25.05.2021 | Cardiac
Expanding the coronary tree reconstruction to smaller arteries improves the accuracy of FFRCT
verfasst von:
Xianpeng Wu, Bokai Wu, Wenming He, Xinhong Wang, Kan Wang, Zhengzheng Yan, Zaiheng Cheng, Yuyu Huang, Wei Zhang, Rongliang Chen, Jia Liu, Jian’an Wang, Xinyang Hu
Erschienen in:
European Radiology
|
Ausgabe 12/2021
Einloggen, um Zugang zu erhalten
Abstract
Objectives
We attempted to improve the accuracy of coronary CT angiography (CCTA)-derived fractional flow reserve (FFR) (FFRCT) by expanding the coronary tree in the computational fluid dynamics (CFD) domain. An observational study was performed to evaluate the effects of extending the coronary tree analysis for FFRCT from a minimal diameter of 1.2 to 0.8 mm.
Methods
Patients who underwent CCTA and interventional FFR were enrolled retrospectively. Seventy-six patients qualified based on the inclusion criteria. The three-dimensional (3D) coronary artery tree was reconstructed to generate a finite element mesh for each subject with different lower limits of luminal diameter (1.2 mm and 0.8 mm). Outlet boundary conditions were defined according to Murray’s law. The Newton–Krylov–Schwarz (NKS) method was applied to solve the governing equations of CFD to derive FFRCT.
Results
At the individual patient level, extending the minimal diameter of the coronary tree from 1.2 to 0.8 mm improved the sensitivity of FFRCT by 16.7% (p = 0.022). This led to the conversion of four false-negative cases into true-positive cases. The AUC value of the ROC curve increased from 0.74 to 0.83. Moreover, the NKS method can solve the computational problem of extending the coronary tree to an 0.8-mm luminal diameter in 10.5 min with 2160 processor cores.
Conclusions
Extending the reconstructed coronary tree to a smaller luminal diameter can considerably improve the sensitivity of FFRCT. The NKS method can achieve favorable computational times for future clinical applications.
Key Points
• Extending the reconstructed coronary tree to a smaller luminal diameter can considerably improve the sensitivity of FFR
CT
.
• The NKS method applied in our study can effectively reduce the computational time of this process for future clinical applications.