Skip to main content
Erschienen in:

25.05.2021 | Cardiac

Expanding the coronary tree reconstruction to smaller arteries improves the accuracy of FFRCT

verfasst von: Xianpeng Wu, Bokai Wu, Wenming He, Xinhong Wang, Kan Wang, Zhengzheng Yan, Zaiheng Cheng, Yuyu Huang, Wei Zhang, Rongliang Chen, Jia Liu, Jian’an Wang, Xinyang Hu

Erschienen in: European Radiology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

We attempted to improve the accuracy of coronary CT angiography (CCTA)-derived fractional flow reserve (FFR) (FFRCT) by expanding the coronary tree in the computational fluid dynamics (CFD) domain. An observational study was performed to evaluate the effects of extending the coronary tree analysis for FFRCT from a minimal diameter of 1.2 to 0.8 mm.

Methods

Patients who underwent CCTA and interventional FFR were enrolled retrospectively. Seventy-six patients qualified based on the inclusion criteria. The three-dimensional (3D) coronary artery tree was reconstructed to generate a finite element mesh for each subject with different lower limits of luminal diameter (1.2 mm and 0.8 mm). Outlet boundary conditions were defined according to Murray’s law. The Newton–Krylov–Schwarz (NKS) method was applied to solve the governing equations of CFD to derive FFRCT.

Results

At the individual patient level, extending the minimal diameter of the coronary tree from 1.2 to 0.8 mm improved the sensitivity of FFRCT by 16.7% (p = 0.022). This led to the conversion of four false-negative cases into true-positive cases. The AUC value of the ROC curve increased from 0.74 to 0.83. Moreover, the NKS method can solve the computational problem of extending the coronary tree to an 0.8-mm luminal diameter in 10.5 min with 2160 processor cores.

Conclusions

Extending the reconstructed coronary tree to a smaller luminal diameter can considerably improve the sensitivity of FFRCT. The NKS method can achieve favorable computational times for future clinical applications.

Key Points

• Extending the reconstructed coronary tree to a smaller luminal diameter can considerably improve the sensitivity of FFR CT .
• The NKS method applied in our study can effectively reduce the computational time of this process for future clinical applications.
Literatur
1.
Zurück zum Zitat Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef
2.
Zurück zum Zitat Douglas PS, Pontone G, Hlatky MA et al (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur Heart J 36:3359–3367CrossRef Douglas PS, Pontone G, Hlatky MA et al (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur Heart J 36:3359–3367CrossRef
3.
Zurück zum Zitat Nørgaard BL, Hjort J, Gaur S et al (2017) Clinical use of coronary CTA-derived FFR for decision-making in stable CAD. JACC Cardiovasc Imaging 10:541–550CrossRef Nørgaard BL, Hjort J, Gaur S et al (2017) Clinical use of coronary CTA-derived FFR for decision-making in stable CAD. JACC Cardiovasc Imaging 10:541–550CrossRef
4.
Zurück zum Zitat Jensen JM, Bøtker HE, Mathiassen ON et al (2018) Computed tomography derived fractional flow reserve testing in stable patients with typical angina pectoris: influence on downstream rate of invasive coronary angiography. Eur Heart J Cardiovasc Imaging 19:405–414CrossRef Jensen JM, Bøtker HE, Mathiassen ON et al (2018) Computed tomography derived fractional flow reserve testing in stable patients with typical angina pectoris: influence on downstream rate of invasive coronary angiography. Eur Heart J Cardiovasc Imaging 19:405–414CrossRef
5.
Zurück zum Zitat Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRef Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 58:1989–1997CrossRef
6.
Zurück zum Zitat Driessen RS, Danad I, Stuijfzand WJ et al (2019) Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol 73:161–173CrossRef Driessen RS, Danad I, Stuijfzand WJ et al (2019) Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol 73:161–173CrossRef
7.
Zurück zum Zitat Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155CrossRef Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol 63:1145–1155CrossRef
8.
Zurück zum Zitat Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245CrossRef Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237–1245CrossRef
9.
Zurück zum Zitat Wu Y, Cai XC (2014) A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J Comput Phys 258:524–537CrossRef Wu Y, Cai XC (2014) A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J Comput Phys 258:524–537CrossRef
10.
Zurück zum Zitat Luo L, Shiu WS, Chen R, Cai XC (2019) A nonlinear elimination preconditioned inexact Newton method for blood flow problems in human artery with stenosis. J Comput Phys 399:108926CrossRef Luo L, Shiu WS, Chen R, Cai XC (2019) A nonlinear elimination preconditioned inexact Newton method for blood flow problems in human artery with stenosis. J Comput Phys 399:108926CrossRef
11.
Zurück zum Zitat Sand NPR, Veien KT, Nielsen SS et al (2018) Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease: the ReASSESS study. JACC Cardiovasc Imaging 11:1640–1650CrossRef Sand NPR, Veien KT, Nielsen SS et al (2018) Prospective comparison of FFR derived from coronary CT angiography with SPECT perfusion imaging in stable coronary artery disease: the ReASSESS study. JACC Cardiovasc Imaging 11:1640–1650CrossRef
12.
Zurück zum Zitat Conte E, Sonck J, Mushtaq S et al (2020) FFRCT and CT perfusion: a review on the evaluation of functional impact of coronary artery stenosis by cardiac CT. Int J Cardiol 300:289–296CrossRef Conte E, Sonck J, Mushtaq S et al (2020) FFRCT and CT perfusion: a review on the evaluation of functional impact of coronary artery stenosis by cardiac CT. Int J Cardiol 300:289–296CrossRef
13.
Zurück zum Zitat Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. Handb Numer Anal 12:3–127 Quarteroni A, Formaggia L (2004) Mathematical modelling and numerical simulation of the cardiovascular system. Handb Numer Anal 12:3–127
14.
Zurück zum Zitat Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13:625–640CrossRef Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13:625–640CrossRef
15.
Zurück zum Zitat Min JK, Taylor CA, Achenbach S et al (2015) Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging 8:1209–1222CrossRef Min JK, Taylor CA, Achenbach S et al (2015) Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging 8:1209–1222CrossRef
16.
Zurück zum Zitat Chen R, Wu B, Cheng Z et al (2020) A parallel non-nested two-level domain decomposition method for simulating blood flows in cerebral artery of stroke patient. Int J Numer Method Biomed Eng 36:e3392PubMed Chen R, Wu B, Cheng Z et al (2020) A parallel non-nested two-level domain decomposition method for simulating blood flows in cerebral artery of stroke patient. Int J Numer Method Biomed Eng 36:e3392PubMed
17.
Zurück zum Zitat Franca LP, Frey SL (1992) Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 99:209–233CrossRef Franca LP, Frey SL (1992) Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 99:209–233CrossRef
18.
Zurück zum Zitat Chen R, Yan Z, Zhao Y, Cai XC (2018) Scalable domain decomposition algorithms for simulation of flows passing full size wind turbine. Commun Comput Phys 24:1503–1522 Chen R, Yan Z, Zhao Y, Cai XC (2018) Scalable domain decomposition algorithms for simulation of flows passing full size wind turbine. Commun Comput Phys 24:1503–1522
19.
Zurück zum Zitat Cai XC, Gropp WD, Keyes DE, Melvin RG, Young DP (1998) Parallel Newton--Krylov--Schwarz algorithms for the transonic full potential equation. SIAM J Sci Comput 19:246–265CrossRef Cai XC, Gropp WD, Keyes DE, Melvin RG, Young DP (1998) Parallel Newton--Krylov--Schwarz algorithms for the transonic full potential equation. SIAM J Sci Comput 19:246–265CrossRef
20.
Zurück zum Zitat Paraschivoiu M, Cai XC, Sarkis M, Young D, Keyes D (1999) Multi-domain multi-model formulation for compressible flows-conservative interface coupling and parallel implicit solvers for 3D unstructured meshes. In: 37th aerospace sciences meeting and exhibit, AIAA, Reno, NV, pp 784 Paraschivoiu M, Cai XC, Sarkis M, Young D, Keyes D (1999) Multi-domain multi-model formulation for compressible flows-conservative interface coupling and parallel implicit solvers for 3D unstructured meshes. In: 37th aerospace sciences meeting and exhibit, AIAA, Reno, NV, pp 784
21.
Zurück zum Zitat Chen R, Cai XC (2012) Parallel one-shot lagrange--Newton--Krylov--Schwarz algorithms for shape optimization of steady incompressible flows. SIAM J Sci Comput 34:B584–B605CrossRef Chen R, Cai XC (2012) Parallel one-shot lagrange--Newton--Krylov--Schwarz algorithms for shape optimization of steady incompressible flows. SIAM J Sci Comput 34:B584–B605CrossRef
22.
Zurück zum Zitat Yang H, Cai XC (2013) Parallel fully implicit two-grid methods for distributed control of unsteady incompressible flows. Int J Numer Methods Fluids 72:1–21CrossRef Yang H, Cai XC (2013) Parallel fully implicit two-grid methods for distributed control of unsteady incompressible flows. Int J Numer Methods Fluids 72:1–21CrossRef
23.
Zurück zum Zitat Yang H, Prudencio EE, Cai XC (2012) Fully implicit Lagrange–Newton–Krylov–Schwarz algorithms for boundary control of unsteady incompressible flows. Int J Numer Methods Eng 91:644–665CrossRef Yang H, Prudencio EE, Cai XC (2012) Fully implicit Lagrange–Newton–Krylov–Schwarz algorithms for boundary control of unsteady incompressible flows. Int J Numer Methods Eng 91:644–665CrossRef
24.
Zurück zum Zitat Kong F, Kheyfets V, Finol E, Cai XC (2018) An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery. Int J Numer Method Biomed Eng 34:e2952CrossRef Kong F, Kheyfets V, Finol E, Cai XC (2018) An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery. Int J Numer Method Biomed Eng 34:e2952CrossRef
25.
Zurück zum Zitat Kong F, Cai XC (2017) A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J Comput Phys 340:498–518CrossRef Kong F, Cai XC (2017) A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J Comput Phys 340:498–518CrossRef
26.
Zurück zum Zitat Patel MR, Bailey SR, Bonow RO et al (2012) ACCF/SCAI/AATS/AHA/ASE/ASNC/HFSA/HRS/SCCM/SCCT/SCMR/STS 2012 appropriate use criteria for diagnostic catheterization: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 59:1995–2027CrossRef Patel MR, Bailey SR, Bonow RO et al (2012) ACCF/SCAI/AATS/AHA/ASE/ASNC/HFSA/HRS/SCCM/SCCT/SCMR/STS 2012 appropriate use criteria for diagnostic catheterization: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 59:1995–2027CrossRef
27.
Zurück zum Zitat Naidu SS, Rao SV, Blankenship J et al (2012) Clinical expert consensus statement on best practices in the cardiac catheterization laboratory: Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 80:456–464CrossRef Naidu SS, Rao SV, Blankenship J et al (2012) Clinical expert consensus statement on best practices in the cardiac catheterization laboratory: Society for Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 80:456–464CrossRef
28.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845 DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845
29.
Zurück zum Zitat Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J Biomech 49:2540–2547CrossRef Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J Biomech 49:2540–2547CrossRef
30.
Zurück zum Zitat Anderson JD (1995) Computational fluid dynamics. McGraw-Hill Publishing Company, New York Anderson JD (1995) Computational fluid dynamics. McGraw-Hill Publishing Company, New York
31.
Zurück zum Zitat Goyal A, Lee J, Lamata P et al (2013) Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Trans Med Imaging 32:56–72CrossRef Goyal A, Lee J, Lamata P et al (2013) Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Trans Med Imaging 32:56–72CrossRef
32.
Zurück zum Zitat Jaquet C, Najman L, Talbot H et al (2019) Generation of patient-specific cardiac vascular networks: a hybrid image-based and synthetic geometric model. IEEE Trans Biomed Eng 66:946–955CrossRef Jaquet C, Najman L, Talbot H et al (2019) Generation of patient-specific cardiac vascular networks: a hybrid image-based and synthetic geometric model. IEEE Trans Biomed Eng 66:946–955CrossRef
Metadaten
Titel
Expanding the coronary tree reconstruction to smaller arteries improves the accuracy of FFRCT
verfasst von
Xianpeng Wu
Bokai Wu
Wenming He
Xinhong Wang
Kan Wang
Zhengzheng Yan
Zaiheng Cheng
Yuyu Huang
Wei Zhang
Rongliang Chen
Jia Liu
Jian’an Wang
Xinyang Hu
Publikationsdatum
25.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08012-7

Neu im Fachgebiet Radiologie

Genügt die biparametrische MRT für die Prostatadiagnostik?

Die multiparametrische Magnetresonanztomografie hat einen festen Platz im Screening auf klinisch signifikante Prostatakarzinome. Ob auch ein biparametrisches Vorgehen ausreicht, ist in einer Metaanalyse untersucht worden.

Höhere Trefferquoten bei Brustkrebsscreening dank KI?

Künstliche Intelligenz unterstützt bei der Auswertung von Mammografie-Screenings und senkt somit den Arbeitsaufwand für Radiologen. Wie wirken sich diese Technologien auf die Trefferquote und die Falsch-positiv-Rate aus? Das hat jetzt eine Studie aus Schweden untersucht.

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.