Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 6/2014

01.12.2014 | Research Article

Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid

verfasst von: Xiangming Zhang, Xiying Guan, Don Nakmali, Vikrant Palan, Mario Pineda, Rong Z. Gan

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Vibration of the tympanic membrane (TM) has been measured at the umbo using laser Doppler vibrometry and analyzed with finite element (FE) models of the human ear. Recently, full-field TM surface motion has been reported using scanning laser Doppler vibrometry, holographic interferometry, and optical coherence tomography. Technologies for imaging human TM motion have the potential to lead to using a dedicated clinical diagnosis tool for identification of middle ear diseases. However, the effect of middle ear fluid (liquid) on TM surface motion is still not clear. In this study, a scanning laser Doppler vibrometer was used to measure the full-field surface motion of the TM from four human temporal bones. TM displacements were measured under normal and disease-mimicking conditions with different middle ear liquid levels over frequencies ranging from 0.2 to 8 kHz. An FE model of the human ear, including the ear canal, middle ear, and spiral cochlea was used to simulate the motion of the TM in normal and disease-mimicking conditions. The results from both experiments and FE model show that a simple deflection shape with one or two major displacement peak regions of the TM in normal ear was observed at low frequencies (1 kHz and below) while complicated ring-like pattern of the deflection shapes appeared at higher frequencies (4 kHz and above). The liquid in middle ear mainly affected TM deflection shapes at the frequencies higher than 1 kHz.
Literatur
Zurück zum Zitat Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res 263:78–84PubMedCentralPubMedCrossRef Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res 263:78–84PubMedCentralPubMedCrossRef
Zurück zum Zitat Carrie S, Hutton DA, Birchall JP, Green GGR, Pearson JP (1992) Otitis-media with effusion - components which contribute to the viscous properties. Acta Otolaryngol (Stockh) 112:504–511CrossRef Carrie S, Hutton DA, Birchall JP, Green GGR, Pearson JP (1992) Otitis-media with effusion - components which contribute to the viscous properties. Acta Otolaryngol (Stockh) 112:504–511CrossRef
Zurück zum Zitat Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77PubMedCentralPubMedCrossRef Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77PubMedCentralPubMedCrossRef
Zurück zum Zitat Cheng JT, Hamade M, Merchant SN, Rosowski JJ (2013) Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am 133:918–937PubMedCentralPubMedCrossRef Cheng JT, Hamade M, Merchant SN, Rosowski JJ (2013) Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am 133:918–937PubMedCentralPubMedCrossRef
Zurück zum Zitat Dai C, Wood MW, Gan RZ (2007) Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol 28:551–558PubMedCrossRef Dai C, Wood MW, Gan RZ (2007) Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol 28:551–558PubMedCrossRef
Zurück zum Zitat Del Socorro Hernandez-Montes M, Furlong C, Rosowski JJ, Hulli N, Harrington E, Cheng JT, Ravicz ME, Santoyo FM (2009) Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt 14:034023 Del Socorro Hernandez-Montes M, Furlong C, Rosowski JJ, Hulli N, Harrington E, Cheng JT, Ravicz ME, Santoyo FM (2009) Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt 14:034023
Zurück zum Zitat Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:1091–1094PubMedCentralPubMedCrossRef Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:1091–1094PubMedCentralPubMedCrossRef
Zurück zum Zitat Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815PubMedCrossRef Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815PubMedCrossRef
Zurück zum Zitat Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467PubMedCrossRef Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467PubMedCrossRef
Zurück zum Zitat Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859PubMedCrossRef Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859PubMedCrossRef
Zurück zum Zitat Furlong C, Rosowski JJ, Hulli N, Ravicz ME (2009) Preliminary analyses of tympanic-membrane motion from holographic measurements. Strain 45:301–309PubMedCentralPubMedCrossRef Furlong C, Rosowski JJ, Hulli N, Ravicz ME (2009) Preliminary analyses of tympanic-membrane motion from holographic measurements. Strain 45:301–309PubMedCentralPubMedCrossRef
Zurück zum Zitat Gan RZ, Wang X (2007) Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am 122:3527–3538PubMedCrossRef Gan RZ, Wang X (2007) Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am 122:3527–3538PubMedCrossRef
Zurück zum Zitat Gan RZ, Wood MW, Dormer KJ (2004a) Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol 25:423–435PubMedCrossRef Gan RZ, Wood MW, Dormer KJ (2004a) Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol 25:423–435PubMedCrossRef
Zurück zum Zitat Gan RZ, Feng B, Sun Q (2004b) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859PubMedCrossRef Gan RZ, Feng B, Sun Q (2004b) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859PubMedCrossRef
Zurück zum Zitat Gan RZ, Sun Q, Feng B, Wood MW (2006a) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:394–405CrossRef Gan RZ, Sun Q, Feng B, Wood MW (2006a) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:394–405CrossRef
Zurück zum Zitat Gan RZ, Dai C, Wood MW (2006b) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120:3799–3810PubMedCrossRef Gan RZ, Dai C, Wood MW (2006b) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120:3799–3810PubMedCrossRef
Zurück zum Zitat Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195PubMedCrossRef Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195PubMedCrossRef
Zurück zum Zitat Gan RZ, Zhang X, Guan X (2011) Modeling analysis of biomechanical changes of middle ear and cochlea in otitis media. AIP Conf Proc 1403:539–544CrossRef Gan RZ, Zhang X, Guan X (2011) Modeling analysis of biomechanical changes of middle ear and cochlea in otitis media. AIP Conf Proc 1403:539–544CrossRef
Zurück zum Zitat Goode RL (1994) Middle ear transmission disorders by laser-Doppler vibrometry. Acta Otolaryngol 114:679–681PubMedCrossRef Goode RL (1994) Middle ear transmission disorders by laser-Doppler vibrometry. Acta Otolaryngol 114:679–681PubMedCrossRef
Zurück zum Zitat Goode RL, Ball G, Nishihara S, Nakamura K (1996) Laser Doppler vibrometer (LDV)–a new clinical tool for the otologist. Am J Otol 17:813–822PubMed Goode RL, Ball G, Nishihara S, Nakamura K (1996) Laser Doppler vibrometer (LDV)–a new clinical tool for the otologist. Am J Otol 17:813–822PubMed
Zurück zum Zitat Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507PubMedCrossRef Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507PubMedCrossRef
Zurück zum Zitat Jakob A, Bornitz M, Kuhlisch E, Zahnert T (2009) New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol Neurotol 30:1049–1057PubMedCrossRef Jakob A, Bornitz M, Kuhlisch E, Zahnert T (2009) New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol Neurotol 30:1049–1057PubMedCrossRef
Zurück zum Zitat Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317PubMedCrossRef Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317PubMedCrossRef
Zurück zum Zitat Lupovich P, Paradise JL, Blueston CD, Harkins M (1971) Middle ear effusions - preliminary viscometric, histologic and biochemical studies. Ann Otol Rhinol Laryngol 80:342–346PubMedCrossRef Lupovich P, Paradise JL, Blueston CD, Harkins M (1971) Middle ear effusions - preliminary viscometric, histologic and biochemical studies. Ann Otol Rhinol Laryngol 80:342–346PubMedCrossRef
Zurück zum Zitat Maftoon N, Funnell WR, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity. JARO 14:467–481PubMedCentralPubMedCrossRef Maftoon N, Funnell WR, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity. JARO 14:467–481PubMedCentralPubMedCrossRef
Zurück zum Zitat Puria S, Allen JB (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 104:3463–3481PubMedCrossRef Puria S, Allen JB (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 104:3463–3481PubMedCrossRef
Zurück zum Zitat Rosowski JJ, Mehta RP, Merchant SN (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol Neurotol 24:165–175PubMedCentralPubMedCrossRef Rosowski JJ, Mehta RP, Merchant SN (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol Neurotol 24:165–175PubMedCentralPubMedCrossRef
Zurück zum Zitat Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29:3–19PubMedCentralPubMed Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29:3–19PubMedCentralPubMed
Zurück zum Zitat Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes MS, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hear Res 253:83–96PubMedCentralPubMedCrossRef Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes MS, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hear Res 253:83–96PubMedCentralPubMedCrossRef
Zurück zum Zitat Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32:1559–1567PubMedCentralPubMedCrossRef Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32:1559–1567PubMedCentralPubMedCrossRef
Zurück zum Zitat Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109–122PubMedCrossRef Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109–122PubMedCrossRef
Zurück zum Zitat Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time averaged holography. J Acoust Soc Am 52:1221–1233PubMedCrossRef Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time averaged holography. J Acoust Soc Am 52:1221–1233PubMedCrossRef
Zurück zum Zitat von Unge M, Bagger-Sjoback D (1994) Tympanic membrane changes in experimental otitis media with effusion. Am J Otol 15:663–669 von Unge M, Bagger-Sjoback D (1994) Tympanic membrane changes in experimental otitis media with effusion. Am J Otol 15:663–669
Zurück zum Zitat Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168PubMedCrossRef Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168PubMedCrossRef
Zurück zum Zitat Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917PubMedCrossRef Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917PubMedCrossRef
Zurück zum Zitat Whittemore KR Jr, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104PubMedCrossRef Whittemore KR Jr, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104PubMedCrossRef
Zurück zum Zitat Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027PubMedCrossRef Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027PubMedCrossRef
Zurück zum Zitat Zhang X, Gan RZ (2013) Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res 301:146–155PubMedCrossRef Zhang X, Gan RZ (2013) Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res 301:146–155PubMedCrossRef
Metadaten
Titel
Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid
verfasst von
Xiangming Zhang
Xiying Guan
Don Nakmali
Vikrant Palan
Mario Pineda
Rong Z. Gan
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 6/2014
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-014-0482-8

Weitere Artikel der Ausgabe 6/2014

Journal of the Association for Research in Otolaryngology 6/2014 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.