 1769–1792.CrossRef
130.
131.
Zurück zum Zitat Bandari, S. K., Purushothaman, A., Ramani, V. C., Brinkley, G. J., Chandrashekar, D. S., Varambally, S., Mobley, J. A., Zhang, Y., Brown, E. E., Vlodavsky, I., & Sanderson, R. D. (2018). Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 65(2018), 104–118.PubMedCrossRef Bandari, S. K., Purushothaman, A., Ramani, V. C., Brinkley, G. J., Chandrashekar, D. S., Varambally, S., Mobley, J. A., Zhang, Y., Brown, E. E., Vlodavsky, I., & Sanderson, R. D. (2018). Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biology, 65(2018), 104–118.PubMedCrossRef
132.
Zurück zum Zitat Vlodavsky, I., Gross-Cohen, M., Weissmann, M., Ilan, N., & Sanderson, R. D. (2018). Opposing functions of Heparanase-1 and Heparanase-2 in Cancer progression. Trends in Biochemical Sciences, 43(1), 18–31.PubMedCrossRef Vlodavsky, I., Gross-Cohen, M., Weissmann, M., Ilan, N., & Sanderson, R. D. (2018). Opposing functions of Heparanase-1 and Heparanase-2 in Cancer progression. Trends in Biochemical Sciences, 43(1), 18–31.PubMedCrossRef
133.
Zurück zum Zitat Kamerkar, S., LeBleu, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Melo, S. A., Lee, J. J., & Kalluri, R. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), 498–503.PubMedPubMedCentralCrossRef Kamerkar, S., LeBleu, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Melo, S. A., Lee, J. J., & Kalluri, R. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), 498–503.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Dimou, A., Syrigos, K. N., & Saif, M. W. (2012). Overcoming the stromal barrier: Technologies to optimize drug delivery in pancreatic cancer. Therapeutic Advances in Medical Oncology, 4(5), 271–279.PubMedPubMedCentralCrossRef Dimou, A., Syrigos, K. N., & Saif, M. W. (2012). Overcoming the stromal barrier: Technologies to optimize drug delivery in pancreatic cancer. Therapeutic Advances in Medical Oncology, 4(5), 271–279.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran, A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Jørgen Labori, K., Kure, E. H., Grandgenett, P. M., Hollingsworth, M. A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V., Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang, Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado, H., Bromberg, J., & Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335.PubMedPubMedCentralCrossRef Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J. M., Dumont-Cole, V. D., Kramer, K., Wexler, L. H., Narendran, A., Schwartz, G. K., Healey, J. H., Sandstrom, P., Jørgen Labori, K., Kure, E. H., Grandgenett, P. M., Hollingsworth, M. A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S. K., Jarnagin, W. R., Brady, M. S., Fodstad, O., Muller, V., Pantel, K., Minn, A. J., Bissell, M. J., Garcia, B. A., Kang, Y., Rajasekhar, V. K., Ghajar, C. M., Matei, I., Peinado, H., Bromberg, J., & Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Sagar, G., et al. (2017). Pathogenesis of pancreatic Cancer exosome-induced lipolysis in adipose tissue. Gut, 65(7), 1165–1174.CrossRef Sagar, G., et al. (2017). Pathogenesis of pancreatic Cancer exosome-induced lipolysis in adipose tissue. Gut, 65(7), 1165–1174.CrossRef
137.
Zurück zum Zitat Zhou, M., Chen, J., Zhou, L., Chen, W., Ding, G., & Cao, L. (2014). Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cellular Immunology, 292(1–2), 65–69.PubMedCrossRef Zhou, M., Chen, J., Zhou, L., Chen, W., Ding, G., & Cao, L. (2014). Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cellular Immunology, 292(1–2), 65–69.PubMedCrossRef
138.
Zurück zum Zitat Li, Z., Jiang, P., Li, J., Peng, M., Zhao, X., Zhang, X., Chen, K., Zhang, Y., Liu, H., Gan, L., Bi, H., Zhen, P., Zhu, J., & Li, X. (2018). Tumor-derived exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. Oncogene, 37(28), 3822–3838.PubMedCrossRef Li, Z., Jiang, P., Li, J., Peng, M., Zhao, X., Zhang, X., Chen, K., Zhang, Y., Liu, H., Gan, L., Bi, H., Zhen, P., Zhu, J., & Li, X. (2018). Tumor-derived exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in pancreatic ductal adenocarcinoma. Oncogene, 37(28), 3822–3838.PubMedCrossRef
139.
Zurück zum Zitat Wang, X., Luo, G., Zhang, K., Cao, J., Huang, C., Jiang, T., Liu, B., Su, L., & Qiu, Z. (2018). Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kg to promote pancreatic cancer metastasis. Cancer Research, 78(16), 4586–4598.PubMedCrossRef Wang, X., Luo, G., Zhang, K., Cao, J., Huang, C., Jiang, T., Liu, B., Su, L., & Qiu, Z. (2018). Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kg to promote pancreatic cancer metastasis. Cancer Research, 78(16), 4586–4598.PubMedCrossRef
140.
Zurück zum Zitat Chiba, M., Kubota, S., Sato, K., & Monzen, S. (2018). Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Scientific Reports, 8(1), 1–9.CrossRef Chiba, M., Kubota, S., Sato, K., & Monzen, S. (2018). Exosomes released from pancreatic cancer cells enhance angiogenic activities via dynamin-dependent endocytosis in endothelial cells in vitro. Scientific Reports, 8(1), 1–9.CrossRef
141.
Zurück zum Zitat Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., LeBleu, V. S., Mittendorf, E. A., Weitz, J., Rahbari, N., Reissfelder, C., Pilarsky, C., Fraga, M. F., Piwnica-Worms, D., & Kalluri, R. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177–182.PubMedPubMedCentralCrossRef Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., LeBleu, V. S., Mittendorf, E. A., Weitz, J., Rahbari, N., Reissfelder, C., Pilarsky, C., Fraga, M. F., Piwnica-Worms, D., & Kalluri, R. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177–182.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Lau, C., et al. (2013). Role of pancreatic cancer-derived exosomes in salivary biomarker development. The Journal of Biological Chemistry, 288(37), 2688–2697.CrossRef Lau, C., et al. (2013). Role of pancreatic cancer-derived exosomes in salivary biomarker development. The Journal of Biological Chemistry, 288(37), 2688–2697.CrossRef
143.
Zurück zum Zitat Mendt, M., et al. (2018). Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight, 3(8). Mendt, M., et al. (2018). Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight, 3(8).
144.
Zurück zum Zitat Holland, E. C. (2000). Glioblastoma multiforme: The terminator. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6242–6244.PubMedPubMedCentralCrossRef Holland, E. C. (2000). Glioblastoma multiforme: The terminator. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6242–6244.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Graner, M. W., Cumming, R. I., & Bigner, D. D. (2007). The heat shock response and chaperones/heat shock proteins in brain tumors: Surface expression, release, and possible immune consequences. The Journal of Neuroscience, 27(42), 11214–11227.PubMedPubMedCentralCrossRef Graner, M. W., Cumming, R. I., & Bigner, D. D. (2007). The heat shock response and chaperones/heat shock proteins in brain tumors: Surface expression, release, and possible immune consequences. The Journal of Neuroscience, 27(42), 11214–11227.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Kore, R. A., & Abraham, E. C. (2014). Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochemical and Biophysical Research Communications, 453(3), 326–331.PubMedPubMedCentralCrossRef Kore, R. A., & Abraham, E. C. (2014). Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochemical and Biophysical Research Communications, 453(3), 326–331.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Challagundla, K. B., et al. (2015). Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. Journal of the National Cancer Institute, 107(7), 1–13.CrossRef Challagundla, K. B., et al. (2015). Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. Journal of the National Cancer Institute, 107(7), 1–13.CrossRef
148.
Zurück zum Zitat Marimpietri, D., et al. (2013). Proteome Profiling of Neuroblastoma-Derived Exosomes Reveal the Expression of Proteins Potentially Involved in Tumor Progression. PLoS One, 8(9).PubMedPubMedCentralCrossRef Marimpietri, D., et al. (2013). Proteome Profiling of Neuroblastoma-Derived Exosomes Reveal the Expression of Proteins Potentially Involved in Tumor Progression. PLoS One, 8(9).PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Fong, M. Y., Zhou, W., Liu, L., Alontaga, A. Y., Chandra, M., Ashby, J., Chow, A., O’Connor, S. T. F., Li, S., Chin, A. R., Somlo, G., Palomares, M., Li, Z., Tremblay, J. R., Tsuyada, A., Sun, G., Reid, M. A., Wu, X., Swiderski, P., Ren, X., Shi, Y., Kong, M., Zhong, W., Chen, Y., & Wang, S. E. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 17(2), 183–194.PubMedPubMedCentralCrossRef Fong, M. Y., Zhou, W., Liu, L., Alontaga, A. Y., Chandra, M., Ashby, J., Chow, A., O’Connor, S. T. F., Li, S., Chin, A. R., Somlo, G., Palomares, M., Li, Z., Tremblay, J. R., Tsuyada, A., Sun, G., Reid, M. A., Wu, X., Swiderski, P., Ren, X., Shi, Y., Kong, M., Zhong, W., Chen, Y., & Wang, S. E. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 17(2), 183–194.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Tominaga, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications, 6. Tominaga, N., et al. (2015). Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Communications, 6.
Metadaten
Titel
Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression
verfasst von
Alakesh Das
Vishnu Mohan
Venkat Raghavan Krishnaswamy
Inna Solomonov
Irit Sagi
Publikationsdatum
26.11.2019
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09813-5

Weitere Artikel der Ausgabe 3/2019

Cancer and Metastasis Reviews 3/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.